Pinning Control and Robust Controllability of Complex Networks: A Machine Learning Approach

> Guanrong CHEN City University of Hong Kong

Xiaofan WANG, 汪小帆 Shanghai University Lin WANG, 王琳 Shanghai Jiao Tong University Yang LOU, 楼洋 City University of Hong Kong

Contents

- Pinning Control of Complex Networks
- Network Controllability
- Robustness of Controllability
- Machine Learning Approach

Motivational Examples

Example 1:

"The worm Caenorhabditis elegans has 297 nerve cells. The neurons switch one another on or off, and, making 2345 connections among themselves. They form a network that stretches through the nematode's millimeter-long body."

"How many neurons would you have to commandeer to control the network with complete precision?"

The answer is, on average: 49

-- Adrian Cho, Science, 13 May 2011, vol. 332, p 777

Here, control = stimuli

Example 2:

"... very few individuals (approximately 5%) within honeybee swarms can guide the group to a new nest site." I.D. Couzin et al., *Nature*, 3 Feb 2005, vol. 433, p 513

These **5%** of bees can be considered as "**controlling**" or "**controlled**" **agents**

Leader-Followers network

Mathematically:

o Given a network of dynamical systems (e.g., ODEs)

o Given a specific
control objective
(e.g., synchronization)

o Assume: a certain
class of controllers
(e.g., local statefeedback controllers)
are chosen to use

Pinning Control: Our Research Progress

Wang XF, Chen G, Pinning control of scale-free dynamical networks, Physica A, 310: 521-531, 2002.

Li X, Wang XF, Chen G, Pinning a complex dynamical network to its equilibrium, IEEE Trans. Circ. Syst. –I, 51: 2074-2087, 2004.

Sorrentino F, di Bernardo M, Garofalo F, Chen G, Controllability of complex networks via pinning, Phys. Rev. E, 75: 046103, 2007.

... ...

Yu WW, Chen G, Lu JH, Kurths J, Synchronization via pinning control on general complex networks, SIAM J. Contr. Optim., 51: 1395-1416, 2013.

Chen G, Pinning control and synchronization on complex dynamical networks, Int. J. Contr., Auto. Syst., 12: 221-230, 2014.

... ...

Liu H, Xu X, Lu J-A, Chen, G, Zeng Z G, "Optimizing pinning control of complex dynamical networks based on spectral properties of grounded Laplacian matrices," IEEE Trans. Syst. Man Cybern., 51: 786-796, 2021.

Sanchez EN, Vega CJ, Suarez OJ, Chen, G. Nonlinear Pinning Control of Complex Dynamical Networks, Springer 2021.

Network Model

Linearly coupled network:

$$\dot{x}_i = f(x_i) + c \sum_{j=1}^N \beta_{ij} H x_j$$
 $x_i \in \mathbb{R}^n$ $i = 1, 2, ..., N$

- General assumption: f(.) is Lipschitz. Here, it is linear (or linearized):

$$\dot{x}_i = Ax_i + c\sum_{j=1}^N \beta_{ij} Hx_j$$
 $x_i \in \mathbb{R}^n$ $i = 1, 2, ..., N$

- Coupling strength c > 0 and H input coupling matrix
- Adjacency matrix: $\left|\beta_{ij}\right|_{N \times N}$

If node *i* points to node *j* ($j \neq i$), then $\beta_{ij} = 1$; otherwise $\beta_{ij} = 0$; and $\beta_{ii} = 0$

For undirected networks, $\left|\beta_{ij}\right|_{N\times N}$ is symmetrical; for directed networks, may not be so

How many? Where to pin?

$$\dot{x}_{i} = Ax_{i} + c\sum_{j=1}^{N} \beta_{ij}Hx_{j} \leftarrow Bu_{i} \quad (e.g., u_{i} = -\Gamma x_{i})$$

$$\dot{x}_{i} = Ax_{i} + c\sum_{j=1}^{N} \beta_{ij}Hx_{j} + \delta_{i}Bu_{i}$$

$$\delta_{i} = \begin{cases} 1 & if \ to - control \\ 0 & if \ not - control \end{cases}$$

Q: How many $\delta_i = 1$? Which i? (i = 1, 2, ..., N) \rightarrow Pinning Control

Controllability Theory

In retrospect, ...

