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Abstract—The ever-growing Internet and the mounting evi-
dence to the important role of circuit switching motivate the need
for an accurate and scalable means for performance evaluation
of large circuit switched networks. Previous work has shown that
the Erlang Fixed Point Approximation (EFPA) achieves accurate
results for such networks where the number of channels (circuits)
per link is large. However, a conventional application of EFPA
for large networks is computationally prohibitive. In cases where
the EFPA solution is unattainable, we propose, in this paper,
to use an asymptotic approximation, which we call A-EFPA,
for the link blocking probability and demonstrate savings of
many orders of magnitudes in computation time for blocking
probability approximation in realistically sized networks with
large number of circuits per link. We demonstrate for NSFNet
and Internet2 accurate calculations of the blocking probability
using simulations, EFPA and A-EFPA, where each of these three
methods is used for a different range of parameter values.

Index Terms—Erlang Fixed Point Approximation, Erlang B
Formula, circuit switched networks, blocking probability.

I. INTRODUCTION

For several decades, numerous publications predicted and
promoted an increasing role of circuit switching (CS) in the
evolving ultra-broadband multi-service Internet. As early as
1988, O’Reilly [1] pointed out advantages of CS over packet
switching that include easier provision of grade of service,
simpler transport (which implies energy saving) and better
suitability for multimedia services. CS attributes have given
rise to dynamic CS-based network technologies and designs
such as optical flow switching [2], and networks tailored to
transmit large bursts from the Large Hadron Collider [3] and
for inter-data center traffic [4].

Considering the renewed CS importance, and the exponen-
tial growth of the Internet, there is a need for scalable and
accurate means to evaluate blocking probability in large CS
networks. The Erlang Fixed Point Approximation (EFPA) has
been considered the method of choice for this purpose since
1964 [5]. EFPA decouples the network into independent server
groups (links), and considers the traffic on each link to follow
a Poisson process independent traffic on other links. At each
iteration of the EFPA algorithm, the blocking probability on
each link is computed, where its offered traffic comprises all
the end-to-end traffic streams that use that link minus the
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blocked traffic (which initially can be set to zero). Then, end-
to-end blocking probabilities on all links are recalculated and
the process repeats itself until convergence is achieved.

The Poisson and independence assumptions introduce er-
rors. However, Kelly [6] showed that for a CS network with
fixed routing, EFPA yields an asymptotically exact solution for
a large number of channels per trunk. Today’s DWDM net-
works with nearly hundred wavelengths per optical fiber and
hundreds optical fibers per cable yielding tens of thousands
wavelength channels per cable. If a wavelength is further sub-
divided into hundreds of TDM channels, millions of channels
per cable is a realistic scenario. Furthermore, the analysis of
Kelly [6] applies to multiple classes of calls each requires
a different number of channels and its performance result is
insensitive to the shape of the holding time distribution.

Given that the results of [6] are applicable to today’s
networks, it is important to apply them in a way that the
blocking probability is computable for realistic size networks.
Using the conventional EFPA which repeatedly computes the
link blocking probability by applying a recursive procedure
to the Erlang-B formula, will be computationally infeasible
for such networks with many channels per cable. In this
paper, we consider an implementation of EFPA, which we
call Asymptotic EFPA (A-EFPA) where the computation of the
link blocking probability is performed using the asymptotic
result for a large number of channels per cable which is es-
sentially based on a fluid approximation. A-EFPA can achieve
comparable accuracy to EFPA when the number of channels
per cable is large, but it saves many orders of magnitudes
computing time, so it can be used in the range where EFPA
cannot. We demonstrate for NSFNet and Internet2 networks,
that given today’s computing power, simulations can be used in
the range that EFPA is inaccurate, and now A-EFPA is shown
to be accurate in the range where EFPA is computationally
prohibitive. Accordingly, for both networks, very accurate
blocking probability results are achievable for the full range
of practical parameter values.

Henceforth, we use the terminology of [6]. In particular, we
use the term circuit to describe the basic channel used for a
connection (e.g. a wavelength channel) and the term link to
refer to a trunk where many circuits are bundled together to
provide transport between nodes.

