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BIFURCATIONS :
CONTROL AND
ANTI-CONTROL

bstract—Various bifurcations ex- currence of an inherent bifurcation, in-

ist in nonlinear dynamical sys- troducing a new bifurcation phenomenon
tems such as complex circuits, net-at a preferable time or parameter value,
works, and devices. Bifurcations canchanging the parameter set or values
be important and beneficial if they are of an existing bifurcation point, modi-
under appropriate control. Bifurcation fying the shape or type of a bifurcation
control and anti-control deal with chain, stabilizing a bifurcated solution
modification of system bifurcative or branch, monitoring the multiplicity,
characteristics by a designed control amplitude and/or frequency of some
input. Typical bifurcation control and limit cycles emerging from a bifurca-
anti-control objectives include delay- tion mechanism, optimizing the sys-
ing the onset of an inherent bifurca- tem performance near a bifurcation
tion, stabilizing a bifurcated solution point, or a combination of some of
or branch, changing the parameter these objectives [2].
value of an existing bifurcation point, It is now known that bifurcation
modifying the shape or type of a bifur- properties of a system can be modified
cation chain, introducing a new bifur- via various feedback control methods.
cation at a preferable parameter Representative approaches employ linear
value, monitoring the multiplicity, am- or nonlinear state-feedback controls, ap-
plitude, and/or frequency of some limit ply a washout filter-aided dynamic feed-
cycles emerging from a bifurcation back controller, use harmonic balance
mechanism, optimizing the system perapproximations in (time-delayed) feed-
formance near a bifurcation point, or back, utilize quadratic invariants in nor-
a combination of some of these. Thismal forms, and so forth.
article offers a brief overview of this Bifurcation control and anti-control
emerging and promising field of re- with various objectives have been imple-
search, putting the main subject of bi- mented in some experimental systems or
furcations control and anti-control tested by using numerical simulations in
into perspective. a great number of engineering, biologi-

Introduction cal, and physiochemical systems. Ex-

amples can be found in electrical, me-
chanical, chemical, and aeronautical en-
gineering, as well as in biology, physics,

Bifurcation control refers to the task
of designing a controller to suppress or

reduce some existing bifurcation dynam- , .
chemistry, and meteorology, to name just

ics of a given nonlinear system, thereby . , :
achieving some desirable dynamical bed LA B|fgr(;at|on cqntrol LSl G L
haviors. Anti-control of bifurcations, as |mportan.t in ItS own rlght, il SR
opposed to the direct control, is to cr e_gestsawable and effective way for chaos

ate some intended bifurcations at somecomrOI [3], because bifurcation and

preferable time or parameter values byChaOS are usually "twins"; and, in par-

means of various control methods [1].:|cu'larl, per:o?-dohubllng blfurcatlonl‘ls R
Typical bifurcation control and anti-con- ypical route to chaos In many honlinear

trol objectives include delaying the oc- dynamical systems [1]
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Bifurcations Control ... continued from Page 5 of the map converge t® = (p _1)/p in

Challenges from Bifurcation the limit. The dynamical evolution of the
Control — Two Examples system behavior, ap is gradually in-
Controlling and anti-controlling bi- creased from 3.0 to 4.0 by small steps, is
furcations have foreseen a tremendoushown in Fig. 1. This figure (the bifurca-
impact on real-world applications; and tion diagram) shows that t= 3, a stable

their significance in both dynamics period-two orbit is born out of*, which
analysis and systems control will not hecomes unstable at the moment, so that

only be enormous, but actually be bothjn addition to 0 there emerge two more
prOfound and fal’-l’eaching. stable equilibria:

