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� Introduction

Wireless networking is evolving as a major component of modern communication infrastructure� Today� mobile

phones are becoming a mainstream voice communication medium in our daily lives� It can be envisaged that

the wide deployment of wireless network in the next century will revolutionize the concept of communication�

As the proliferation of the demand for wireless services can be anticipated� it is of paramount importance to

speed up the rate of technological advance in maximizing the system capacity�

To design a high�capacity wireless system� cochannel interference� the most restraining factor on the system

capacity� must be properly managed� There are several ways to control the interference� for example� well�

designed channel allocation plan� e�cient power control� interference cancellation techniques� and orthgonal

signalling �time� frequency� or code�� There is a vast amount of literature on these topics� In this article� we

focus on power control�

Traditionally� there are two kinds of power control� The �rst one is called open�loop power control� This

kind of power control estimates the channel gain based on the pilot channel and adjusts the transmit power

accordingly� This is not very accurate� but has the advantage that it can respond quickly in case of a sudden

change in the channel� such as a a mobile user travels into a region shadowed by a building� The other kind�

called close�loop power control� adjusts the transmit power based on feedback information� This is more

accurate as the decision is based on the actual performance metric� for example� the received power� the

signal�to�interference ratio �SIR� or the bit error rate �BER��

For instance� in IS��	 CDMA standard� both open�loop and close�loop power control are implemented�

Basically� the algorithm strives to maintain the received power at a constant level 
��� However� it was shown

in 
�� that algorithms based on the received SIR outperforms those that based on the received power� It is

expected that SIR�based algorithms will be employed in the next�generation wireless standards 
��

To evaluate the performance of power�controlled systems� simulation studies with realistic but complex

models are usually involved� Unfortunately� the large variety of model assumptions renders comparisons

di�cult� To circumvent this di�culty� we present an analytical framework for the power control problem�

which was based on the earlier work by Aein 
�� Associated are many interesting optimization issues such
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as power minimization and throughput maximization� Our aim is to provide a mathematical perspective on

this problem by describing recent research developments� presenting new solution approaches and identifying

key future research directions�

The organization of this article is as follows� In Section �� we give a classi�cation of the power control

problem� In Section �� we describe the system model and de�ne the power control problem in its primitive

form� In Section �� an early approach called power balancing� in which the system aims at optimizing the

worst�case signal quality� is presented� In Section 	� we describe a new paradigm called QoS tracking� in which

powers are allocated in a way such that each user maintains a connection with acceptable link quality� In

Section �� a more realistic model� which restricts the power to discrete levels� are considered� In Section ��

the power control problem is extended to integrate the base station assignment problem� In Section �� we

present a framework which uni�es results found for di�erent variations of the power control problem� It is

further generalized to an asynchronous model in Section �� In Section ��� we turn our attention to time

varying channels� Preliminary results for stochastic link gains are presented� In Section ��� we consider the

power control problem for data networks� In Section ��� a game theoretic framework is presented� A well

studied class of noncooperative game called supermodular game is described in Section ��� Finally� we give

our conclusion in Section ���

� Classi�cation of Power Control Problem

In this section� we outline the di�erent aspects of the power control problem� We follow the classi�cation in


���

In a wireless multimedia system� the applications can broadly be divided into two classes� One class

requires real�time delivery of the message� A representative is the traditional mobile phone services� Another

class requires high reliability but can tolerate a larger delay� A typical example is the transmission of computer

data� These two classes of services have very di�erent objective functions� In the literature� the power control

problem is formulated for the second�generation digital cellular systems� The target service is mobile phone�

For computer data� there is no widely accepted formulation of the problem� Therefore� from Section � to ���

we restrict ourselves to the power control problem for mobile phone services� Afterwards� we will present a

new paradigm on power control for data tra�c�

Power control refers to the adjustment of transmit power levels to compensate for the fading e�ect of

both the mobile and the interferers� The aim is to achieve an acceptable quality of service �QoS� for a

mobile user without causing unnecessary interference to other users� QoS can be measured in terms of the

signal�to�interference ratio �SIR�� the bit error rate �BER� or other quantities� Usually� for voice tra�c�

the QoS is speci�ed in terms of SIR� For example� the analog AMPS system requires an SIR of �� dB for

acceptable reception� We denote the minimum acceptable SIR by ��� which is determined by the required

error performance and the coding�modulation method�

The power control problem can be separated into two sub�problems� In the �rst sub�problem� one concen�

trates on the scenario of a single user who already achieves a SIR that is close to the target� However� due

to the time varying nature of a fading channel� the mobile needs to make �ne adjustments from time to time

to track the target� This is called the single user model� In this model� the interference from other users is

assumed to be constant� The second sub�problem concerns with how to coordinate the power levels among a

group of users� In this multiuser model� the interference e�ect among the users is examined� Based on this

model� there are two paradigms established in the literature� One is called power balancing and the other is

QoS tracking� Each of them uses a di�erent objective function in its mathematical formulation� Netherthe�

less� both paradigms assume the channel is static� There are few research results on multiuser model with
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Figure �� Classi�cation of power control problem

fading channel� A �rst attempt which considers the special case of a �� � stochastic link gain matrix will be

presented in Section ���

Figure � shows the classi�cation of the power control problem� A detailed description of the multiuser

model will be presented in the next section�

� Multiuser Power Control Problem

The multiuser model can be further divided into single cell or multicell� Single cell models occur only in

CDMA systems� Multicell models occur in FDMA� TDMA� as well as CDMA systems�

In this section� we consider a multicell model for a FDMA�TDMA system� This model embraces the single

cell CDMA model as a special case and it can be extended to a multicell CDMA model�

In a cellular FDMA�TDMA system� a pair of channels is assigned to each communication link� One is

for the mobile�to�base �uplink� direction and the other is for the base�to�mobile �downlink� direction� If the

frequencies for the uplink and the downlink channel are di�erent� the technique is called frequency division

duplex �FDD�� If the same frequency is used but the two channels utilize di�erent time slots for transmission�

it is called time division duplex �TDD�� No matter which technique is used� there is no interference between

the uplink and the downlink channel� Hereafter� we consider the power control issue for the uplink channel�

However� the results are equally applicable to the downlink�

Now consider the uplink scenario� A channel is assigned to each active mobile terminal� Due to the scarcity

of the radio bandwidth� the same channel may be shared by di�erent terminals� As a result� interference arises�

Our aim is to choose a suitable transmit power of each mobile terminal such that the e�ect of cochannel

interference can be reduced�

We assume that there is no interference between di�erent channels� We focus on a particular channel�

Assume that tere are M mobile terminals currently using it� Note that in FDMA�TDMA system� there is at

most one terminal using this particular channel in each cell� We denote the link gain on the path between

the terminal in cell i and the base station in cell j at some given moment by Gij �see Figure ��� Note that

Gij�t�� in general� is a stochastic process� However� assuming that the power control iterations are much

faster than the change of the environment� we consider a snapshot of the system� Thus� Gij is treated as a

random variable� Its magnitude re�ects the e�ect of path loss and shadow fading�

In wireless communication� the link quality is usually measured by the SIR� Under our model� the SIR of
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Figure �� The link gain model�

mobile i� �i� can be written as

�i �
GiiPiP

j ��iGijPj � �i
���

where �i is the receiver noise at base station i� We let n denote the noise vector 
��� ��� � � � � �M ��
For voice applications� the received SIR is usually required to be greater than a certain threshold� ���

Thus� the power control problem is to �nd a non�negative power vector P � �P�� P�� � � � � PM� such that

�i � �� ���

for all i�

In most circumstances� the solution to a given power control problem� if exists� is not unique� To �nd a

favorable one among the solution set� either of the following criteria may be used�

�� Maximizing the worst�case signal quality�

�� Minimizing the power consumption�

In the literature� two paradigms based on these two di�erent criteria have been established� They are

termed power balancing and QoS tracking respectively�

� Power Balancing

In mobile cellular systems� the interference power is typically much greater than the receiver noise� If we

neglect the noise term �i� the SIR at base station i becomes

�i �
PiP

j ��iZijPj
���

where Z � 
Zij � 
Gij
Gii

 is the normalized link gain matrix�

Without losing much generality� we assume that Z is an irreduciblematrix� which is de�ned as follows 
�	�

De�nition � A square non�negative matrix T is irreducible if for every pair i� j of its index set� there exists

a positive integer m � m�i� j� such that t
�m�
ij � ��
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For example� consider the following three matrices�

A �

�
����

� ��	 � �

��	 � � �

� � � ��	

� � ��	 �

�
���� B �

�
����

� ��	 � �

��	 � � �

��� ��� � ��	

��� ��� ��	 �

�
���� C �

�
����

� ��� � �

� � ��� �

� � � ���

��� � � �

�
���� ���

If matrix A is regarded as a normalized link gain matrix� we can see that the �rst two mobiles form a

class and the remaining two form another class� There is no mutual interference between these two classes�

In matrix theory� we said that A is reducible� Similarly� concerning matrix B� we can divide the mobiles into

the same two classes� While the second class generates interference to the �rst one� there is no interference

from the �rst class to the second� Still B is a reducible matrix� Regarding matrix C� the interference e�ect

arisen from any mobile will eventually propagate to all other mobiles� Thus� C is an irreducible matrix�

Before proceeding� we introduce one more concept called primitive matrix 
�	�

De�nition � A square non�negative matrix T is primitive if there exists a positive integer k such that Tk � ��

It should be noted that the class of primitive matrices is a subclass of irreducible matrices� If we assume

that Z is irreducible� by the fact that all its diagonal elements are ones� we can show that Z is also primitive�

To maximize the worst�case signal quality� one would like to �nd a power vector� P�� which maximizes the

minimum SIR in the system�

P� � argmax
P��

min
i

�i �	�

Let ��i be the resulting SIR of mobile i at the optimal solution� If ��i � �� for all i� we call P� a feasible

solution�

Since Z is irreducible� it is easy to see that the optimal solution is obtained when all the SIRs are equal�

for otherwise� if we keep on decreasing the power of mobiles which achieve a higher SIR than the minimum�

the minimum SIR will eventually increase� Thus� we have

��i � ��j ���

for all i and j�

As the resulting SIR of each user is balanced at the optimal solution� this formulation is often referred to

as the power balancing problem� Denote the balanced SIR by ��� Then we have

P �iP
j ��iZijP

�
j

� �� ���

P �i � ��

�
� MX
j��

ZijP
�
j � P �i

�
A ���

�� � �����P �i �
MX
j��

ZijP
�
j ���

This equation can also be written in matrix form as follows�

�� � �����P � ZP ����

Therefore� the optimal power vector� P�� is an eigenvector of Z� By Perron�Frobenius Theorem for

irreducible matrices� Z has a positive real eigenvalue� �Z � which can be associated with strictly positive

eigenvectors� We call �Z Perron�Frobenius eigenvalue� Furthermore� �Z � j�j for any eigenvalue � �� �Z

	




�	� Since Z is also primitive� this statement can be replaced by a stronger one� �Z � j�j for any eigenvalue

� �� �Z 
�	�

We have shown that the power balancing problem is solved by �nding the Perron�Frobenius eigenvalue of

