
Pinning Control and Robust Controllability 

of Complex Networks:

A Machine Learning Approach

Guanrong CHEN   
City University of Hong Kong 

Xiaofan WANG, 汪小帆 Shanghai University

Lin WANG, 王琳 Shanghai Jiao Tong University

Yang LOU, 楼洋 City University of Hong Kong



• Pinning Control of Complex Networks

• Network Controllability

• Robustness of Controllability

• Machine Learning Approach 

Contents



Motivational Examples



“The worm Caenorhabditis elegans has 297 nerve cells. 

The neurons switch one another on or off, and, making 

2345 connections among themselves. They form a network 

that stretches through the nematode’s millimeter-long body.” 

“How many neurons would you have to commandeer       

to control the network with complete precision?”

The answer is, on average: 49 

-- Adrian Cho, Science, 13 May 2011, vol. 332, p 777

Example 1:

Here, control = stimuli

http://www.nhgri.nih.gov/NEWS/Worm/enlarged_c_elegans.jpg


Example 2:

“ … very few individuals (approximately 5%) within 

honeybee swarms can guide the group to a new nest site.”

I.D. Couzin et al., Nature, 3 Feb 2005, vol. 433, p 513

These 5% of bees can be 

considered as “controlling” 

or “controlled” agents

Leader-Followers network



o Given a network of 
dynamical systems 
(e.g., ODEs)

o Given a specific 
control objective       
(e.g., synchronization)

o Assume: a certain 
class of controllers   
(e.g., local state-
feedback controllers) 
are chosen to use

Mathematically:

𝑢𝑖 = − Γ 𝑥𝑖



Control Problem 

Pining Control:

▪ How many controllers to use?

▪ Where to “pin” them?

X. F. Wang and G. Chen, Physica A, 2002

𝑢𝑖 = − Γ 𝑥𝑖



Pinning Control: Our Research Progress 
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Network Model

Linearly coupled network:

- General assumption:  f (.)  is Lipschitz. Here, it is linear (or linearized):

If node i points to node j (j ≠ i), then           ; otherwise          ; and

- Adjacency matrix:

- Coupling strength  c > 0 and  H – input coupling matrix

For undirected networks,       is symmetrical; for directed networks, may not be so
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Controllability Theory 
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In retrospect, …

(1930-2016)
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Controllable: The system 

orbit can be driven by an 

input from any initial state to 

any target state in finite time.

Linear Time-Invariant (LTI)  system

System Controllability
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C. K. Chui and G. Chen, Linear Systems 
and Optimal Control, Springer, 1989



State Controllability Theorems

(i) Kalman Rank Criterion

The controllability matrix  Q has full row rank:

(ii) Popov-Belevitch-Hautus (PBH) Test

The following hold:
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Observability: Input-
output pair (𝑢 𝑡 , 𝑦(𝑡)) on 
[𝑡1, 𝑡2] uniquely determines 
the initial state 𝑥(𝑡0)

Linear Time-Invariant (LTI)  system

System Observability

matrix control  :
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What About Directed Networks?

𝑢𝑖 = − Γ 𝑥𝑖



Structural Analysis of Dynamical Systems

In retrospect: large-scale systems theory

Q:

Is this kind of 

structure 

controllable?

A directed network



Structural Controllability
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Corresponding linearized system has 

the following general form:

Uncontrollable



Structural Controllability 
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In the controllability matrix: 

All 0 are fixed

There is a realization of 

independent nonzero parameters 

such that Q has full row rank

Example 1: 

Realization: All admissible parameters 
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Example 2: Frobinius Canonical Form 



Structural Controllability 

A network of single-input/single-output 

(SISO) node systems



Y.Y. Liu, J.J. Slotine, and A.L. Barabási, Nature (2011)

Structurally controllable
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Matching in Directed Networks 

⚫ Matching: a set of directed edges without common 

heads and tails

⚫ Unmatched node: the tail node of a matching edge

Maximum matching: 

Cannot be extended

Perfect matching:  

All nodes are 

matched nodes

 Perfect matching

 Maximum but not 
perfect matching



Solution to Pinning Control:  

Minimum Inputs Theorem 

Q: How many?

A: The minimum number of inputs ND needed is:

Case 1: If there is a perfect matching, then

ND = 1

Case 2: If there is no perfect matching, then

ND = number of unmatched nodes

Q: Where to put them?