Before getting into more technical ———
details, itis ﬁluminating to discuss some X V2= (1 tpEyp?-2p- 3)/(2p)
control problems of two representative When p increases to the value of
examples — the discrete-time logistic 1+./6 = 3.44948..., each of these two
map and a continuous-time model of anpoints bifurcates into two new points, as
electric power system — to appreciatécan be seen from the figure. These four
the challenge of bifurcation control and points together constitute a period-four

anti-control. o solution of the map (ap=1+/6). As p
The logistic r.na.p _ moves through a sequence of values:
The well-known logistic map is de- 3.54409..., 3.5644..:;, an infinite series

scribed by of bifurcations is created by supbriod-
X1 = T (X, P) 1= pX (1%, ), doubling which eventually leads to chaos:

where p> 0 is areal variable parameter. period1 - period 2 — period 4 -

This map has two equilibriag" =0 and ..« - period 2 - ...  chaos

X" =(p-1)/p. At this point, several control oriented

With 0<p<1, the pointx' =0 is  problems may be asked: Is it possible
stable. However, it is interesting to ob- (and, if so, how) to find a simple (say, lin-
serve that, fofl < p<3, all initial points  ear) control sequencéy,}, to be added

to the right-hand side of the logistic map,
Figure 1. Period-doubling of the logistic map. Such that

(i) the limiting chaotic behavior of the
period-doubling bifurcation process is
suppressed?

(ii) the first bifurcation is delayed, or this
and the subsequent bifurcations are
changed either in form or in stability?

(iii) the asymptotic behavior of the system
becomes chaotic (if chaos is benefi-
cial), for a parameter value qf that
is not in the chaotic region without
control?



An electric power model different types of unstable equilibria, a
A simple yet representative electric (5) and (6) different types of unstab
power system is shown in Fig.2, whefle limit cyples. The ldynamlcs of this sy
is the rotational angle of the power gen-t€M. With a varying second parame
erator. In this power system, the load is(machine damping), have shown the ¢
represented by an induction motbf, , in nsﬁttlsr\:vi?; ;hgetvé?]eﬂgtzf :(')fl;rgﬁﬂf
parallel with a constant PQ (active-reac-r? €9 P
: : . tion and the disappearance of the cha
tive) load. The variable reactive power behavior
demand,p, at the load bus is used as the Simiiar to the logistic map di
primary system parameter. Also in the g P

cussed above, a few interesting con
power system, the load voltagevs1 6, , problems are:

with magnitudeV, and angle6,, the (i) can the limiting chaotic behavior

slack bus has terminal voltadge10° (a the period-doubling bifurcation prg

phasor), and the generator has terminal cess be suppressed?

voltage denotede, 1 6. (i) can the first bifurcation be delay
When the system parameter is in occurrence, or this and the sub

gradually increased or decreased, with ap- ~ quent bifurcations be changed eit
propriate values of the other system pa- in form or in stability?

rameters, very complex dynamical phe-(iii) can the voltage collapse be avoid
nomena can be observed [4]. These are 0r delayed through bifurcation ¢

shown in Fig. 3, where chaos control?
on the left-hand side: ... continued on Page 1
» p=10.818, a turning point of periodic
orbit occurs; I7
» p=10.873, first period-doubling bifur- -
cation occurs; U j“—---_-f:_.._.:_ -
» p=10.882, second period-doubling bi-|  11* I i
furcation occurs; Lo e
» p=10.946, a subcritical Hopf bifurca- 2
tion occurs; .
on the right-hand side: nee
e p=11.410, a saddle-node bifurcation no-
occurs; -
» p=11.407, a supercritical Hopf bifur- H
cation occurs; og- AP e
» p=11.389, first period-doubling bifur- o L - . :
cation occurs; A ER yoooTe e
* p=10.384, second period-doubling bi- Figure 3. Bifurcation diagram of the power system. Bifurcation posi
furcation occurs. are marked on the x-axis. Solution types: (1) Stable equil. (2) Stablg
In this figure, (1) denotes stable equi- cycle (perl_od_-l.) (3) Type-2 upstable equil. (4) Typ_e-_l unstable eq
. N lel le f lic fold. lel le f )
libria, (2) stable limit cycles, (3) and (4) Unstable limit cycle from cyclic fold. (6) Unstable limit cycle from p
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X1 = .1506550