Z� �Z� and its corresponding eigenvector� From equation ����� �� is related to �Z by

�� �
�

�Z � �
����

If �� � ��� the solution is feasible� Thus� we have

Theorem � A feasible solution P� exists if and only if the Perron�Frobenius eigenvalue of Z� �Z � satis�es

�Z � � �
�

��
����

If a feasible solution does not exist� the eigenvector P� will cause the SIR of all the connections below the

required threshold� This is of course unacceptable and some of the users should be dropped from the system�

To minimize the outage probability� we would like to drop as few users as possible� Mathematically� we need

to �nd the largest submatrix of Z for which �� is achievable� This is called the user removal problem 
��� It

was shown in 
� that this problem is NP�complete� Some heuristic algorithms were proposed in 
�� ��� ���

��� Distributed Algorithms Based on Power Method

Assume that feasible solutions to a given power control problem exist� The solution described above requires

the matrix Z to be completely known� However� measuring all the path gains in real time is a formidable task

in large cellular systems� For practical implementation� we would like to have a power control scheme which

requires far less measurements and allows each mobile user to compute his own power level� The following

distributed algorithm was proposed by Zander 
���

Zander�s Algorthm

P��� � P�� P� � � ����

P
�n���
i � ��n�P

�n�
i

	
� �

�

��n�i



� ��n� � � ����

In matrix form� this can be expressed as

P�n��� � ��n�ZP�n� ��	�

This algorithm is essentially the power method for �nding the dominant eigenvalue and its corresponding

eigenvector of a matrix 
�� A necessary condition for the convergence is that the dominant eigenvalue must

be strictly greater than all other eigenvalues� This condition is satis�ed in our case since Z is primitive� Thus

we have

lim
n��P�n� � P� ����

lim
n���

�n�
i � �� �i ����

The sequence ��n� has no e�ect on the resulting SIR� However� if it is not chosen properly� the power

levels may become too large or too small� A possible choice for ��n� is M��
P

P
�n�
i �� However� this inevitably

requires some sorts of communication among the base stations�

�



Zander�s algorithm was later improved by Grandhi et� al� 
��� Equation ���� is rewritten as

������P � AP ����

where A � Z � I�

Since Z is irreducible� it can be shown that A is also irreducible� However� A is not necessarily primitive�

Let �A be the Perron�Frobenius eigenvalue of A� We have

�A � ���� ����

Theorem � can be restated as follows�

Theorem � A feasible solution P� exists if and only if the Perron�Frobenius eigenvalue of A� �A� satis�es

�A �
�

��
����

The optimal power vector can be obtained by �nding the eigenvector corresponding to �A� Again the

power method can be used�

Grandhi et� al� �s Algorthm

P�n��� � ��n�AP�n� ����

Similar to Zander�s algorithm� this algorithm also requires global information for a proper setting of ��n��

It was shown numerically that this algorithm� in average� converges faster than Zander�s� However� a subtle

point worth noting is that A is irreducible� but not necessarily primitive� Thus it is possible to construct an

example in which the algorithm does not converge� For example� consider the following problem�

Z �

�
�� � ��	 �

� � ��	

��	 � �

�
�� A �

�
�� � ��	 �

� � ��	

��	 � �

�
�� P��� �

�
�� �

�

�

�
�� ����

In this example� Zander�s algorithm converges� but Grandhi et� al� �s does not� The reason is that the

eigenvalues of A� in this example� are ��	 and ����	 � �����i� which have the same magnitudes� Thus the

power method fails to converge�

Zander�s and Grandhi et� al� �s algorithms can be considered special cases of a class of distributed algorithms

given as follows 
���

P�n��� � ��n��Z � 	I�P�n� �� � 	 � �� ����

Notice that Z � 	I is an irreducible nonnegative matrix� It is clear that 	 � � and 	 � � correspond�

respectively� to Zander�s and Grandhi et� al� �s algorithms� If we exclude the case 	 � �� then Z � 	I is

guaranteed to be a primitive matrix� The degenerate case as shown in the above example will not occur� and

the convergence is guaranteed for any irreducible matrix Z�

��� Cooperative Algorithm

As we discussed before� the class of distributed algorithms which bases on the power method needs a nor�

malization factor to scale the power vector to a desired range� In addition� the computation of such a factor

requires global user information� thus weakening the distributed property of these algorithms� To remedy this

problem� the idea of allowing limited information �ow among base stations was proposed� Algorithms which

based on this idea is collectively termed Cooperative Algorithm�

�
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Figure �� Layout of sixteen interfering cells�

In practice� the base stations in a cellular network are wired via a backbone network� Consequently�

control data can be sent from one base station to another� Obviously� there is a cost associated with this

kind of information �ow� To minimize this cost� the transmission of control data from a base station should

be restricted to its network neighbors as much as possible� By network neighbors we refer to those base

stations between which the data communication cost is small� This is determined by the topology of the

wired backbone network�

To de�ne the way how the power control data are passed among the base stations� we use the control data

�ow structure� This structure is a directed graph where each node represents a base station� If there is a

directed arc from node A to node B� then control data are passed from base station A to B� In addition� we

assume that the control data �ow structure satis�es the following�

Reachability Condition� Given any pair of nodes �A�B�� there is a chain of directed arcs starting from A and

terminating at B�

For example� we consider sixteen cochannel cells as shown in Figure �� There are many di�erent ways

to de�ne a control data �ow structure� Two possible ways are given in Figure �� Note that the reachability

condition is satis�ed in both cases�

According to the control data �ow structure� we de�ne Ni as the set of indices of base stations that send

control data to base station i� One form of the Cooperative Algorithm is given as follows 
���

���
���

P
���
i � Mi

P
�n���
i � 	

�n�
i P

�n�
i

	
�n�
i �

h
min��

�n�
i �minj�Ni �

�n�
j ���

�n�
i

i�
where � � 
 � �

����

Under this algorithm� there is no oscillation of power levels during the adjustment period� The power of

mobile i decreases monotonically from Mi� Furthermore� the SIR of each user is shown to converge to the

balanced SIR� ��� The rate of convergence is governed by the control data �ow structure� Roughly speaking�

the sparser the directed edges in the control data �ow structure� the lower the convergence rate� For example�
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Figure �� Two examples of control data �ow structure�

for the sixteen cells shown in Figure �� the algorithm converges faster if it uses the control data �ow structure

on the right of Figure �� instead of using the one on the left�

Equation ���� gives one form of the Cooperative Algorithm� A dual version which adjusts the power levels

monotonically upward is stated as follows 
���

���
���

P
���
i � mi

P
�n���
i � 	

�n�
i P

�n�
i

	
�n�
i �

h
max���n�i �maxj�Ni �

�n�
j ����n�i

i�
where � � 
 � �

��	�

Similarly� this algorithm is proved to converge to a solution at which power balancing is achieved�

��� Uplink�Downlink Equivalence

For voice applications in a cellular system� a duplex connection is required� Thus it is important to provide

each user an acceptable link quality for both uplink and downlink simultaneously� In this subsection� we will

show that the same SIR can be achieved in both links 
���

We assume that the uplink channel and the downlink channel have the same link gain� If G is the uplink

gain matrix� the downlink gain matrix is given by �G � G�� We write the normalized uplink gain matrix� Z�

in the following form�

Z � DG ����

where D is a diagonal matrix with Dii � ��Gii� Similarly� we de�ne the normalized downlink gain matrix�

W� by

W �DG� ����

The characteristic equation for Z is

jZ� �Ij � jDjjG� �D��j � � ����

where we have used the standard result that jABj � jAjjBj for any diagonal matrix A�

�



Using the fact that D�� is a diagonal matrix as well as jD�j � jDj� we can rewrite equation ���� as

jZ� �Ij � jDjj�G� �D����j ����

� jDjj�G�� �D���j ����

� jDG� � �Ij ����

� jW � �Ij ����

Hence� Z and W have the same characteristic equation� and thus� identical eigenvalues� Thus� we have

proved

Theorem � The balanced SIRs in the uplink and downlink are identical�

� QoS tracking

In the power balancing approach� the receiver noise is excluded from the model� The resulting solution gives

a relative magnitude on the power levels among the users� In Foschini and Miljanic�s model 
�� the receiver

noise is included� Furthermore� instead of optimizing the worst�case signal quality� they aim at �nding a

feasible solution which minimizes the power consumption� Their approach can be generalized such that every

user has a di�erent QoS requirement�

�i � �i ����

With this generalization and the inclusion of the receiver noise� the power control problem can be written

in matrix form as follows�


I�BP � u ����

where I is the M �M identity matrix� B is an M �M non�negative matrix de�ned as

Bij �

�
� i � j

�iGij�Gii i �� j
��	�

and u is the vector with elements

ui � �i�i�Gii ����

We call B the normalized interference matrix and u the normalized noise vector� We denote the set of

feasible power vectors by P� If we assume that Z is irreducible� it can be shown that B is also irreducible� Let

�B be the Perron�Frobenius eigenvalue of B� Using standard results from the theory of non�negative matrices


�	� we have the following theorem�

Theorem � A nonnegative solution P to the equation

�I �B�P � u

exists for any u � �� �� �� if and only if �B � �� In this case� there is only one solution P�� which is strictly

positive and given by

P� � �I �B���u

At this solution� the SIR of user i is equal to �i� and it has the following property�

Theorem � The solution P� is Pareto optimal in the sense that for any P 	 P� we have

P � P�

��
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Figure 	� The feasible region of the QoS tracking problem for two users�

Proof	

Given P 	 P� let 
P � P� � 	�P�P��� Since P� � BP� � u and P � BP� u�


P� �B
P� u� � 	�P�BP� u� ����

� � ����

Hence� 
P 	 P for all nonnegative 	� Suppose that Pi � P �i for some i� In this case� we can choose 	 such

that for some i� �Pi � � and �Pj � � for all j �� i� For this choice of 	�

� � �Pi � Bi

P� ui ����

where Bi is the ith row of B� Thus� it contradicts with the fact 
P 	 P�
�

Geometrically� the set of feasible power vectors� P� is a cone whose vertex is the solution P�� The feasible
region for a system of two users is depicted in Figure 	� The normalized interference matrix B dictates the

shape of the cone while the normalized noise vector u displaces the cone from the origin�

By Theorem �� the feasibility of a QoS tracking problem is governed only by the matrix B� By Perron�

Frobenius Theorem� given any pair of irreducible matrices B and �B� if B � �B� then �B � � �B 
�	� Thus� we

have the following proposition�

Proposition � Given two QoS tracking problem associated with matrix B and �B� where

Bij �

�
� i � j

�iGij�Gii i �� j
and �Bij �

�
� i � j

��i �Gij� �Gii i �� j�

if Gii � �Gii� Gij � �Gij�j �� i� and �i � ��i for all i and j� then the feasiblity of the problem associated with B

implies the feasibility of the problem associated with �B�

��



��� Distributed Algorithm

For the tracking problem� a distributed algorithm which converges to the solution P� has been proposed by