J.S.I.A.M. CONTROL Ser. A, Vol. 1, No. 2 Printed in U.S.A., 1963

MATHEMATICAL DESCRIPTION OF LINEAR DYNAMICAL SYSTEMS*

R. E. KALMAN[†]

(1930-2016)

Abstract. There are two different ways of describing dynamical systems: (i) by means of state variables and (ii) by input/output relations. The first method may be regarded as an axiomatization of Newton's laws of mechanics and is taken to be the basic definition of a system.

It is then shown (in the linear case) that the input/output relations determine only one part of a system, that which is completely observable and completely controllable. Using the theory of controllability and observability, methods are given for calculating irreducible realizations of a given impulse-response matrix. In particular, an explicit procedure is given to determine the minimal number of state variables necessary to realize a given transfer-function matrix. Difficulties arising from the use of reducible realizations are discussed briefly.

System Controllability

Linear Time-Invariant (LTI) system

 $\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$

- $x \in \mathbb{R}^n$: state vector
- $u \in R^p$: control input
- $A \in \mathbb{R}^{n \times n}$: system matrix
- $B \in \mathbb{R}^{n \times p}$: control matrix

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer, 1989

Controllable: The system orbit can be driven by an input from any initial state to any target state in finite time.

State Controllability Theorems

(i) Kalman Rank Criterion $\dot{x}(t) = Ax(t) + Bu(t)$ The controllability matrix Q has full row rank: $Q = [B \ AB \ \cdots \ A^{n-1}B]$

(ii) Popov-Belevitch-Hautus (PBH) Test

The following hold:

$$v^T A = \lambda v^T, \quad v^T B \neq 0$$

 λ : eigenvalue of A

v : nonzero left eigenvactor with λ

System Observability

Linear Time-Invariant (LTI) system

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$
$$y(t) = \mathbf{C}x(t)$$

 $x \in \mathbb{R}^{n}$: state vector $u \in \mathbb{R}^{p}$: control input $A \in \mathbb{R}^{n \times n}$: system matrix $B \in \mathbb{R}^{n \times p}$: control matrix $x(t) = x(t_{0})e^{(t-t_{0})A} + \int_{t_{0}}^{t} e^{(t-\tau)A}Bu(\tau)d\tau$

Observability: Inputoutput pair (u(t), y(t)) on $[t_1, t_2]$ uniquely determines the initial state $x(t_0)$

What About Directed Networks?

In retrospect: large-scale systems theory

Structural Analysis of Dynamical Systems

A directed network

Q:

Is this kind of structure controllable?

Structural Controllability

Corresponding linearized system has the following general form:

$$\dot{x}_1 = a_{11}x_1 \dot{x}_2 = a_{21}x_1 + a_{22}x_2 + bu, \quad \mathbf{A} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ 0 & a_{32} & a_{33} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ b \\ 0 \end{bmatrix}$$

$$\dot{x}_3 = a_{32}x_2 + a_{33}x_3$$

$$\operatorname{rank} \begin{bmatrix} \mathbf{B}, \mathbf{AB}, \mathbf{A}^{2}\mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ b & a_{22}b & a_{22}^{2}b \\ 0 & a_{32}b & a_{32}(a_{22} + a_{33})b \end{bmatrix} \leq 2$$

Structural Controllability

In the controllability matrix: $Q = [B \ AB \ \cdots \ A^{n-1}B]$

All 0 are fixed

There is a realization of independent nonzero parameters such that Q has full row rank

Example 1:

$$Q = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

Realization: All admissible parameters

$$a \neq 0, d \neq 0$$

Example 2: Frobinius Canonical Form

$$Q = \begin{bmatrix} -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

Structural Controllability

A network of single-input/single-output (SISO) node systems

Y.Y. Liu, J.J. Slotine, and A.L. Barabási, *Nature* (2011)

Matching in Directed Networks

- Matching: a set of directed edges without common heads and tails
- Unmatched node: the tail node of a matching edge

Maximum matching: Cannot be extended

Perfect matching: All nodes are matched nodes

 Maximum but not perfect matching

Solution to Pinning Control: Minimum Inputs Theorem

Q: How many?