X2 =  .2090069
LAMBDA =  .3000000E-03
A = 2.000000

w = 1.000000
THETA = -1.000000

NU = -1.000000

ETA = 1.000000

MU = 1.000000

Xl = -5000000

TO = 1.000000

time = .000000

Md ( 1) = .000000

Md ( 2) = .000000

Ar (1) = .000000

Ar ( 2) = .000000

Figure 4. Three limit cycles in the Sibirskii example. The large and the small cycles (in yellow) are stable, while the “in-
between” cycle (in red) is unstable. The equilibrium point at the origin is an unstable focusx(<0.5; —0.5x,<0.5).

X1 = -.1310044E-01
X2 =  .4041570E-01
LAMBDA =  .2000000E-02
A = 2.000000

w = 1.000000
THETA = -1.000000

NU = -1.000000

ETA = 1.000000

MU = 1.000000

Xl = -5000000

TO = 1.000000

time =  .000000

Md ( 1) =  .000000

Md ( 2) =  .000000

Ar (1) = .000000

Ar ( 2) = .000000

Figure 5. Two limit cycles in the Sibirskii example. The large cycle (in yellow) is stable, while the small cycle (in red)
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is unstable. The equilibrium point at the origin is a stable focus. Compared to the previous figure, the inner stable
limit cycle has disappeared under the Hopf bifurcation mechanism<x,@®5; —0.5x,<0.5).



X1
X2
LAMBDA

time

Md (1)
Md ( 2)
Ar (1)
Ar (2

4061135
14307159
.2000000E-02

2.000000
1.000000
-1.000000
-1.000000
1.000000
1.000000

-.5000000
1.000000
.000000
.000000
.000000
.000000
.000000

Figure 6. One stable (large amplitude) limit cycle in the Sibirskii example. The two interior cycles of Fig. 4
have disappeared under a saddle-node bifurcation of cycless;8®5; —0.5%x,<0.5).

X1

X2
LAMBDA
A

W
THETA
NU
ETA
MU

XI

TO
time
Md (1)
Md ( 2)
Ar (1)
Ar ( 2)

-.2585438E-01
.1670138
.8538568E-03
2.000000
1.000000
-1.000000
-1.000000
1.000000
1.000000
-.5000000
6.265448
.000000
.000000
.000000
.000000
.000000

Figure 7. The continuation of periodic solutions varying the bifurcation paramettable limit cycles
are marked in yellow while unstable ones are depicted in red. The collisions of yellow and red curves

denote saddle-node bifurcations of cycles (—0s8@9.002; (xx,<0.45).
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Bifurcation Control ... continued from Page 17 On|y occasiona”y would systems be
forced to the limits where nonlinearities

and still rapidly growing array of infor- could begin to have significant impacts on

T e ppicaons o L the ysem benavirs
9 g Sy ’ Notably, the recent trend shows dif-

is literally im ibl ive an all- . . .
rsourfgeacli gnd c%onfsrghee:\zi\?e foseraa e OFerent promises. Economic and environ-
P 9 ental factors, along with the current

‘h?se rr_1ater|als in one single section Of'?end toward an open access market, have
this article. Therefore, only a few se-

lected topics are presented here strongly demanded that power systems be
' operated much closer to their limits as they
Application in power network control  pecome more heavily loadedltimately,
and stabilization there will be greater dependence on control
Nonlinearity is an inherent and es- methods that can enable the system capabil-
sential characteristic of electric power ity rather than on expensive physical system
systems, especially in heavily loaded op-expansion. It is therefore vital to gain greater
eration. Historically, power systems were understanding of the nonlinear phenomena
designed and operated conservativelyof an operational power system.
and, as a result, systems were normally  In studying the electric power system
operated within a region where systemshown in Fig. 2, voltage collapse refers to
dynamical behaviors were fairly linear. an event in which the voltage magnitudes
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in AC power systems decline to some un-point of impending collapse (saddl

acceptably low levels that can lead to sysnode bifurcation). Figure 8 shows a

tem blackout. The power system modelfurcation diagram for the closed-lo

exhibits rich nonlinear phenomena, in- system with control gaik, = 0.5, where

cluding bifurcations and chaos. HB indicates Hopf bifurcation and da
One bifurcation control approach to cjrcles mean stable oscillations.