Foschini and Miljanic 
��

Foschini�Miljanic�s Algorithm

P
�n���
i �

�i

�
�n�
i

P
�n�
i �i ����

It can also be expressed as

P
�n���
i �

�i
Gii

�
X
j ��i

GijP
�n�
j � � ui ����

In matrix form� it becomes

P�n��� � BP�n� � u ����

The general solution of this di�erence equation is

P�n� � BnP��� �

	
n��X
i��

Bi



u ����

A lemma in 
�	 states that

Lemma � If A is a square matrix such that Ak 
 � elementwise as k 
�� then �I �A��� exists and

�I �A��� �
�X
k��

Ak

convergence being elementwise� �A� � I by de�nition��

Since a necessary and su�cient condition for Bi 
 � is �B � � 
�	� P�n� converges elementwise to the

solution

P � �I�B���u ����

provided a feasible solution exists�

��� Uplink�Downlink Equivalence

In Subsection ���� we have shown that the same balanced SIR is achieved by the uplink and the downlink�

For QoS tracking� we assume that for each user� the QoS requirements in the uplink and the downlink are

identical�

The feasibility of a QoS tracking problem for the uplink depends only on the normalized interference

matrix� B� which can be expressed as

B � DF ��	�

where D is a diagonal matrix de�ned as Di � �i�Gii� Fij equals Gij for i �� j and equals � for i � j�

Let �n � 
 ��� � � � ��M � be the receiver noise vector in the downlink� Then the QoS tracking problem for the

downlink becomes


I� �BP � �u ����

where �B �DF� and �ui � �i��i�Gii�

By the same method used in Subsection ���� it can be shown that B and �B have identical eigenvalues� By

Theorem �� we have

��



Theorem � Assuming that for each user� the QoS requirements in the uplink and the downlink are the same�

the QoS tracking problem for the uplink is feasible if and only if the problem for the downlink is feasible�

Although the feasibility of the uplink problem and the downlink problem are the same� there is no simple

relation between the optimal power vectors for them� However� we have the following result 
���

Theorem  Assuming that the noise vectors in the uplink and the downlink are the same up to a constant�

i�e� n � c�n� the optimal uplink and downlink power vectors� P� and �P� respectively� if exist� are related as

n�P� � c��n� �P�

Proof	

By Theorem �� the optimal uplink and downlink power vectors can be expressed as follows�

P� � �I�B���Dn ����

�P� � �I� �B���D�n ����

By Lemma �� we have

�I�B���D �

	 �X
k��

Bk



D ����

�

�
D

�X
k��

�B��k
��

�	��

�

�
D

�X
k��

�F�D�k

��
�	��

�

� �X
k��

�DF��kD

��
�	��

�
h
�I� �B���D

i�
�	��

Hence�

n�P� � n��I�B���Dn �	��

� n�
h
�I� �B���D

i�
n �		�

�
h
n��I� �B���Dn

i�
�	��

� c�
h
�n� �P�

i�
�	��

� c��n� �P� �	��

�

Note that the noise power depends only on the bandwidth and the noise �gure of a receiver� Thus� it is

reasonable to assume that �i are the same for all base stations and ��i are the same for all mobiles� In this

case� by putting n � 
� � � � � ��� we have the following result�

Corollary � If the noise power is the same for all base stations and the noise power is the same for all

mobiles� then the minimal sum of powers in the uplink is always the same as that in the downlink up to a

constant�

��



This result is useful for the integrated power control and base station assignment problem to be discussed

later�

� Discrete Power Control Model

In the original power control model� the transmit power can assume any positive value in a continuous range�

However� in practice� the transmit power is limited to discrete levels� This limitation follows from the fact

that in practical implementation� the power is controlled by a bit sequence� which needs to be converted into

an amplifying signal by a Digital�to�Analog �D�A� converter� Furthermore� the power level grid is not very

dense as a high�precision D�A converter is expensive� For example� the power levels in GSM 
�� and IS��	


�� are equally spaced by � dB and � dB respectively�

Due to this limitation� it may be impossible for users to achieve the exact target QoS values� Therefore�

a discrete version of the power control model 
�� is needed�

We assume that the power level is quantized in logarithmic scale� The di�erence between two consecutive

power level is ��dB��� �� dB � Under this discrete model� the achievable QoS is related to that in the original

continuous model as follows 
���

Theorem � If there exists a power vector P� such that �i�P�� � �i for all i� then there exists a discrete

power vector 
P such that ����i � �i�
P� � ��i for all i�

Proof	

Given P �i � we can always �nd one and only one discrete power level �Pi such that �����P �i � �Pi � ����P �i �
Assume that P �i is quantized to �Pi� Let 
P be the quantized power vector corresponding to the given vector

P��

�i�
P� �
Gii

�PiP
j ��iGij

�Pj � �i

� Gii�
����P �iP

j ��iGij����P �j � �i

� ����i�P��

� ����i

The upper bound can be derived similarly�

�

In QoS tracking� if we change the target QoS value� �i� into a target QoS range� 
����i� ��i� by Theorem ��

the existence of solution in the continuous model implies the existence of solution in the discrete one� This

result motivates our design of the following �xed�step algorithm 
��� We assume that each user adjusts his

power in �xed step ��dB� � � dB� The control rule is stated as follows�

Fixed�step Power Control Algorithm

�We use x�dB� to denote the decibel value of x� i�e� x�dB� � �� log�� x�

��



P
�n���
i �

��
��

�P
�n�
i if �

�n�
i � ����i

���P �n�
i if �

�n�
i � ��i

P
�n�
i otherwise

�	��

The most notable feature of this algorithm is its simplicity� At each iteration� a user adjusts his transmit

power upward or downward by one step� or keeps his power constant� It can be shown that the algorithm

converges provided that a feasible solution exists� The proof is composed of two parts� First� it will be

established that the power level of each user has a lower bound and an upper bound� Then� it will be shown

that the power levels do not oscillate�

Proposition � If a feasible solution 
P exists� then under the �xed�step algorithm� the power vector� P�n�� at

any iteration n has an upper bound and a lower bound which depend only on the gain matrix and the initial

power vector�

Proof	

We let P��� be the initial power vector� P
���
i di�ers from �Pi by a multiple of ��dB� dB� i�e�

P
���
i � �Pi�

a�i��� ����

where a�i� �� is an integer� In general� we de�ne a�i� n� by

P
�n�
i � �Pi�

a�i�n� ����

Note that a�i� n� is an integer and ja�i� n� �� � a�i� n�j � ��

Now� de�ne

K�n� � max
i
fa�i� n�� �g ����

For mobile i where a�i� n� � K�n�� we have

��n�i �
GiiP

�n�
iP

j ��iGijP
�n�
j � �i

����

�
Gii

�Pi�K�n�P
j ��iGij

�Pj�a�j�n� � �i
����

� Gii
�Pi�K�n�P

j ��iGij
�Pj�K�n� � �i

��	�

� �i�
P� ����

� ����i ����

Therefore� those mobiles which achieve K�n� will not increase its power at iteration n � �� In other words�

a�i� n� �� � a�i� n� � K�n��

For mobile i where a�i� n� � K�n�� we have

a�i� n� �� � a�i� n� � � � K�n� ����

Hence� K�n� is a non�increasing sequence� As a result� for every mobile i� we have

P
�n�
i � �Pi�

K��� ����

The existence of lower bound can be shown in the same way�

�	



�

The states of the �xed�step algorithm are represented by the sequence P�n�� The sequence is said to be

asymptotically periodic if there exists integers� N � � and T � � such that for all n � N �

P�n� � P�n�T �

The transition of the �xed�step algorithm depends only on the current state and is deterministic� By

Proposition �� the number of states is �nite� Thus� if the power state sequence does not converge� it must be

asymptotically periodic� However� we can show that it is not asymptotically periodic� Before proving that�

we need the following lemma�

Lemma � If P �m�
j � �xP

�n�
j and �j � ����j � where r � m � n and x � �� then there exists k �� j such that

P
�s�
k � �x��P

�t�
k � where r � s � m � t � n�

Proof	

If P
�r�
j � ���P �m�

j � then there exists s such that r � s � m and P
�s�
j � ���P �m�

j and �j � ����j � If

P
�r�
j � ���P �m�

j � we let s � r�

Since P �m�
j � �xP

�n�
j � there exists t� where m � t � n� such that P �t�

j � �P
�n�
j and �j � ��j �

Therefore�

P
�s�
j � ���P �m�

j � �x��P �n�
j � �x��P �t�

j ����

Denote the interference at base station j by I
�n�
j � i�e�

I
�n�
j �

X
k ��j

GjkP
�n�
k � �j ����

Since �j � ����j and �j � ��j � by equation ����� we have

��j �
GjjP

�t�
j

I
�t�
j

����

� GjjP
�s�
j

I
�t�
j �x��

����

�
I
�s�
j �j

I
�t�
j �x��

����

�xI
�t�
j � I

�s�
j ��	�

It implies that there exists k such that

P
�s�
k � �xP

�t�
k ����

Since the power level is quantized into discrete levels with step �� we have

P
�s�
k � �x��P

�t�
k ����

�

Proposition � If the �xed�step algorithm does not converge� the power vector is not aymptotically periodic�

Proof	

��



Assume that the power vector oscillates with period T � where T � �� i�e� P�n� � P�n�T � for large enough

n�

Since the algorithm does not converge� one can �nd a mobile i such that P
�m�
i � �P

�n�
i � where m � n and

n�m � T �

Note that P �m�
i � �P

�n�T �
i � Therefore� there exists r such that �i � ����i� where n� T � r � m�

By Lemma �� there exists a mobile j �j �� i� such that P
�s�
j � ��P

�t�
j where r � s � m � t � n� Note that

t� s � T �

By repeating the argument� one can �nd a mobile k such that P
�p�
k � �xP

�q�
k for any integer x where

q � p and q � p � T � Since at each step� the power level can change by an amount bounded by �� x is upper

bounded by T � Hence� this leads to a contradiction�

�

The convergence of the �xed�step algorithm then follows directly from Proposition � and ��

Thus far� all the power control algorithms we consider are driven by the SIR� In practice� however� the SIR

is di�cult to estimate accurately in real time� It was shown in 
�� that the �xed�step algorithm� with slight

modi�cation� can be driven by any quality measure� for example� the bit error rate� A detailed description of

the modi�ed algorithm can be found in 
���

� Integrated Power Control and Base Station Assignment

In the previous sections� we assume that the assignment of users to base stations is speci�ed by outside

means� To attain higher capacity and reduce power consumption� it is bene�cial to integrate the tasks of base

station assignment and power allocation� The goal� same as before� is to establish connections which meet

the QoS requirement of all users� First� we describe the problem for uplink� This problem was independently

investigated by Hanly 
��� and Yates and Huang 
��� Our treatment basically follows the approach of Yates

and Huang� Afterwards� we describe the problem for downlink 
��

��� Uplink Scenario

We assume N users� M base stations and a common radio channel� The link gain between user i and base

station k is denoted by Gki� and the receiver noise at base station k is denoted by �k� We de�ne Ai � k if user

i is assigned to base station k� The other notations� such as power and SIR� are the same as that described

in Section �� We want to determine the base station assignment A � 
A�� A�� � � � � AN � and the power vector