II. MODEL

We consider a general CS network. The links between nodes
are numbered by j = 1,2, . . . ,J, and C j is the number of
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circuits in link j. The subscript is omitted if all links have
the same number of circuits (then C = C j for all j). For
convenience the notation J = {1,2, . . . ,J} is used in the sequel.
A call on route r uses A j,r circuits from link j. Let R be a
set of possible routes. Assume that calls requesting route r
arrive as an independent Poisson process of rate νr. A call
requesting route r is blocked and lost if at least in one of
the links j, j ∈ J , in route r there are less than A j,r circuits
free. Otherwise, the call is admitted and simultaneously holds
A j,r circuits from all links j, j ∈ J , for the holding period
of the call. Without loss of generality the call holding times
are assumed to be independently and identically distributed
with unit mean. Notice that, according to the analysis and
asymptotic conditions of [6], the blocking probability at the
limit is only a function of the offered load and number of
circuits per link. Therefore, the arrival rate can be adjusted
to compensate for non-unity holding times, and a call that
requires 10 circuits is equivalent to 10 calls requiring one
circuit, if the total offered load for each origin-destination
(OD) pair is unchanged.

III. A-EFPA ALGORITHM

As in [6], we consider a sequence of networks indexed by N
where the number of circuits per link and the offered traffic per
each OD pair grows linearly in N. For positive x and integer
C, denote E(x,C) = xC/C!

∑
C
i=0 xi/i!

. It is proved in [6] that the system
of equations

x j = E

(
1

1− x j
∑

r∈R
A j,rνr

J

∏
i=1

(1− xi)
Ai,r ,C j

)
, j ∈ J (1)

has a unique solution in (0,1)J . In Eq. (1), the blocking
probability x j of link j is obtained by Erlang-B formula based
on this link capacity C j and the total offered load to that link
(i.e. excluding traffic blocked on other links) of the OD pairs
that use this link. EFPA solves (1) by fixed-point iterations. For
(1), the following limit theorem for a series of CS networks
is proved in [6].

Theorem 3.1: (Kelly [6]) Assume that the parameters νr(N)
and C j(N), (r ∈ R , j ∈ J ), increase to infinity such that

lim
N→∞

νr(N)

N
= λr, lim

N→∞

C j(N)

N
= c j.

Then,

lim
N→∞

J

∏
j=1

[1− x j(N)]A j,r =
J

∏
j=1

(1−B j)
A j,r ,

where x(N) = {x1(N), . . . ,xJ(N)} is a series of the vector-
valued solutions of (1) indexed by N, and B j, j ∈ J , is the
asymptotic blocking probability on link j.

According to Theorem 3.1, for large circuit-switched net-
works the blocking probabilities B j are supposed to be approx-
imated by (1), in which the parameters νr(N) and C j(N) are
large. The further asymptotic analysis enables us to substan-
tially simplify the calculations. As N → ∞, for the function
E(x(N),C(N)), in which x(N)� x∗N and C(N)� c∗N, where

x∗ is a positive real value and c∗ is a positive integer value,
we have the following asymptotic expansion:

E(x(N),C(N)) =

{
1− c∗

x∗ +o(1), if c∗ ≤ x∗,
o(1), otherwise.

(2)

Henceforth, for two sequences xn and yn increasing to infinity
xn � yn means limn→∞

xn
yn

= 1.
The difficulty of using asymptotic expansion (2) directly is

that the expression

1
1− x j

∑
r∈R

A j,rνr

J

∏
i=1

(1− xi)
Ai,r

contains unknowns x j, j = 1,2, . . . ,J, and, hence, we do not
know whether or not the inequality

1
1− x j(N) ∑

r∈R
A j,rνr(N)

J

∏
i=1

(1− xi(N))Ai,r ≥C j(N)

is satisfied. Accordingly, if we ultimately use the term

1−C j(N)

[
1

1− x j(N) ∑
r∈R

A j,rνr(N)
J

∏
i=1

(1− xi(N))Ai,r

]−1

(3)

which is the asymptotic expansion of (2) applied to the right-
hand side of (1) under the asymptotic conditions of Theorem
3.1, then we may arrive at biased values for the estimates
of blocking probabilities (in the cases where terms (3) are
negative). We use the term biased to refer to values that are
not the right blocking probabilities (which cannot be negative).

Example Consider a simple CS network consisting of
two links a and b with capacities Ca and Cb, respectively, and
assume that there are two types of calls: ab-calls that use a
circuit in both links a and b and b-calls that use a circuit in
link b only. Denote by νab the input rate of ab-calls and by
νb the input rate of b-calls. For a series of networks assume
Ca(N) =Cb(N) = cN, νab(N) = νb(N) = λN and c < λ. These
yield the following system of equations.

xa = 1− c
λ(1− xb)

, (4)

xb = 1− c
λ(1− xa)+λ

. (5)

It is readily seen from this system of equations that xa < 0.
Indeed, assume that xa > 0. Then, it follows from (4) that
xb < 1− c

λ
. From (5) we obtain the opposite inequality: xb >

1− c
λ

. This contradiction leads to the conclusion xa ≤ 0. Now
substituting xa = 0 into (4) we obtain xb = 1− c

λ
. The same

substitution into (5) yields xb = 1− c
2λ

. Hence, xa cannot be
equal to zero, and we arrive at xa < 0. This solution gives
biased values for blocking probabilities. Negative xa value has
to be set to zero, and xb has to be recalculated accordingly.