the problem of controlling voltage col-  Another linear bifurcation contr

lapse in this power system model is to adqaw, u = k @ involves changing the criti
a controlu to the system, where the con- cal parameter value, at which the H

trol occurs in the excitation system and in-pis rcations oceur by a linear feedb

volves a purely electrical controller [8, 9]. ¢ontro|. This linear feedback law el
Feedback signals, which are some dy+,a¢e5 the Hopf bifurcations and the

namic functions of the angular velocily sulting chaos and crises [8, 9]. Theref
are widely used in power system stabiliz-the linearly controlled system can op
ers (PSS). Anonlinear bifurcation control gte at a stable equilibrium up to t
law of the formu =k, 62 transforms the saddle node bifurcation.

subcritical Hopf bifurcation to a In summary, although the relati
supercritical bifurcation. It also ensures aimportance of the effects of the nonli
sufficient degree of stability of the bifur- ear phenomena in general power syst
cated periodic solutions, so that chaos andinder stressed conditions is still a to
crises are eliminated. This control law al- for further research, the bifurcation ¢
lows stable operation very close to thetrol approach appears to be a viable t

... continued on Page 2
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Bifurcation Control ... continued from Page 19 aiming at solving this challenging prob-

nique for controlling these systems. lem. These bifurcation control approaches
Applications in axial flow compressors look for controllers to enhance the oper-
and jet engine control ability of the compression system by

Another application of bifurcation modlf_ylng the nonlinear staplllty char-
acteristics of the compression system.

control is in the hearts of aeroengines: theiJsing the popular third-order Moore-

ial flow compr rs. Recen rs hav . . :
axal oW COmpressors. Rece tyga_s a.%reltzer model, it was found that the first
witnessed a flurry of research activities in .
stalled flow solution is born through a sub-

axial flow compressor dynamics, both in™ . : . e
P Y ritical bifurcation. The practical impor-

terms of analysis of stall phenomena ancf - : L
. . . . tance of the subcritical stall bifurcation is
their control. This interest is due to the in-

. .. that when the axisymmetric flow operat-
creased performance that is potentially. : :
ing point becomes subject to perturba-

achievable in modern gas turbine jet en-. -
tions, the system will jump to a large-am-

gines by operating near the maximum pres, i, o ¢ i geveloped stall cell. Subcriti-

sure rise. The increased performanceD . 4 ) )
. L cal bifurcations also imply hysteresis, and
comes at the price of a significantly re-

duced stability margin. Specifically, axial S0 returning th? throttle 1o its original posi
. . tion may not bring the system out of stall.
flow compressors are subject to two dis-
One control strategy seeks to trans-

tinct aerodynamlc_mstabllmes, _rotatlng form the hard subcritical bifurcation at the
stall and surge, which are associated with

. . . e onset of stall into a soft supercritical bi-
bifurcations. Both of these instabilities are . S

. . . . furcation, thereby eliminating the hyster-
disruptions of the normal operating condi-

tion that is designed for steady and®S's associated with rotating stall. The

. . . __“compressor stall application is an excel-
axisymmetric flow, and both can bring : .

. o lent example for illustration (both theory

catastrophic consequences to jet airplanes.;

Because these instabilities occur at theand experimental validation) of a guiding

critical operating point of the highest philosophy in bifurcation control. It relates

. t(? stabilization, or “softening”, of bifur-
pressure rise, the compressors are forced” . oy | )
cations, with implications to improving

to operate at a much lower pressure rise
: . ... System performance and robustness. Other
in order to provide adequate stability

: S approaches employ more conventional
margin, which limits greatly the perfor-
: control approaches such as the back-
mance of axial flow compressors.