P � 
P�� P�� � � � � PN � which minimizes the sum of powers�
P

i Pi� subject to the QoS constraint� �i � �i for

all i�

When user i is assigned to base station k� the QoS constraint for user i is

Pi �H
�k�
i P� s

�k�
i ����

where s
�k�
i � �i�k�Gki and H

�k�
i is a row vector with j�th component de�ned as

H
�k�
ij �

�
� j � i

�iGkj�Gki j �� i
����

Since there are N users and M base stations� the number of possible base station assignments is MN � We

can enumerate all the possible assignments and denote the l�th one byA�l� � 
A��l�� � � � � AN �l�� We letB�l� be

the normalized interference matrix under assignment l� whose element is de�ned by B
�l�
ij � H

Ai�l�
ij � Similarly�

��
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Figure �� The feasible region of the integrated power control and base station assignment problem for two

users and two base stations�

we let u�l� be the normalized noise vector under assignment l� whose element is de�ned by u
�l�
i � s

Ai�l�
i �

Therefore� the set of feasible power vectors under assignment l is

P�l� � fP � �jP � B�l�P� u�l�g ����

The integrated power control and base station assignment problem can be viewed as the minimization of

total transmitted power over the set of feasible power vectors� �lP�l�� Figure � depicts the set of feasible power

vectors for a system of two users and two base stations 
��� Totally� there are four di�erent combinations

of base station assignment� They correspond to the four cones with vertices labelled as v���� v���� v��� and

v���� The union of the shaded regions depicts the set of feasible power vectors� �lP�l�� Note that this set is

typically not a convex set�

As discussed in Section 	� a vertex� v�l�� is the unique solution to

v�l� � B�l�v�l� � u�l� ����

Among all these vertices� we can �nd one which is a lower bound of all others�

Theorem � There exists a vertex v� such that v� � v�l� for all l�

Proof	

Among all feasible assignments l� let li be the one that minimizes v�l�i � Let P � 
v�l��� � � �v�lN �
N �� Thus� we

have

Pi � v
�li �
i � B

�li�
i v�li� � u�li� ����

� B
�li�
i P� u�li� ����

��



That is� P is feasible with respect to the ith constraint of cone P�li�� Let B� denote the normalized

interference matrix with ith row B
�li�
i � and let u� denote the normalized noise vector with ith element

u�i � u
�li�
i � The pair B� and u� describes a cone of feasible vectors� P�� Call its vertex v�� Since P 	 P��

Theorem 	 implies P � v�� By construction� P � v�l� for all l� Hence P � v� � v�l� for all l�

�

The vertex v� and its corresponding base station assignment is the solution to the integrated power control

and base station problem� Although v� is unique� it may be the vertex of more than one cone� Thus there

may be more than one optimal base station assignment�

This optimal solution can be obtained iteratively by the following algorithm�

A
�n���
i � argmin

k
H

�k�
i P�n� � v

�k�
i ����

P
�n���
i � H

�A
�n���
i

�
i P�n� � v

�A
�n���
i

�
i ��	�

At each iteration� the algorithm selects the base station to which the mobile can use minimum power to

transmit� After the base station is chosen� Foschini�Miljanic algorithm is used to determine the power level�

It was proved in 
�� that it converges to the desired solution�

��� Downlink scenario

In the QoS tracking problem� with predetermined base station assignment� the feasibility of uplink and

downlink are equivalent� Furthermore� the same power control algorithm can be applied to both links�

However� the integrated problems for the uplink and the downlink are substantially di�erent� While in the

uplink� there is a Pareto optimal solution� this is not the case for the downlink� This fact will be demonstrated

through a counterexample�

In 
�� an iterative algorithm for the integrated downlink problem was proposed� It can be stated as follows�

 Base station assignment�
�A�n��� � A�n��� ����

where A
�n���
i is determined by equation �����

 Power assignemnt�
�P�n��� � �B� �A�n��� � �P�n� � �u�

�A�n���� ����

where �B� �A�n���� and �u�
�A�n���� are respectively the normalized downlink interference matrix and nor�

malized noise vector under base station assignment �A�n����

The idea of this algorithm is that it uses the same base station assignment for uplink� determined by

equation ����� to that for downlink� If a feasible solution for the uplink exists� equation ���� has been proved

to converge� By the uplink�downlink equivalence� a feasible solution for the downlink exists also� provided the

same base station assignment is used� Thus Foschini�Miljanic algorithm can be applied and is guaranteed to

converge to a feasible solution� �P��

Theorem �� If the noise power is the same for all base stations and the noise power is the same for all

mobiles� then the solution �P� minimizes the sum of downlink powers�

Proof	

��
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Figure �� Two base station assignments for downlink�

The base station assignment determined by equation ���� is optimal in the sense that under this assignment

we can �nd a power vector which minimizes the sum of uplink powers among all feasible solutions� Since by

Corollary �� the sum of uplink and downlink powers are the same up to a constant� �P� minimizes the sum of

downlink powers�

�

In the following� we show by an example that� in general� there is no Pareto optimal solution to the

integrated power control and base station assignment for the downlink� The example is taken from 
�� We

consider two mobiles and three base stations as shown in Figure �� Figure ��a� shows one base station

assignment� A� and Figure ��a� shows another one� A�� We ignore the case of assignment m� to B� or B��

since it is obvious worse than assigning to B��

We let the noise power at both mobiles be �� and the SIR target be �� The optimal power levels under

assignment A� are

�PA
�

� � 	

�
�G��

G��G��
�

�

G��

�
����

�PA
�

� � 	

�
�G��

G��G��
�

�

G��

�
����

where 	 � ������� ��G��G����G��G�����

In Figure ��a�� since m� is closer to its assigned base station� we assume that G�� � G�� and G�� � G���

In this case� �PA
�

� � �PA
�

� �

��



Similarly� under assignment A�� the optimal power levels are

�PA
�

� � �

�
�G��

G��G��
�

�

G��

�
����

�PA
�

� � �

�
�G��

G��G��
�

�

G��

�
����

where � � ������� ��G��G����G��G�����

In Figure ��a�� since m� is closer to its assigned base station� we assume that G�� � G�� and G�� � G���

Thus� �PA
�

� � �PA
�

� �

If we further assume that the location of B� is close enough to m� such that G���G�� � G���G��� then
�PA

�

� � �PA
�

� � In other words� if we change the assignment from A� to A�� �P� will increase while �P� will

decrease� Thus� in this example� there is no Pareto optimal solution�

� Standard Interference Function

In 
��� Yates presented a framework for the uplink power control problem� The framework uni�es results

found for di�erent variations of the power control problem� He identi�ed that for a broad class of power

controlled systems� the users� QoS requirements can be described by a vector inequality written in the form

P � I�P� ����

where Ij�P� denotes the e�ective interference that user j must overcome�

For example� equation ���� can be applied to the following systems�

 QoS tracking with �xed base station assignment�

As we have described before� the SIR of user j at base station k is Pj�kj�P� where

�kj�P� �
GkjP

i��j GkiPi � �k
����

The QoS constraint can be written as

Pj � IQoSj �P� �
�j

�jj�P�
����

 Integrated power control and base station assignment for uplink�

For the uplink channel� user j should be assigned to the base station which yields the highest SIR� Thus�

the SIR constraint of user j is maxk Pj�kj�P� � �j � which can be written as

Pj � IIPBj �P� � min
k

�j
�kj�P�

��	�

 Macro diversity�

To improve the quality of communication� the received signal of user j at all base stations can be

combined 
��� If maximal ratio combining is used� the SIR of the resultant signal is simply the sum of

the SIR of all individual signals 
��� Thus the QoS constraint is of the form

Pj
X
k

�kj�P� � �j ����

In this case� we have

Pj � IMD
j �P� �

�jP
k �kj�P�

����

��



 MMSE interference suppression�

In CDMA system� a conventional receiver consists of �lters that are matched to the signature sequences

of the users� To suppress part of the interference� a Minimum Mean Squared Error �MMSE� detector

can be employed� If we let si be the signature sequence of user i and ci be the code sequence used at

receiver i� the SIR can be expressed as 
��

�j � Pjj�P� ����

where

j�P� �
Gjj�c�j sj�

�P
k ��j PkGjk�c�j sk�� � �j�c�j cj�

����

Thus� the QoS constraint becomes

Pj � IMMSE
j �P� �

�j
j�P�

�����

For systems which can be expressed in the form of equation ����� we now examine the iterative power

control algorithm

P�n��� � I�P�n�� �����

The function I�P� is called a standard interference function if it satis�es the following�

De�nition � Interference function I�P� is standard if for all P � �� the following properties are satis�ed�

 Positivity� I�P� � ��

 Monotonicity� If P � P�� then I�P� � I�P���

 Scalability� For all 	 � �� 	I�P� � I�	P��

When I�P� is standard� the algorithm in equation ����� will be called the standard power control algorithm�

It was proved in 
�� that for any initial power vector P� the standard power control algorithm converges to a

unique �xed point whenever a feasible solution exists� We now present the convergence result for In�P�� the

power vector produced by the standard power control algorithm at the nth iteration 
���

Theorem �� If the standard power control algorithm has a �xed point� then that �xed point is unique�

Proof	

Let P and P� be distinct �xed point� By the positivity property� Pj � � and P �j � � for all j� Without loss

of generality� we assume that there exists j such that Pj � P �j � Hence� there exists 	 � � such that 	P � P�

and that for some j� 	Pj � P �j� The monotonicty and scalability properties imply

P �j � Ij�P
�� � Ij�	P� � 	Ij�P� � 	Pj �����

which contradicts with the fact 	Pj � P �j�

�

Lemma � If P is a feasible power vector� then In�P� is a monotone decreasing sequence of feasible power

vectors that converges to the unique �xed point P��

��



Proof	

Let P�k� be a feasible power vector� Feasibility of P�k� implies that P�k� � I�P�k�� � P�k���� P�k��� is

also a feasible vector because monotonicity implies I�P�k�� � I�P�k����� By mathematical induction� if P���

is feasible� P�n� is a monotone decreasing sequence of feasible power vectors� Since P�n� is bounded below by

the zero vector� Theorem �� implies the sequence must converge to the unique �xed point P��

�

Lemma � If a feasible power vector exists� then starting from the zero vector� z� In�P� is a monotone

increasing sequence of power vectors that converges to the unique �xed point P��

Proof	

Let z�n� � In�z�� Since P� � z� monotonicity implies

P� � I�P�� � I�z���� � z��� � z �����

Suppose z�n��� � z�n� � P�� monotonicty implies

P� � I�P�� � I�z�n�� � I�z�n���� � z�n� �����

That is� P� � z�n��� � z�n��

By mathematical induction� the sequence z�n� is nondecreasing and is bounded above by P�� By Theo�

rem ��� z�n� must converge to P��

�

Theorem �� If a feasible power vector exists� then for any initial power vector P� the standard power control

algorithm converges to a unique �xed point P��

Proof	

Feasibility of the problem implies the existence of the unique �xed point P� �Theorem ���� For any initial

vector P� we can �nd 	 � � such that 	P� � P� By scalability� 	P� � 	I�P�� � I�	P ��� Hence� 	P� is also
a feasible vector�

Since z � P � 	P�� monotonicity implies

In�z� � In�P� � In�	P�� ���	�

Lemmas � and � imply limn�� In�z� � limn�� In�	P�� � P� and the claim follows�

�

It should be noted that while Foschini�Miljanic algorithm is a standard power control algorithm� the