A-EFPA is based on decomposing the set J into three non-
intersected subsets: J = J−∪ J 0∪ J + as described below.

1. Check the inequalities

∑
r∈R

A j,rλr > c j (6)

for all j ∈ J . Then, the subset J 0 characterizes the set of values
j for which (6) is not satisfied. Set x j = 0 for all j ∈ J 0. By
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separating the subset of links J 0, we reduce the dimension of
the original system of equations. The new system of equations
is as follows:

x j = E

(
1

1− x j
∑

r∈R
A j,rνr

J

∏
i=1

(1− xi)
Ai,r ,C j

)
,

j ∈ J \ J 0. (7)

2. Solve the system of equations, in which the right-hand
side of (7) is replaced by the main term in the asymptotic
expansion:

x j = 1− c j

[
1

1− x j
∑

r∈R
A j,rλr

J

∏
i=1

(1− xi)
Ai,r

]−1

, j ∈ J \ J 0.

Let J− be the set of values J \J 0 for which x j ≤ 0. Set x j = 0
for all j ∈ J−. Then, after eliminating the set of equations in
which j ∈ J−, we obtain the new system of equations:

x j = 1− c j

[
1

1− x j
∑

r∈R
A j,rλr

J

∏
i=1

(1− xi)
Ai,r

]−1

,

j ∈ J + = J \ (J 0∪ J−). (8)

3. Solve the system of equations (8). This is the final step,
where we obtain only a positive solution. That positive solution
together with the solutions that are set 0 in steps 1 and 2 give a
full set of the asymptotic solution of the system of equations.

A-EFPA is essentially based on a reduction to a fluid model.
If the traffic offered to a link is higher than its capacity,
the difference between the offered traffic and capacity is
the blocked traffic, and the ratio of the blocked traffic to
the offered traffic is the blocking probability. Otherwise, the
blocking probability is zero.

IV. NUMERICAL RESULTS

In this section, we compare the blocking probability and
running time of EFPA and A-EFPA for NSFNet (13 nodes
and 16 bidirectional links) and Internet2 (52 nodes and 60
bidirectional links) networks – see Fig. 1. For both networks,
we choose all possible OD pairs with shortest path routing
where a tie is broken randomly. Simulation results are also
provided whenever they are achievable within reasonable time.
All the results are obtained using MATLAB software executed
on a desktop PC with Intel R© CoreTM 2 Quad @ 3 GHz CPU,
4 GHz RAM and 32-bit operating system.

For NSFNet, there are 156 OD pairs. For each OD pair, the
offered load is set to be 0.025C, so that the total load offered
to some of the links is larger than the capacity (note that in
the NSFNet example, some links serve almost 100 OD pairs).
Fig. 2a illustrates that only when the capacity is sufficiently
large, the A-EFPA results are very close to those of EFPA.
For C ≥ 20,000, the relative discrepancy is less than 0.2%.
Simulations confirm that the accuracy of EFPA increases with
increasing number of circuits per link. Confidence intervals are
too small to be seen in the plots, but for the results presented,
the radius of the 95% confidence interval based on Student’s
t-distribution is less than 1.5% of the mean.

Table I provides the running time used to calculate the
blocking probability in NSFNet for different C values. Observe
that for C = 20000, A-EFPA saves 99.9999% of the time used
by the EFPA, and achieves similar accuracy.

 

(a) NSFNet

 

(b) Internet2

Fig. 1: NSFNet and Internet2 topologies.

TABLE I: Comparison of the times used by EFPA and A-
EFPA to calculate the blocking probabilities in NSFNet.

Calculation task Running time of Running time of
EFPA in seconds A-EFPA in seconds

Blocking probabilities in 14.94 0.000001
one link and C = 20000

Blocking probability of the 5.91 0.068
whole network and C = 2000
Blocking probability of the 1800.63 0.069

whole network and C = 20000

It is intuitively clear that if the offered load is sufficiently
small, the offered load on all links will be less than their
capacities, so the link blocking probabilities calculated by A-
EFPA are all 0, thus the network blocking probability is also 0.
In such a scenario, according to the theory, as C→∞, the exact
blocking probability and the blocking probability predicted by
EFPA, both will also approach zero. However for fixed C,
there will be some error for using A-EFPA. In Table II, we
illustrate the effect of traffic load on the accuracy of A-EFPA
for NSFNet in the case of C = 20,000. In the first row, we
illustrate the case of zero blocking predicted by A-EFPA where
although the relative error is 100%, the absolute error is small
and will be further reduced as C increases. Then, we observe
improved accuracy of A-EFPA as the traffic increases.