Due to the design constraint, thereSteppmg technique to _arrlve at control
laws for surge and rotating stall.

has been much work on enhancing com- : ; .
. - . . Some other techniques for bifurcation
pression system stability using active . )
control of compression systems involve

control. Many of the early control strat- .
. . utput feedback, under the assumption
egies were designed to extend the stabl .
at the unstable modes corresponding to

axisymmetric operating range by delay- . . ) .
y P g range by y the critical eigenvalue of the linearized

ing the onset of stall. The application of .
g PP system are not linearly controllab&ome

ifurcation control mpression - o . .
bifu cato_ o trol to co \pression sys stabilizability conditions can be derived for
tems has initiated a promising paradigm L ” -
the situation where the critical mode is lin-



early observable through output measure-Other examples of bifurcation contro
ment that includes state-feedback as a spe- applications
cial case. It is shown that linear controllers A jist of potential applications of bi
are adequate for stabilization of transcriticalfrcation control can be continued.
bifurcation, and quadratic controllers aresome physical systems, such as

adequate for stabilization of pItCthI’k and stressed System’ delay of bifurcations
Hopf bifurcations, respectively. fers an opportunity to obtain stable d
Application in cardiac alternans erating conditions for the machine b
and rhythms control yond the margin of operability at t
One interesting application of bifur- hormal situation. Sometimes, it is des
cation control is the control of pathologi- able that the stability of bifurcated li
cal heart rhythms. The rhythm of the heartcycles can be modified, with applicatig
is determined by a wave of electrical im- {0 Some conventional control proble
pulses (in the form of action potential), SUch as thermal convection experime
which travels in the heart condition path- Other examples include stabilization
way. Arrhythmias in the heart such as fi- bifurcation control in tethered satellitg
brillation and ectopic foci are life threat- and magnetic bearing systems; dela
ening. Understanding the mechanismbifurcation in rotating chains via exte
leading to arrhythmias is an important nal periodic forcing, and in various m
medical problem with enormous impact. chanical systems such as robotics
Within this context, an even more chal- €lectronic systems such as laser
lenging problem is the control and curing chines and nonlinear circuits.
of such abnormal biological disorders. For To Probe Further
a control engineer, a natural question is  when leaving the idealized mat
concerned with the role of feedback in ematical domain and looking around {
such situations. From a bifurcation control natural world, one certainly finds a ve
point of view, what is interesting about jnteresting and realistic phenomenon
arrhythmias is that they have been closelythere is almost nothing that is linear i
linked to a variety of bifurcations, both s not man-made out there, is there?

static and dynamic, and chad#iis con-  nonlinear nature of the real world, and
nection enables bifurcation control methodsine real life, have brought up a grg
to be used for controlling heart rhythms.  number of technological challenges

As an application, dynamic bifurca- scjentists and engineers—the md
tion control has been applied to suppresyjfficult yet also most exciting complex
sion of pathological rhythm (cardiac ties in dynamicsfor which bifurcations,

alternanS) in an atrioventl’icu|al’ mOdaI ChaOS, and fractals alike a" get to interp
conduction model. It has been shown thatyithin a common ground of the mat

thIS theoretical mOdeI, Wh|Ch inCOI’pora'[eS ematical as We” as physical Wonderla
physiological concepts of recovery, facili-  The field of bifurcation control i
tation and fatigue, can accurately predictstjl| very much in a rapidly evolving

a variety of experimentally observed com-phase. This is the case not only in deq
plex rhythms of nodal conduction. ... continued on Page 3
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Bifurcation Control ... continued from Page 29

and wider theoretical studies but also in many newly found real-

world applications. It calls for further efforts and endeavor
from the communities of engineering, physics, applied math-
ematics, and biological as well as medical sciences. New
sults and new publications on the subject of bifurcation con-

trol continue to appear, leaving a door wide open to every in-

dividual who has the desire and courage to pursue further

this stimulating and promising direction of new research.
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