A: The minimum number of inputs N_D needed is: **Case 1:** If there is a perfect matching, then $N_D = 1$ **Case 2:** If there is no perfect matching, then

 N_D = number of unmatched nodes

Q: Where to put them?

A: Case 1: Anywhere

Case 2: At unmatched nodes

Y. Y. Liu, J. J. Slotine, and A. L. Barabási, Nature (2011)

Characterization of General Topology with SISO Nodes

$$\dot{x}_{i} = Ax_{i} + \sum_{j=1}^{N} \beta_{ij} HCx_{j} + \delta_{i} Bu_{i}, \quad i = 1, 2, \dots, N \qquad x_{i} \in \mathbb{R}^{n} \quad y_{i} \in \mathbb{R}^{m} \quad u_{i} \in \mathbb{R}^{p}$$
$$L = [\beta_{ij}] \in \mathbb{R}^{N \times N} \quad \Delta = diag(\delta_{1}, \dots, \delta_{N})$$

A network with SISO nodes is controllable if and only if

(A, H) is controllable (A, C) is observable

For any eigenvalue s of A and $\alpha = Re(s)$, $\alpha L \neq 0$ for $\alpha \neq 0$ For any eigenvalue s of A, $rank(I - L\Gamma_1, \Delta\Gamma_2) = N$, with $\Gamma_1 = C[sI - A]^{-1}H$, $\Gamma_2 = C[sI - A]^{-1}B$

L. Wang, X.F. Wang and G. Chen, Royal Phil Trans A (2016)

State Controllability

A network of multi-input/multi-output (MIMO) node systems, where the node systems are of higher-dimensional

A Network of Multi-Input/Multi-Output LTI Systems

Node system
$$\dot{x}_i = Ax_i + Bu_i$$
 $y_i = Cx_i$ $x_i \in R^n$ $y_i \in R^m$ $u_i \in R^p$ Networked system $\dot{x}_i = Ax_i + \sum_{j=1}^N \beta_{ij} Hy_j$, $y_i = Cx_i$, $i = 1, 2, \dots, N$ Networked system $\dot{x}_i = Ax_i + \sum_{j=1}^N \beta_{ij} HCx_j + \delta_i Bu_i$, $i = 1, 2, \dots, N$ $\delta_i = 1$: with external control $\delta_i = 0$: without external control

Some notations

Node system (A,B,C)Network structure $L = [\beta_{ij}] \in \mathbb{R}^{N \times N}$ Coupling matrix HExternal control inputs $\Delta = diag(\delta_1, \dots, \delta_N)$

L. Wang, X.F. Wang, G. Chen and W.K.S. Tang, Automatica (2016)

Counter-intuitive example 1

Counter-intuitive example 2

A Network of Multi-Input/Multi-Output LTI Systems

A necessary and sufficient condition

$$\begin{aligned} \dot{x}_{i} &= Ax_{i} + \sum_{j=1}^{N} \beta_{ij} HCx_{j} + \sum_{k=1}^{s} \delta_{ik} Bu_{k}, & x_{i} \in \mathbb{R}^{n}, \quad i = 1, \dots N \\ u_{k} \in \mathbb{R}^{p}, \quad k = 1, \dots s \\ y_{l} &= \sum_{j=1}^{N} m_{lj} Dx_{j} & y_{l} \in \mathbb{R}^{q}, \quad l = 1, \dots r \\ L &= [\beta_{ij}] \in \mathbb{R}^{N \times N} & \Delta = [\delta_{ij}] \in \mathbb{R}^{N \times s} \end{aligned}$$

	If and only if	Matrix equations
State Controllable		$\Delta^{T} XB = 0, L^{T} XHC = X(\lambda I - A) \forall \lambda \in \emptyset$ have a unique solution $X = 0$

L. Wang, X.F. Wang, G. Chen and W.K.S. Tang, Automatica (2016)

Pinning Control of MIMO Networks

Solution to Pinning Control: How many? Where to pin?