�xed�step algorithm does not belong to this class�

��



	 Asynchronous Convergence

In this section� we examine a totally asynchronous model for distributed computation 
	� This model can

be applied to distributed power control algorithms� It allows the users to update their powers at di�erent

rates and di�erent times� In addition� each user may update his power based on outdated information on the

interference caused by other users�

De�ne P�t� � �P �t�
� � P

�t�
� � � � � � P

�t�
K � where P �t�

i is the power of mobile i at time t�

We assume that there is a set of times T � f�� �� �� � � �g at which one or more components Pi of P are

updated� Let T i be the set of times at which Pi is updated� We assume that the base station to which mobile

i belongs may not have access to the most recent value of the components of P� At time t� let � ij �t� be the

most recent time for which Pj is known to user i� Note that � � � ij �t� � t� Thus� the iterative power control

algorithm can be expressed as

P
�t���
i � fi�P

��i��t��
� � P

��i��t��
� � � � � � P ��iK�t��

K � �t 	 T i �����

At all times t �	 T i� Pi is left unchanged�

P
�t���
i � P

�t�
i �t �	 T i �����

De�nition � �Total Asynchronism� The sets T i are in�nite� and if ftkg is a sequence of elements of T i that

tends to in�nity� then limk�� � ij�tk� �� for every j�

This condition guarantees that each component is updated in�nitely often� and that old information is

eventually purged from the system� More precisely� given any time t�� there exists a time t� � t� such that

� ij �t� � t� �i� j� and t � t��

In words� given any time t�� values of components generated prior to t� will not be used in updates after

a su�ciently long time t�� On the other hand� the amount t� � ij �t� by which the variables used in iterations

are outdated can become unbounded as t increases� This is the main di�erence between total asynchronism

and another model called partial asynchronism 
	�

Using the Asychronous Convergence Theorem in 
	� it can be shown that the standard power control

algorithm converges under total asynchronism� In addition� it was shown in 
�� that the �xed�step power

control algorithm also converges under this model�

�
 Time Varying Channel

���� Correlated Fading Model

Previously� we have assumed that the link gain matrixG�
Gij is constant during the power control process�

However� in reality� the communication channel su�ers from fading� Thus� the matrix G is in e�ect time�

varying and should be more appropriately denoted by G�t�� In this section� we assume that the link gains

vary in accordance with the shadow e�ect� The e�ect of multipath fading is assumed averaged out and is not

considered�

Now let us consider a particular time instant t� Let dij�t� be the distance between mobile j and base

station i� Let Aij�t� be the dB attenuation due to shadow fading and 	 be the path loss exponent� The link

gain Gij�t� at time t can be written as

Gij�t� �
���Aij�t����

dij�t��
�����

��



Note that at a particular time instant� Aij is usually modeled as a Gaussian random variable with mean

zero and variance ��� Empirical data show that 	 is around � and � lies between � and ��

Equation ����� represents the link gain at a particular time instant� In 
��� Gudmundson shows that the

dB attenuation due to shadow fading� A� exhibits an exponential spatial correlation� Consider two points

separated by a distance d� The correlation between the shadow fading factor A� and A� is

E
A�A� � �� exp��d�D�� �����

where D� is the correlation distance� Typical values of D� for urban areas are around �� meters� In suburban

areas� D� may be ten times larger�

Assume that a mobile travels at speed v� The spatial correlation can be expressed as a time correlation�

that is�

E
A�t�A�t � � � � �� exp��v��D�� �����

We assume that the power level of each mobile is adjusted every � units of time� In second generation

cellular systems� � is in the order of � to ��� milliseconds� For example� in GSM system� � is ��� msec 
���

while in IS��	 CDMA system� � is ���	 msec 
���

During the power control process� the change in distance between base station i and mobile j� dij�t�� is

usually insigni�cant� Therefore� to simplify our model� we assume that dij is a constant�

Now we introduce a discrete�time model for the link gain matrix� Since the distance change is assumed

negligible� the link gains depend only on the dynamics of the shadow fading� Let G
�n�
ij � Gij�t� � n� � and

A
�n�
ij � Aij�t� � n� �� where t� is a reference time instant� Equation ����� and ����� then become

G
�n�
ij �

���A
�n�
ij

���

d�ij
�����

and

E
A�n�
ij A

�n���
ij  � ��� �����

where � � exp��v��D�� is called the correlation coe�cient� For example� in GSM system� a user travelling

with speed ��� km�h in urban area has � � ��	�� For pedestrians with speed �� km�h� � � ����� Thus� we

are most interested in the region where ��	 � � � ��

The random sequence fA�n�
ij g can be represented by the following model based on Gauss�Markov process

�see e�g� 
����

A
�n���
ij � �A

�n�
ij �

p
�� ��W �n� �����

whereW �n� is a Gaussian random variable with mean zero and variance ��� Note that the sequence fW �n�� n �

�� �� � � � �g is white� that is� W �m� and W �n� are uncorrelated when m �� n�

For any power control algorithm� the SIR of mobile i at time n can be expressed as

��n�i �
G
�n�
ii P

�n�
iP

j ��iG
�n�
ij P

�n�
j � �i

�����

Note that f��n�i � n � �� �� � � �g as de�ned by ����� is a stochastic sequence� We de�ne the distribution of

�
�n�
i as

F
�n�
i ��� � Prf��n�i � �g ���	�

It is natural to ask whether the distribution function F
�n�
i ��� eventually settles down as n gets large� If

the limiting distribution exists� it is legitimate to de�ne an useful performance measure� outage probability� in

the following way�

�	



For a given minimum required SIR� ��� the outage probability� �� is de�ned as the probability that the

SIR of a randomly chosen mobile falls below �� when n
��

� �
�

M

MX
i��

lim
n��F

�n�
i ���� �����

This measure will be used in the sequel for the evaluation of di�erent power control schemes� Due to

the complexity of the problem� we will consider only two special cases� The �rst one assumes a time�varying

channel for single user� The second one assumes two users interfering with each other�

���� Special Case	 Noise Only

First we consider the special case where the receiver noise dominates as if there is only one single mobile

terminal using that channel� Our treatment basically follows that in 
���

In the single�user scenario� the SIR can be simpli�ed as

��n� �
G�n�P �n�

�
�����

If measured in decibels� it becomes

��n��dB� � A�n� � P �n��dB� � L � ��dB� �����

where L � ��	 log�� d�

For clarity� from now on� we omit the superscript �dB�� with the understanding that all the power levels�

SIRs and noise levels are measured in decibels�

������ Path Loss Compensation

To maintain a target SIR� ��� one can simply let

P �n� � �� � L� � �����

for all n� This method is called path loss compensation� since it compensates only for the path loss e�ect�

With this power setting� the SIR becomes

��n� � A�n� � �� �����

Since A�n� is a Gaussian random variable with mean zero� it is easy to see that the outage probability

is ��	� which is unacceptably high for reliable communication� Thus it is necessary to deliberately raise the

target SIR by a certain amount� This concept is called fade margin� We denote it by F �also measured in

decibels�� The power setting and the resulting SIR become

P �n� � �� � L � � � F �����

��n� � A�n� � �� � F �����

As a consequence� ��n� is a Gaussian random variable with mean �� � F and variance ��� Thus� we have

the following relation between the outage probability� �� and the fade margin� F �

�PL �
�

�
erfc

�
Fp
��

�
�����

��



where

erfc�x� �
�p
�

Z �

x

e�t
�

dt �����

For a given outage probability� we would like to minimize the fade margin such that the power consumption

can be reduced� We can see that the fade margin depends on the width of the probability density function

of the received SIR� By employing a more e�ective power control scheme� it may be possible to reduce the

variation of the SIR�

������ Foschini�Miljanic algorithm

Now let us consider the application of Foschini�Miljanic algorithm to this situation� With fade margin F � by

equation ����� the power level at iteration n is given by

P �n� � �� � F � ��n��� � P �n��� ���	�

� �� � F �A�n��� � L � � �����

The resulting SIR at iteration n is

��n� � �� � F � A�n��� �A�n� �����

The outage probability can be written as follows�

�FM � PrfA�n��� � A�n� � Fg �����

Note that A�n��� �A�n� is Gaussian distributed� The mean and variance are

E
A�n��� � A�n� � � �����

E
�A�n��� �A�n��� � ���� ���� �����

Thus� the variance of the SIR is changed from ��� to ��������� It implies that Foschini�Miljanic algorithm

is e�ective only if � � ��	�

Furthermore� equation ����� becomes

� �
�

�
erfc

	
Fp

���� ���



�����

������ MMSE estimator

It is worth noting that the occurrence of outages is due to the variation of the received SIR� In our model�

this variation arises from the attenuation factor� A�n�� due to shadow fading� The path loss compensation

method has got nothing to do with this factor� For Foschini�Miljanic algorithm� it tries to compensate this

factor� in essence� by using A�n��� as an estimate of A�n�� In fact� we can further reduce the SIR variation

by means of an MinimumMean Square Error �MMSE� estimator�

It is well known that the MMSE estimator of a random variable Y based on observing the random variable

X is the conditional mean E
Y jX �see e�g� 
��� In our problem� we need to estimate A�n� based on the past

observations� A�n���� A�n���� � � �� Due to the Markovian property� the MMSE estimator is

E
A�n�jA�n���� A�n���� � � � � E
A�n�jA�n��� �����

� �A�n��� �����

��
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Figure �� The relation between fade margin and correlation coe�cient for single user�

This is equivalent to setting the power

P �n� � �� � F � �A�n��� � L� � �����

which assumes that correlation coe�cient� �� is known�

The resulting SIR is

��n� � �� � F � A�n� � �A�n��� ���	�

Again A�n� � �A�n��� is Gaussian distributed� The mean and variance are

E
A�n��� � �A�n� � � �����

E
�A�n��� � �A�n��� � ��� ����� �����

From the variance� we can see that the MMSE estimator always perform better than the other two methods�

The outage probability is given by

�MMSE �
�

�
erfc

	
Fp

���� ����



�����

Figure � shows the fade margin required for the three power control schemes with di�erent correlation

coe�cients�

���� Special Case	 Two Users

In this subsection� we analyse another special case where there are two users interfering with each other 
���

We further assume that the interference dominates the noise term� Thus the SIR of mobile � at time n can

be written as

��n�� �
G
�n�
�� P

�n�
�

G
�n�
�� P

�n�
�

�����

��



From now on� we assume that the SIR and the power levels are all measured in decibels� As before� we

omit the superscript for clarity� Equation ����� can then be rewritten as

�
�n�
� � P

�n�
� � P

�n�
� � B

�n�
� � L� �����

where

B
�n�
� � A

�n�
�� � A

�n�
��

and

L� � ��	 log��

�
d��
d��

�

Note that B
�n�
� is a Gaussian random variable with mean zero and variance ��B � ��� ��� is the variance of

the shadow fading factor� Aij�� Moreover� fB�n�
� g is a correlated sequence with correlation coe�cient ��

Similarly� we have

��n�� � P
�n�
� � P

�n�
� � B

�n�
� � L� �����

where B
�n�
� and L� are de�ned in a similar way� Note that B

�n�
� and B

�n�
� are independent�

������ Path Loss Compensation

To compensate for the path loss e�ect� we assume that P� �
L�
� and P� �

L�
� � Then

�
�n�
� �

L� � L�
�

�B
�n�
� �����

�
�n�
� �

L� � L�
�

�B
�n�
� �����

Thus� both �
�n�
� and �

�n�
� are Gaussian distributed with mean and variance given by

E
��n�i  �
L� � L�

�
�����

V ar
�
�n�
i  � ��� ���	�

for i � �� ��

For an SIR requirement of ��� the outage probability� �PL� is given by

�pl � Prob
�i � �� �
�

�
erfc

�
L� � L� � ���

��

�
�����

������ Instantaneous SIR Balancing

Next we investigate the case where power control mechanism is fast enough to achieve SIR balancing at every

time instant�

To balance the SIR of the two mobiles� we require that �
�n�
� � �

�n�
� � It is easy to verify that the balanced

SIR at time n is given by

���n� �
�

�
�B�n�

� �B
�n�
� � L� � L�� �����

That is� �
�n�
� � �

�n�
� � ���n��

By equation ������ B
�n�
i �i � �� �� can be written as

B
�n�
i �

n��X
k��

�n�k��
p
�� ��W �k� � �nB

���
i �����

��



where W �k� is Gaussian distributed with mean zero and variance ��B�

The expectation and variance are found to be

E
B�n�
i  � �nB

���
i �����

V ar
B
�n�
i  � ��� ��n�����B ��	��

By equation ������ ����� and ��	��� ���n� is a Gaussian random variable with mean and variance given by

E
���n� �
�

�

�
�n�B

���
� � B

���
� � � L� � L�

�
V ar
���n� �

�

�
��� ��n�����B

� ��� ��n�����

Therefore� when n goes to in�nity�

lim
n��E
���n� �

�
�
� �L� � L�� if � � �
�
�

�
�B

���
� �B

���
� � � L� � L�

�
if � � �

��	��

lim
n��V ar
���n� �

�
�� if � � �

� if � � �
��	��

The case � � � corresponds to the situation where the link gain matrix G is �xed�

Assume that � � �� For an SIR requirement of ��� the outage probability� �bal� is given by

�bal � lim
n��Prob
���n� � �� �

Z ��

��

�p
����

exp

�
� �x� �L� � L�����

�

���

�
dx ��	��

�
�

�
erfc

�
L� � L� � ���

�
p
��

�
��	��

���� Optimal Power Control

The optimal power control scheme behaves the same as the instantaneous SIR balancing when ���n� � ���

When ���n� � ��� both users are in outage in the previous scheme� However� under optimal control� the

transmission of either of them will be suppressed �Pi � � or su�ciently small�� In other words� one of them

will be in outage while the other one will not� If we assume that the user being suppressed transmission

is randomly chosen� then the outage probability of the two users will be the same� Otherwise� their outage

probability will be di�erent� However� in both cases� the outage probability of the system will be reduced to

one half of the instantaneous SIR balancing�

Therefore� we have

�opt �
�

�
�bal ��		�

�
�

�
erfc

�
L� � L� � ���

�
p
��

�
��	��

Equation ��		� provides a performance bound on all practical power control algorithms for the two�user

case�

���� Cooperative Algorithm

Finally� we consider one form of the Cooperative Algorithm� We assume that in the �n � ��th step� each

mobile unit adjusts its transmitted power P
�n���
i according to the following rule�

��



P
�n���
i � 	

�n�
i P

�n�
i ��	��

	
�n�
i � m

vuutGMk�Ni�fig��
�n�
k �

�
�n�
i

��	��

where GM�xi� is de�ned as the geometric mean of xi�s and m is a control parameter� In our analysis� we let

m equal to two� The reason for this choice of m is that the algorithm converges in one step if the link gain

matrix G is �xed�

According to the algorithm� the power evolution of the two mobiles� if measured in decibels� can be

expressed as

P
�n���
� � P

�n�
� �

�
�n�
� � �

�n�
�

�
��	��

P
�n���
� � P

�n�
� �

��n�� � ��n��

�
�����

By equation ������ ������ ��	�� and ������

��n�� � P
�n�
� � P

�n�
� �B

�n�
� � L�

� P
�n���
� � P

�n���
� �

��n���� � ��n����

�
� B

�n�
� � L�

� B
�n�
� � �

�
B
�n���
� �

�

�
B
�n���
� �

�

�
�L� � L��

� �� � �

�
�B

�n���
� �

p
�� ��W �n��� �

�

�
B
�n���
� �

�

�
�L� � L��

where W �n� is a Gaussian random variable with mean zero and variance ��B�

Therefore� �
�n�
� is Guassian distributed and by equation ����� and ��	���

E
��n��  �
�

�

h
���� ���n��B���

� � �n��B���
� � L� � L�

i
�����

V ar
�
�n�
�  � �

�
��� � � �

�

�
���� ��n�	� � ��� ���

�
�� �����

When n goes to in�nity�

lim
n��E
��n��  �

�
�
�
�L� � L�� if � � �

�
�

�
�B

���
� � B

���
� � � �L� � L��

�
if � � �

�����

lim
n��V ar
�

�n�
�  �

�
�� � ����� if � � �

� if � � �
�����

By symmetry� the distribution of ��n�� and ��n�� are identical�

Now let us compare the performance of instantaneous SIR balancing� path loss compensation and Coop�

erative Algorithm� By equation ������ ��	��� and ������ we can see that the SIR achieved by these three

schemes have the same mean� The instantaneous SIR balancing has the smallest variance� thus having the

smallest outage probability�

Furthermore� it is worth noting that the performance of instantaneous SIR balancing and path loss com�

pensation do not depend on the correlation coe�cient� �� However� the value of � a�ects the performance of

Cooperative Algorithm� Notice that � re�ects the power control rate with respect to the rate of environmental

��



Table �� Results for two cochannel users

Optimal Instantaneous Slow Path Loss Cooperative

Control SIR balancing Compensation Algorithm

mean SIR � L��L�

�
L��L�

�
L��L�

�

variance of SIR � �� ��� ��� �����

outage probability �
	erfc

�
L��L�����

�
p
��

�
�
�erfc

�
L��L�����

�
p
��

�
�
�erfc

�
L��L�����

	�

�
�
�erfc

�
L��L�����
�
p
��������

�

change� When �
 �� the environment appears to be static and the performance approaches the instantaneous

SIR balancing� When � � ��	� the environment changes too rapidly that the control mechanism cannot catch

up� Therefore� it performs even worse than path loss compensation�

In the special case where � � �� i�e� the link gain matrixG is �xed� the variance of SIR under Cooperative

Algorithm is zero� It implies that the algorithm converges under a �xed link gain model�

Assume that � � �� For an SIR requirement of ��� the outage probability� �coop � is given by

�coop � lim
n��Prob
�

�n�
� � �� �

�

�
erfc

	
L� � L� � ���

�
p
���� ����



���	�

Our results are summarized in Table ��

�� Multi�Rate Data Applications

For voice applications� the quality of a connection is considered acceptable if the BER meets certain maximum

requirement� This required BER can be translated directly into a required SIR threshold� The basic idea of

the QoS tracking is to keep the SIR above this threshold� On the other hand� it is unnecessary to keep the

SIR far beyond the threshold because it has little improvement on the utility of a voice user�

The situation is quite di�erent for data applications� A data connection generally has much more stringent

BER requirement� Due to this nature� a packet in error has to be retransmitted� Since a higher SIR will result

in less retransmissions� the delay experienced by a user can be reduced and the throughput can be increased�

This implies that the quality of a data connection is a continuous� increasing function of the SIR�

As there is a world of di�erence between the requirement of voice and data connections� it is inappropriate

to directly apply the QoS tracking paradigm to the power control problem for data tra�c� Instead� the

problem should be reformulated so as to better exploit the distinct nature of data tra�c�

Assume that there are N data users in a single�cell CDMA system using bandwidth W � The data rate of

each user� in general� can be di�erent� We denote the raw data rate of user i by Ri� Thus� the processing

gain of user i is W�Ri�

We de�ne f as the rate in bits per channel use at which information can be reliably sent through the

channel� In general� it is an increasing function of the product of the SIR and the processing gain� while its

explicit form depends on the modulation and coding scheme�

Since user i accesses the channel at a rate Ri� his information rate is given by

Rif�
�iW

Ri
� �����

��



We call it the throughput of user i� The total throughput of the system� CT � is given by

CT �
NX
i��

Rif�
�iW

Ri
� �����

As we consider a single�cell system� the SIR can be expressed in terms of the received power� Qi� at the

base station�

�i �
QiP

j ��iQj � �
�����

We would like to �nd an optimal power allocation� Q � 
Q�� Q�� � � � � QN �� which maximizes CT � From

equation ������ we can see that scaling up any vector Q will improve the SIR of all users� As a result� no

global maximum exists� In practice� however� the received power cannot be in�nitely large� So we normalize

the power levels by imposing an additional constraint�

NX
i��

Qi � QT �����

where QT is a constant�

As it is di�cult to deal with the variables Qi�s directly� we employ the following coordinate transformation�

� � �i �

P
j Qj � �P
j ��iQj � �

�����

�
QT � �

QT � � �Qi
�����

�

� � �i
� �� Qi

QT � �
�����

There is a one�to�one mapping between nonnegative �i and Qi� The constant received power constraint

becomes
NX
i��

�

� � �i
� N � QT

QT � �
�����

This problem can be tackled by means of Lagrange multiplier method� We de�ne the Lagrangian

L �
NX
i��

Rif�
�iW

Ri
� � ��

NX
i��

�

� � �i
�K� �����

where K � N � QT
QT�	

is a constant�

In order for CT to attain an extremum� the following N � � equations must be satis�ed�

�L

��i
� Wf ��

�iW

Ri
� � �

��i � ���
� � for i � �� �� � � � � N ���	�

�L

��
�

NX
i��

�

� � �i
�K � � �����

This system of N � � equations enables us to solve for the N � � unknowns ������ � � ��N and �� We call

equation ���	� the key equation� It can also be expressed as follows�

Wki�xi� � � �����

where xi � �iW�Ri� and

ki�xi� � �� �
xiRi

W
��f ��xi� �����

��



If a solution exists� we denote it by x�i � The corresponding value of �i is denoted by ��i �
The nature of the stationary point is governed by the second derivative�

��L

���i
�
W �

Ri
f ���

�iW

Ri
� �

��

��i � ���
�����

and
��L

��i��j
� �� i �� j �����

Thus a su�cient condition for the stationary point to be a local maximum is 
��

��L

���i

����
�� �
�

� � for i � �� �� � � � � N �����

and that for it to be a local minimum is

��L

���i

����
���
�

� � for i � �� �� � � � � N �����

If we substitute equation ���	� into ������ we have

��L

���i

����
���
�

� �
W �

Ri
f ���

��iW
Ri

� �
�W

��i � �
f ��

��iW
Ri

� �����

� W

�
W

Ri
f ���x�i � �

�

��i � �
f ��x�i �

�
�����

�
W �

Ri�� �Rix�i �W ��
k�i�x

�
i � ���	�

where

k�i�xi� �
Ri

W
�� �

xiR

W
�

�
�f ��xi� � �

W

Ri
� xi�f

���xi�
�

�����

is obtained by di�erentiating ki�xi��

This equation will be used in the sequel to determine whether a stationary point yields a maximum or a

minimum�

Now we come to the point to show the existence of ��� If it exists and attains a global maximum� then

the optimality can be achieved by allowing all users to transmit simultaneously� We call such a solution

a harmonious schedule� Otherwise� if the solution precludes some users from transmitting� we call it a

dominated schedule� To detemine whether an optimal solution is harmonious or dominated� we need to have

some information about the function f �

In information theoretic sense� f can be regarded as the channel capacity of a discrete�time channel� If we

assume a binary�input Gaussian�output �BIGO� channel� f takes the following form 
�	�

fBIGO�x� � ��

�
log� ��e �

Z �

��
P �y� log� P �y�dy �����

where

P �y� �
P��y� � P���y�

�
�����

and

P��y� �
�p
��

exp
��y �p�x���� �����

��



If the Gaussian output is hard quantized into two levels� then the channel becomes a binary symmetric

channel �BSC� with crossover probability

p�x� �
�

�
erfc�

p
x� �����

The channel capacity is then given by 
�

fBSC�x� � � � p�x� log� p�x� � ��� p�x�� log���� p�x�� �����

Equations ����� and ����� give two examples of f � In fact� these two forms belong to a wider class of f

which satis�es certain technical conditions 
��� For example� the crossover probability is actually the BER of

the Binary Phase Shift Keying �BPSK� modulation� If we replace it by the BER of Di�erential Phase Shift

Keying �DPSK� modulation� the resultant function f still belongs to the class we considered 
���

Before we describe the conditions imposed on f � we �rst introduce the notion ��

For a function g�x�� we de�ne ��g�x�� c� as the property that there exists c � � such that

g�x�

��
��

� � for � � x � c

� � for x � c

� � for x � c

The conditions are as follows�

�� f � 
����
 
�� �� is continuous�

�� f��� � � and limx�� f�x� � ��

�� For any x 	 ������ the �rst three derivatives of f exists and the third derivative is continuous�

�� f � � �����
 ��� f �max�� for some constant f �max � ��

	� f �� � �����
 �f ��min� f
��
max�� for some constants f ��min and f ��max where f ��min � f ��max�

�� Either f ���x� � � or ��f ���x�� ����

�� f ��x� � o�x��� �x
��

�� De�ne h�x� � x�f ��x�� We have ��h��x�� x���

Note that conditions � to 	 are satis�ed for many functions arising in engineering applications� Condi�

tion � is another way of saying that limx�� h�x� � �� Condition � is equivalent to P�xf ���x� � �f ��x�� x���
Condition � and � together imply that f ���x� � � for x � x��

For this family� we have obtained some results which provide an interesting criterion on the existence of

harmonious schedule 
��� We summarize our results in a series of lemmas� theorems and corollaries�

Lemma � Assuming W is large enough�

 If f ���x� � � �x� then given any � where � � � � Wf ����� there exists an unique x�i � � such that

�L

��i

����
x�
i

� �

Furthermore� we have
��L

���i

����
x�
i

� �

�	



 If ��f ���x�� ���� then given any � where � � � � Wf ��x��� there exists an unique x�i such that

�L

��i

����
x�
i

� �

and
��L

���i

����
x�
i

� �

Furthermore� x�i � x��

In both cases� x�i is a strictly decreasing� continuous function of �� In particular� in the �rst case� when

�
Wf ����� we have x�i 
 ��

Proof	

By a lemma in 
��� for su�ciently large W � if f ���x� � � for all x� we have k�i�xi� � � for all xi � ��

Otherwise� if ��f ���x�� ���� then we have P�k�i�xi�� 	i�� where 	i 	 ���� x�� for all i�

In the �rst case where 	i does not exist� we de�ne 	i � � for all i� and we let �x � �� In the second case�

we let �x � x�� Then in both cases� ki�xi� is a strictly decreasing function of xi for xi 	 �	i����

It is easy to see that

Wki�	i� �Wf ���x� �����

for all i�

Condition � implies that

W lim
xi��

ki�xi� � � �����

Hence� given any � where � � � � Wf ���x�� we can �nd an unique x�i 	 �	i��� such that

Wki�x
�
i � � � �����

Furthermore� x�i is a strictly decreasing� continuous function of �� In the �rst case where �x � �� if �
Wf �����
we have x�i 
 ��

In the second case where 	i � �� we assume there exists x�i � 	i such that

Wki�x
�
i� � � ���	�

By equation ���	� and the property that ��k�i�xi�� 	i�� we have

��L

���i

����
x�
i

� � �����

��L

���i

����
x�
i

� � �����

Thus the claim follows�

�

Lemma � If W is large enough� RT has a unique extremum at x�� where x�i � x� for all i� Furthermore� it

is a local maximum�

Proof	

��



We have already shown that ��L
�
�

i

���
x�
i

� � for all i� However� we need to ensure that the constraint

X
i

�

� � ��i
� K �����

is met�

Suppose we �x � such that � equals Wf ��x��� Then x�i is the root of ki�xi� � f ��x��� If we increase W �

the curve ki�xi� will move down uniformly� �Note� the function ki depends on the value of W � but this fact

is not shown explicily�� As a result� x�i will decrease� Thus� when W 
 �� ��i � x�iRi
W


 ��Hence� if W is

su�ciently large� we must have X
i

�

� � ��i
� K �����

for any K � N �

To meet the equality constraint� we can decrease �� The consequence is that x�i will increase and in turn

��i will also increase� If �� 
 �� then ��i 
 � and �
��
�

i


 � � K� Hence� there exists a �� such that the

constraint is satis�ed�

Note that in fxjxi � 	i �ig� the stationary point� x�� is unique� By Lemma 	� it attains a local maximum�

Now we consider the case where 	i � � for some i� If there is another stationary point� x���� x��� in
fxjxi � � �ig� there must be some x�i � 	i� Therefore� we have

��L

���i

����
x�

i

��
�

� � �����

Due to the equality constraint� it is impossible that x�i � x�i for all i� Therefore� x� does not yield a local

minimum� It can only yield a saddle point� Hence� RT possesses only one extremum and the claim follows�

�

Finally� we show that this local maximum is in fact a global maximum�

Theorem �� For the multirate power control problem with N users� if the bandwidth is large enough� then the

capacity optimization problem has a harmonious solution at which a strong � global maximum can be attained�

Proof	

By Lemma �� RT has only one extremum� Hence the global maximum can be attained either at the

boundary or at x�� At the boundary� we have �i � � for some i� By condition �� the total e�ective rate� RT �

is bounded by

RT ��� � max
j

NX
i���i��j

Ri �����

given that � is a point at the boundary�

If RT ��
�� is greater than the upper bound shown above� it possesses a global maximum at ��� If not� we

let �� � �� and keep �� constant� Suppose now we increase W � The local maximum changes accordingly�

and we still denote it by ��� Since ��i is �xed and x�i � ��iW�Ri� x�i will increase� When W 
 �� we have

x�i 
 �� Thus� by condition �� RT ���� 

PN

i��Ri� Since RT ���� � RT ����� RT attains a strong global

maximum at ���
�A function� f � attains a strong global maximum at x� if f�x�� � f�x� for all x �� x� ���	�

��



�

A stationary harmonious solution does not necessarily yield a maximum� IfW is very small� the harmonious

solution may yield a global minimum� Thus we have a dominated schedule� which requires some users to stop

their transmission� We state our result in Theorem �� 
���

Theorem �� For the multirate power control problem with N users� if the bandwidth is small enough� then the

capacity optimization problem has a harmonious solution at which a strong global minimum can be attained�

Now assume that the bandwidth is su�ciently large� Then an approximation to the optimal solution can

be obtained easily 
���

Theorem �� �Proportional solution�

If the bandwidth is large enough� then the optimal solution is close to the �proportional� solution�

�i � Ri �i

In particular� for the BIGO and BSC model� we have obtained the following asymptotic result�

Theorem �� �Asymptotic analysis for BIGO and BSC�

For an interference�limited channel �� � ��� when either or both the number of terminals� N � and the

bandwidth� W � are large� the globally maximal solution is attained at x� � �x��� x
�
�� � � � � x�N � where x�i � � �i

and

� �
WPN
j��Rj

�����

The spectral e	ciency� � de�ned as the total throughput per unit bandwidth� is maximized when � 
 ��

and we have

max �

�
log� e � ����� for BIGO
�
�
log� e � ����� for BSC

�����

�� A Game Theoretic Framework for Power Control

The power control problem can be formulated as a noncooperative N �person game
�	� ��� ��� Each mobile

user is one player of the game� We let the interval Pi � 
��Mi be the strategy space of player i� The joint

strategy space S � P� � P� � � � � � PN is the Cartesian product of all the individual strategy spaces� Each

player chooses a power level Pi 	 Pi� The payo� function of player i is ui�P�� Occasionally� we will use an

alternative notation ui�Pi�P�i�� where P�i denotes the power vector of all users except user i�

The power control game �PCG� can be formally expressed as

max
Pi

ui�Pi�P�i� Pi 	 Pi� �i � �� �� � � � � N �����

A solution concept which is most widely used in game theoretic problems is the Nash equilibrium�

De�nition � A power vector P� is a Nash equilibrium if� for every user i�

ui�P
�
i �P

�
�i� � ui�Pi�P

�
�i� �Pi 	 Pi ���	�

Many games have several Nash equilibria� A concept which compares the qualities of two di�erent solutions

is called Pareto dominance�

��



De�nition � A power vector P Pareto dominates another vector P� if� for all i�

ui�P� � ui�P
�� �����

and for some j�

uj�P� � uj�P
�� �����

Furthermore� a power vector P� is Pareto optimal if there exists no vector which Pareto dominates P��

In the following two subsections� we will use two examples to illustrate how the power control problem

can be put into the framework of game theory�

���� Power Balancing

In Section �� we de�ne power balancing as an optimization problem which aims at maximizing the minimum

SIR in the system� The objective function is global in nature as we need to know the minimum SIR among

all the users� However� it is possible to construct distributed objective function which arrives at the same

solution� To achieve this� we de�ne the payo� function of each player as follows�

ui�P� � min��i��i��� for i � �� �� � � �� N � �� uN �P� � min��N ���� �����

We consider the following distributed strategy� which is essentially the Cooperative Algorithm described

in Section �� ��
��

P
���
i � Mi

P
�n���
i � 	

�n�
i P

�n�
i

	
�n�
i �

�
min��i�P

�n����i���P
�n�����i�P

�n��
��

where � � 
 � �

�����

Under this strategy� we have the following property regarding the minimum SIR in the system�

Theorem � The minimum SIR among the N players is non�decreasing�

Proof	

�i�P
�n���� � �i�	

�n�
i P

�n�
� � � � � � 	�n�N P

�n�
N � �����

� 	
�n�
i �i�P

�n�� �����

� min
h
�i�P

�n����i���P
�n��

i�
�i�P

�n����� �����

� min
h
�i�P

�n����i���P
�n��

i
�����

Hence� we have

min
k

�k�P
�n���� � min

k
�k�P

�n�� �����

�

With this property� we can show the following�

Theorem �� The power of user i� P
�n�
i � converges to P �i � � for all i� Furthermore� the vector P� �


P �� � P
�
� � � � � � P �N  is a Nash equilibrium� at which the SIR
s of all users are equal�

Proof	

��



By construction� P
�n�
i � is nonincreasing� By Theorem ��� we have

�i�P
�n�� � min

k
�k�P

�n�� � min
k

�k�P
���� � � ���	�

which implies that P
�n�
i has a strictly positive lower bound� Thus� P

�n�
i converges to a value P �i � � for all i�

At the point P�� we have

P �i � 
min��i�P
����i���P�����i�P��

�
P �i �����

As a direct consequence� we have

�i�P
�� � �i���P

�� �����

for all i� and �N �P�� � ���P��� Hence� at P�� all the SIR�s are equal�

In particular�

�i�P
�� � �i���P

�� �����

If Pi deviates from P �i � either �i or �i�� will decrease� thus reducing ui� Hence� P� is a Nash equilibrium�

�

���� Single�Cell CDMA Data Network

Next we consider a wireless CDMA data network� We de�ne the payo� function of player i as the throughput

of user i�

ui�P� � Rif�
�iW

Ri
� �����

where f is assumed to satisfy the conditions stated in the previous section� Speci�cally� we assume that

f ���x� � � for all x� �Note that a di�erent payo� function is used in 
�� and 
����

Since f is a strictly increasing function of Pi given any P�i� it is trivial that this PCG has an unique

Nash equilibrium� which can be achieved by setting every power level to its maximum value� However� this

solution is not necessarily desirable from a global viewpoint� Therefore� we would like to �nd other power

vectors which improve the payo�s in a global sense� This can be done by means of pricing�

When a user transmits his information through the network� it causes interference to other users� To

optimize the system performance in a global sense� we can charge the user some price for creating the harm

to the network� This pricing mechanism can implicitly bring cooperation to the users� yet maintaining the

noncooperative nature of the game� We let ci�P� be the pricing function of player i� The modi�ed payo�

function is de�ned as

vi�P� � ui�P�� ci�P� �����

We are now confronted with a power control game with pricing �PCGP��

max
Pi

vi�Pi�P�i� Pi 	 Pi� �i � �� �� � � � � N �����

Essentially� PCGP is the same as PCG� except with a di�erent payo� function� To distinguish between ui

and vi� from now on� we call ui the utility of player i and vi the payo� of player i�

We focus on a single cell in a CDMA system� In such a system� the SIR of user i� �i� can be written as

�i �
Qi

Ii
�����

where Qi � GiPi is the received power of user i and Ii �
P

j ��iQj � �i is the interference plus noise power of

user i�

��



Since Qi is just a linear function of Pi� for notational simplicity� we treat Qi�s as our independent variables�

The strategy space of user i becomes Q � 
�� �Mi where �Mi � GiMi�

It is easy to show that Qi�s and �i�s are related by the following equation�

Qi �
�i

�i � �
� �

��Pj

j


j��

�����

Note that all the Qi�s increase if one or more of the �j�s increase� Furthermore� if we assume that there

is no maximum power constraint �i�e� �Mi 
 ��� then a necessary and su�cient condition for the vector


������ � � � ��N � to be feasible is X
i

�i
�i � �

� � �����

Concerning Pareto optimality� the following theorem states that a solution should be located at the bound�

ary of the strategy space�

Theorem �� In the original PCG with utility functions ui
s� a power vector Q is Pareto optimal if and only

if Qi � �Mi for some i�

Proof	

First of all� note that ui is a strictly increasing function of �i�

If Qi � �Mi for all i� we can scale up all the Qi�s by a factor c � �� The resultant �i�s will all increase�

thus improving the utilites of all players� Hence� Q must not be Pareto optimal�

Now consider a vector Q which is not Pareto optimal� but with Qi � �Mi for some i� Since Q is not Pareto

optimal� we can �nd another vector Q� which Pareto dominates Q� It implies that ��i � �i for all i� and

��j � �j for some j� However� by equation ������ Q�i � Qi for all i� which leads to a contradiction�

�

As we mentioned before� for the PCG� the vector 
 �M�� �M�� � � � �MN  is an unique Nash equlibrium� Fur�

thermore� it is Pareto optimal� However� this solution is not necessarily desirable from a global viewpoint�

To distort the players� behaviour� we introduce the following pricing function�

ci�Q� �
��i

� � �i
���	�

where � is a system parameter�

With this pricing function� the payo� function becomes

vi � Rif�
�iW

Ri
�� �Qi

Qi � Ii
�����

If we di�erentiate equation ����� with respect to Qi� we have

�vi
�Qi

� f ��
�iW

Ri
�
W

Ii
� �Ii

�Qi � Ii��
�����

From this equation� we see that for the pricing mechanism to be e�ective� � should not be too large or too

small� If � � �
�Mi

Ii
� ���f �maxW � then �vi

�Qi
� �� Thus Q�i � �� On the other extreme� if � � �� it becomes the

same as the original PCG�

The following theorem describes some properties of the PCGP for a certain range of values of ��

��



Theorem �� There exists an unique �� such that for any � 	 
���Wf ������ we can �nd an unqiue Nash

equilibrium� Q����� for the PCGP� and when � � ��� the solution is Pareto optimal for the original PCG�

Proof	

We rewrite equation ����� as follows�

Ii
�vi
�Qi

�Wf ��
�iW

Ri
�� �

��i � ���
�����

Note that this is the same as the key equation shown in the previous section� Assuming that � � � �

Wf ���� and W is large enough� by Lemma 	� vi has a unique global maximum at ��i �
If there is no maximum power constraint �i�e� �Mi 
��� we require

P
i


�

i


�

i
�� � ��

By Lemma 	� when � 
 Wf ����� we have ��i 
 �� Since ��i is a strictly decreasing� continuous function

of �� and ��i 
� when �
 �� we can �nd a unique � such that

X
i

��i
��i � �

� � �����

Thus� the feasibility condition holds if � is within the following range�

� � � � Wf ���� �����

By equation ������ the optimal power vector Q� is strictly increasing �component�wise� from the zero

vector when � decreases from Wf ����� Thus� there exists an unique �� such that Q�i � �Mi for all i� and

Q�j � �Mj for some j� �If �Mi �� for some i� we must have �� � ���

Since Q�j � �Mj for some j� by Theorem ��� the solution Q� is Pareto optimal�

�

Given any �� we let QT ��� �
P

iQ
�
i ��� be the sum of optimal powers� In addition� we let UT �Q� �P

i ui�Q� be the sum of utilities of all players� The following theorem shows that the solution Q� has the

following global property�

Theorem �� For any � 	 
���Wf ������ the Nash equilibrium of the PCGP� Q����� maximizes UT � subject

to the constraint
P

iQi � QT ���� where QT ��� is a strictly decreasing function of ��

Proof	

To solve the global constrained optimization problem� we can make use of the method of Lagrange multi�

plier� By the result in the previous section� the optimal solution can be obtained by solving

Wf ��
�iW

Ri
��

��

��i � ���
� � �i �����

NX
i��

�i
� � �i

�
QT

QT � �
�����

where �� is the Lagrange multiplier and QT here is a given constant�

The solution is exactly the same as our Nash equilibrium for the PCGP with �� as the pricing parameter�

�

��



Although the solution Q� maximizes UT on the hyperplane
P

iQi � QT � it may not be a global maximum

over the whole strategy space� Let the maximal value of UT be Umax� Asymptotically� when the reciever noise

is small� we have the following result�

Theorem �� When � 
 �� UT �Q��
 Umax�

Proof	

When � 
 �� scaling a power vector has no e�ect on UT � Thus� there is no loss of generality to restrict

the strategy space into a hyperplane� Thus� Q� is asymptotically optimal�

�

We have demonstrated how to use pricing technique to implicitly bring cooperation among a group of

competitive mobile users� Moreover� the solution is shown to possess nice global property�

�� Supermodular Game

In the literature� a well studied class of noncooperative games is the so�called supermodular game� Games

belonging to this class are particularly well behaved� thus providing an analytical framework to tackle some

variations of the power control problem� First of all� let us introduce the de�nition of a supermodular game�

Again we let ui be the payo� function of player i�

De�nition  A power control game is a supermodular game if ui�Pi�P�i� has increasing di�erences in

�Pi�P�i��

The notion of increasing di�erences is de�ned as follows�

De�nition � ui�Pi�P�i� has increasing di�erences in �Pi�P�i� if� for all Pi � P �i and P�i � P��i�

ui�Pi�P�i�� ui�P
�
i �P�i� � ui�Pi�P

�
�i�� ui�P

�
i �P

�
�i� �����

If ui is twice di�erentiable� then ui�Pi�P�i� has increasing di�erences in �Pi�P�i� if and only if

��ui
�Pi�Pj

� � �j �� i �����

Increasing di�erence for ui is equivalent to the property that increases in powers of other users raises the

desirability of increasing the power for user i�

Supermodular games have the following nice property 
���

Theorem �� For supermodular game� the set of Nash equlibria is nonempty and possesses greatest and least

equlibrium points P and P�

Theorem �� ensures the existence of Nash equilibria for a supermodular game� To reach one of the

equilibria� the following two algorithms can be used 
���

Algorithm � The n players take turns with each player successively maximizing that player
s own payo�

function while the decisions of the other n� � players are held �xed�

��



Algorithm � Each of the n players concurrently and individually chooses the next decision by maximizing

that player
s own payo� function under the assumption that the other n� � players will hold their decisions

unchanged�

Both algorithms have the following convergence property�

Theorem �� Starting from the least �or greatest� element of P� the sequences of power vectors generated by

both Algorithm � and  converge to P �or P��

For example� the QoS tracking problem can be formulated as a supermodular game� Let Pi � 
mi�Mi be

the strategy space of player i� We de�ned the payo� function as follows�

ui � ���i � �i�
�n ���	�

In other words� each user tries to minimize the �distance� between his received SIR and his speci�ed

target� Di�erentiating ui� we have

��ui
�Pi�Pj

�
GiiGij

�
P

j ��iGijPj � �i��
�n��i � �i�

�n����n�i � �i� j �� i �����

If mi � �� then �i has the following lower bound�

�i � GiimiP
j ��iGijMj � �i

� bi � � �����

If we choose n such that n � �i��bi� then

��ui
�Pi�Pj

� � �j �� i �����

Thus� the QoS tracking problem can be put within the framework of supermodular game� Another example

of applying supermodular game to wireless network can be found in 
��� We omit the details and refer the

interested readers to 
���

�� Conclusion

We have described di�erent facets of the power control problem in wireless networks� with emphasis on the

mathematical issues� We have introduced a number of key concepts� which form an analytical framework

for the power�controlled architecture� Based on this framework� research on designing multimedia wireless

network is underway� Furthermore� concerning the distributed nature of the power computation� the problem

�ts well into a game theoretic setting� which is a promising approach to reach good technological solutions to

the resource management of third generation wireless networks�
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