A: Case 1: Anywhere

Case 2: At unmatched nodes

Y. Y. Liu, J. J. Slotine, and A. L. Barabási, Nature (2011)

This completely answer the pinning control question for SISO networks



Characterization of General Topology with SISO Nodes
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A network with SISO nodes is controllable if and only if

L. Wang, X.F. Wang and G. Chen, Royal Phil Trans A (2016)

𝐴,𝐻 is controllable

(𝐴, 𝐶) is observable

For any eigenvalue 𝑠 of 𝐴 and 𝛼 = 𝑅𝑒 𝑠 ,  𝛼𝐿 ≠ 0 for 𝛼 ≠ 0

For any eigenvalue 𝑠 of 𝐴, 𝑟𝑎𝑛𝑘 𝐼 − 𝐿Γ1, ΔΓ2 = 𝑁, 

with Γ1 = 𝐶[𝑠𝐼 − 𝐴]−1𝐻, Γ2 = 𝐶[𝑠𝐼 − 𝐴]−1𝐵



State Controllability 

A network of multi-input/multi-output 

(MIMO) node systems, where the node 

systems are of higher-dimensional



A Network of Multi-Input/Multi-Output LTI Systems
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L. Wang, X.F. Wang, G. Chen and W.K.S. Tang, Automatica (2016)



Counter-intuitive example 1
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Counter-intuitive example 2

1

1 1

0 
=  

 
A

1

0 1

0

 
=  

 
L

Network structure Node system Networked MIMO system

 0 1=C

(A,C) is observable

0

1

 
=  

 
B

1

0

 
=  

 
H

(A,B) is uncontrollable state controllable



[ ] =  N N

ijL R [ ] N s

ij R  = 

, 1,n

i ix NR =

, 1,q

l ly rR =

, 1,k

p ku sR =

1

N

ll j

j

jm Dxy
=

= 

1 1

,
N s

i i ij j ik

j k

kx Ax HCx Bu 
= =

= + + 

A necessary and sufficient condition
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A Network of Multi-Input/Multi-Output LTI Systems



Pinning Control of MIMO Networks

This completely answer the pinning control question for MIMO networks



Robustness of Controllability

Against Destructive Attacks

(Node-Removals / Edge-Removals) 

Robustness of Network Controllability



Measure for Controllability Robustness

Let 𝑁𝐷 be the minimum number of external control input 

needed to maintain the network controllability



Complex Network Models

• Random-Graph (RG) Network

• Scale-Free (SF) Network

• Multiplex Congruence Network (MCN)

• q-Snapback Network (QSN)

• Random Triangle Network (RTN)

• Random Rectangle Network (RRN)



Comparison of Controllability Robustness 

• Attack Methods 

• Simulation Results

• Comparisons 

Y. Lou, L. Wang, G. Chen, “Enhancing controllability robustness of

q-snapback networks through re-directing edges,” Research (2019)



Attack Methods 



Simulation Results (Comparison) 

Random Node-Removal 

RRN outperforms the 

other networks.

RRN, RG, and RTN 

performs similarly. 

SF performs the worst.

Observation:

RRN, RTN have many loops

RG is homogeneous
Average over 100 trials



Random Edge-Removal 

RRN outperforms the 

other networks.

RRN, RG, and RTN 

performs similarly. 

SF performs the worst.

Simulation Results (Comparison) 

Observation:

RRN, RTN have many loops

RG is homogeneous
Average over 100 trials



Machine Learning 

Y. Lou, Y. He, L. Wang, and G. Chen, 
"Predicting Network Controllability 
Robustness: A Convolutional Neural 
Network Approach", IEEE Transactions 
on Cybernetics, 2020 (online)

Motivation of applying Machine Learning:

There is no clear correlation between the topological 

features and the controllability robustness of a general 

(directed or undirected) network



Machine Learning 
using Convolutionary Neural Network (CNN)



Networks and Image Representation

A B C D E

A 0 1 0 1 0
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0 1 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

A

B

C D

E

topology adjacency matrix
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Erdos-Renyi Random Graph (ER)



Barabasi-Albert Scale-Free Network (SF)



Simulations 

(There are many simulation results, but only one is shown for illustration)

CR = Controllability Robustness

RA – Random Attack
ER – Erdos-Renyi Random Network

Blue/Red – True/Prediction
Black/Green – Errors/Deviations



Knowledge-Based Learning

Sufficiently utilize the prior knowledge (network 
types) in pre-processing for improving predictions

Y Lou, Y D He, L Wang, K F Tsang, G Chen. "Knowledge-based prediction of network 
controllability robustness,” IEEE Trans. Neur. Nets. Learn. Sys., accepted, 2021

CR = Controllability Robustness



Simulation

BA = BA scale-free network

ER = ER random-graph network

QSN = q-snapback network

SW = Small-world network

PCR = Predicted controllability robustness

tVal = True value

iPCR = improved Predicted controllability robustness

Training size = 4000

Testing size = 1000

Network size = 200

𝑃𝑁 = Attack probability



Significant Finding:

Cycles and Homogeneity are good for 

both Controllability and Robustness

Y. Lou, L. Wang, K. F. Tsang and G. Chen, IEEE Trans. Circ. Syst.-I (2020)

An empirical necessary (homogeneity) condition:

𝑀/𝑁 ≤ 𝑘𝑖
𝑖𝑛,𝑜𝑢𝑡 ≤ 𝑀/𝑁 (𝑖 = 1,2, … , 𝑁)

𝑀- number of edges, 𝑁 – number of nodes, 𝑘- degree



Research Outlook

General Theory ?

Higher-order Topology ?

Cycle, Clique, Cavity

Betti Number, Euler Characteristic Number
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