→ Select $\Delta = diag[\delta_i]$ such that the above algebraic matrix equations has a unique zero solution *X*

 \rightarrow How many $\delta_i = 1$ and which $\delta_i = 1$

This completely answer the pinning control question for MIMO networks

Robustness of Network Controllability

Robustness of Controllability Against Destructive Attacks (Node-Removals / Edge-Removals)

Measure for Controllability Robustness

Let N_D be the minimum number of external control input needed to maintain the network controllability

Define

Controllability index:

$$n_D = N_D/N$$

Controllability Robustness:

The smaller the value of n_D , the better the robustness against (node-removal or edge-removal) attacks

Complex Network Models

- Random-Graph (RG) Network
- Scale-Free (SF) Network
- Multiplex Congruence Network (MCN)
- *q*-Snapback Network (QSN)
- Random Triangle Network (RTN)
- Random Rectangle Network (RRN)

Comparison of Controllability Robustness

- Attack Methods
- Simulation Results
- Comparisons

Y. Lou, L. Wang, G. Chen, "Enhancing controllability robustness of q-snapback networks through re-directing edges," *Research* (2019)

Attack Methods

		Node-removal	Edge-removal
Targeted	Betweenness	Remove the node with the largest betweenness	Remove the edge with the largest betweenness
	Degree	Remove the node with the largest out-degree	Remove the edge with the largest edge degree
Random		Remove a node randomly	Remove an edge randomly

Edge degree for an edge A_{ij} is $\sqrt{k_i \times k_j}$, where k_i and k_j are the out-degrees of nodes *i* and *j*, respectively.

Simulation Results (Comparison)

Random Node-Removal

RRN outperforms the other networks.

RRN, RG, and RTN performs similarly.

SF performs the worst.

Observation:

RRN, RTN have many loops

RG is homogeneous

Simulation Results (Comparison)

Random Edge-Removal

RRN outperforms the other networks.

RRN, RG, and RTN performs similarly.

SF performs the worst.

Observation:

RRN, RTN have many loops

RG is homogeneous

Machine Learning

Motivation of applying Machine Learning:

There is no clear correlation between the topological features and the controllability robustness of a general (directed or undirected) network

Y. Lou, Y. He, L. Wang, and G. Chen, "Predicting Network Controllability Robustness: A Convolutional Neural Network Approach", *IEEE Transactions on Cybernetics*, 2020 (online)

Machine Learning using Convolutionary Neural Network (CNN)

CNN architecture used for controllability robustness prediction

FM – feature map FC – fully connected data size $N_i = [N/(i+1)]$, for i = 1, 2, ..., 7. $N_{FC1} = N_7 \times N_7 \times 512$, $N_{FC2} \in (N_{FC1}, N-1)$ is a hyperparameter $N_{FC2} = 4096$ for $N = \{800, 1000, 1200\}$

Networks and Image Representation

Erdos-Renyi Random Graph (ER)

ER: uniformly randomly connect any two nodes by *M* edges; the directions are evenly-randomly assigned

ER-image: uniformly randomly distribute the *M* light pixels into an $N \times N$ matrix

Barabasi-Albert Scale-Free Network (SF)

SF: nodes *i* and *j* ($i \neq j, i, j = 1, 2, ..., N$) are randomly picked with a probability proportional to their weights w_i and w_j , respectively. Then, an edge A_{ij} from *i* to *j* is added only if they are not connected

SF-image: a heterogeneous network and thus a heterogeneous image; very strong structural characteristics

Simulations

(There are many simulation results, but only one is shown for illustration)

RA – Random Attack **ER** – Erdos-Renyi Random Network

Blue/Red – True/Prediction Black/Green – Errors/Deviations

Knowledge-Based Learning

Sufficiently utilize the prior knowledge (network types) in pre-processing for improving predictions

Y Lou, Y D He, L Wang, K F Tsang, G Chen. "Knowledge-based prediction of network controllability robustness," *IEEE Trans. Neur. Nets. Learn. Sys.*, accepted, 2021

Simulation

Significant Finding:

Cycles and Homogeneity are good for

both Controllability and Robustness

An empirical necessary (homogeneity) condition:

 $[M/N] \le k_i^{in,out} \le [M/N] \quad (i = 1, 2, ..., N)$

M-number of edges, *N* – number of nodes, *k*- degree

Y. Lou, L. Wang, K. F. Tsang and G. Chen, IEEE Trans. Circ. Syst.-I (2020)

Research Outlook

General Theory ?