TABLE II: Effect of offered load on A-EFPA.

Offered load Blocking probability Difference Relative errorEFPA A-EFPA
0.0205 9.9×10−10 0 9.9×10−10 100%
0.022 0.0103034 0.0099068 0.0003966 3.8%
0.025 0.0449448 0.0448718 0.0000730 0.16%
0.035 0.1786133 0.1785714 0.0000410 0.023%

For Internet2, for each OD pair, the offered load is set
to be 0.12% of C, so that the total load offered to some
links is larger than their capacities (note that in our Internet2
example some links serve around a thousand OD pairs). The
blocking probabilities for Internet2 evaluated by EFPA and
A-EFPA are shown in Fig. 2b. As for NSFNet, the results
obtained by A-EFPA are very close to those of EFPA when
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(b) Internet2
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Fig. 2: Blocking probabilities in NSFNet and Internet2 evalu-
ated by EFPA and A-EFPA.

the capacity is large. When the number of circuits per link
reaches C = 50000, the relative discrepancy (vs. EFPA) of the
blocking probability calculated by A-EFPA is 1.0%. However,
comparing the time used by the two algorithms shown in
Table IV, we observe that A-EFPA can save 99.9999% of
the time. The trends and behaviors of the results presented for
Internet2 are consistent with the results provided for NSFNet.
The limitation of simulations motivates using EFPA or A-
EFPA which are asymptotically exact as the number of circuits
per link increases. Confidence intervals are again unnoticeable
in the plots, but the radius of the 95% confidence interval
based on Student’s t-distribution is always less than 1.5% of
the mean result. EFPA overestimates the blocking probability
obtained by simulation because under fixed routing, traffic is
smoothed out along an end-to-end path which gives lower
loss than estimated by EFPA. This overestimation is more
prominent in Internet2 than in NSFNet because the average
path in Internet2 is longer.

TABLE III: Comparison of the blocking probabilities calcu-
lated by EFPA and A-EFPA for NSFNet and Internet2.

EFPA A-EFPA
Blocking probability for 0.04494 0.04487
NSFNet with C = 20000
Blocking probability for 0.01417 0.01383

Internet2 with C = 20000
Blocking probability for 0.01397 0.01383

Internet2 with C = 50000

TABLE IV: Comparison of the times used by EFPA and A-
EFPA to calculate the blocking probabilities in Internet2.

Calculation task Running time of Running time of
EFPA in seconds A-EFPA in seconds

Blocking probability of the 66.68 0.72
whole network and C = 2000
Blocking probability of the 62501.81 1.27

whole network and C = 50000

Blocking probability results for NSFNet with multirate
traffic are presented in Fig. 3. There are two classes of calls
in each OD pair. A Class 1 call requires a single channel end-
to-end and a Class 2 call requires five channels end-to-end.
The offered load to each class in each OD pair is 0.015C.
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Fig. 3: Blocking probabilities in 13-node NSFNet evaluated
by EFPA, A-EFPA and simulation with two classes of traffic.

The results presented exhibit similar trends and behavior as
the results presented for NSFNet with single class of calls.

We observe that for Class 1 calls, EFPA overestimates
the blocking probability as in the single class case due to
the smoothing effect along the path. However, for Class 2
traffic EFPA underestimates the blocking probability because
it assumes Poisson arrivals of individual circuit demands and
ignores the larger variance introduced by the 5-circuit batch
demands. These dominate the path smoothing effect, so the
overall variance is higher than that assumed by EFPA.

In all the results presented here, we observe that the
simulation curve meets (or becomes very close to) the EFPA
curve, significantly before the EFPA and A-EFPA curves are
very close. These indicate that given today’s computing power,
we are able using simulations to reach the point in terms of
number of circuits per link, where EFPA is accurate, then
EFPA can provide accurate results until A-EFPA becomes
accurate, which in turn can guarantee accuracy for far larger
values of circuits per link.

V. CONCLUSION

We have considered A-EFPA and EFPA implementation
for CS networks with fixed routing based on asymptotic link
blocking probability derivation. From the numerical results
obtained using NSFNet and Internet2 networks, we observe
that when link capacity is large, A-EFPA results are very close
to those of EFPA, but A-EFPA saves approximately 99.9999%
of the computing time. We have demonstrated very accurate
calculations of the blocking probability using simulations,
EFPA and A-EFPA. Complementing each other, these three
methods are used for different ranges of parameter values.
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