Higher-order Topology ?

Cycle, Clique, Cavity

Betti Number, Euler Characteristic Number

References

- Müller F J, Schuppert A. Few inputs can reprogram biological networks. Nature, 478(7369): E4-E4, 2011.
- Banerjee S J, Roy S. Key to Network Controllability. arXiv 1209.3737, 2012.
- Nacher J C, Akutsu T. Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control. New Journal of Physics. 4(7): 073005, 2012.
- Cowan N J, Chastain E J, Vilhena D A, et al. Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS One, 7(6): e38398, 2012.
- Nepusz T, Vicsek T. Controlling edge dynamics in complex networks. Nature Physics. 8(7): 568-573, 2012.
- Xiang L, Zhu J H, Chen F, Chen G. Controllability of weighted and directed networks with nonidentical node dynamics, Mathematical Problems in Engineering. ID 405034, 2012.
- Mones E, Vicsek L, Vicsek T. Hierarchy measure for complex networks. PloS one, 7(3): e33799, 2012.
- Liu Y-Y, Slotine J-J, Barabási A-L. Control centrality and hierarchical structure in complex networks. PLoS ONE 7(9): e44459, 2012.
- Wang B, Gao L, Gao Y. Control range: a controllability-based index for node significance in directed networks. Journal of Statistical Mechanics, 2012(04): P04011, 2012.
- Wang W X, Ni X, Lai Y C, et al. Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, 85(2): 026115, 2012.
- Yan G, Ren J, Lai Y C, et al. Controlling complex networks: How much energy is needed?. Physical Review Letters, 108(21): 218703, 2012.
- Zhou T, On the controllability and observability of networked dynamic systems, Automatica, 52: 63-75, 2015.

- Yan G, Tsekenis G, Barzel B, Slotine J-J, Liu Y-Y, Barabási AL. Spectrum of controlling and observing complex networks, Nature Physics, doi:10.1038/ nphys3422, 2015.
- Motter, A E, Networkcontrology, Chaos, 25: 097621, 2015.
- Liu Y Y, Barabasi A-L, Control principles of complex networks, Review of Modern Phys., 88 (56pp) 2016.
- Wang L, Chen G, Wang X F, Tang W K S. Controllability of networked MIMO systems, Automatica, 69: 405-409, 2016.
- Hou B Y, Li X, Chen G. Structural controllability of temporally switching networks, IEEE Trans. Circ. Syst.-I, 63: 1771-1781, 2016.
- Lou Y, Wang L, Chen G. Toward stronger robustness of network controllability: A snapback network model, IEEE Trans. Circ. Syst.-I, 65: 2983-2991, 2018.
- Lou Y, Wang L, G. Chen G. "Enhancing controllability robustness of q-snapback networks through redirecting edges," RESEARCH, 2019: 7857534, 2019.
- Y. Lou, Y. D. He, L. Wang and G. Chen, "Predicting network controllability robustness: A convolutional neural network approach," IEEE Trans. Cybern., pub. online, 2020.
- Y. Lou, L. Wang, K. F. Tsang and G. Chen, "Towards optimal robustness of network controllability: An empirical necessary condition," IEEE Trans. Circ. Syst.-I, 67: 3163-3174, 2020.
- Lou Y, He Y D, Wang, L, Tsang K F, Chen G. "Knowledge-based prediction of network controllability robustness," IEEE Trans. Neur. Nets. Learn. Sys., pub. online, 2021.
- Lou Y., Wang L, Chen G, "A framework of hierarchical attacks to network controllability", Comm. Nonl. Sci. Numer. Simul., accepted, 2021.

Thank You

Xiaofan WANG 汪小帆, Shanghai University Lin WANG 王琳, Shanghai Jiao Tong University Yang LOU 楼洋, City University of Hong Kong