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Motivational Examples




Example 1.

“The worm Caenorhabditis elegans has 297 nerve cells.
The neurons switch one another on or off, and, making
2345 connections among themselves. They form a network
that stretches through the nematode’s millimeter-long body.”

“How many neurons would you have to commandeer
to control the network with complete precision?”

The answer is, on average: 49

-- Adrian Cho, Science, 13 May 2011, vol. 332, p 777

Here, control = stimuli


http://www.nhgri.nih.gov/NEWS/Worm/enlarged_c_elegans.jpg

Example 2:

“ ... very few individuals (approximately 5%) within
honeybee swarms can guide the group to a new nest site.”

|.D. Couzin et al., Nature, 3 Feb 2005, vol. 433, p 513

These 5% of bees can be
considered as “controlling”
or “controlled” agents

Leader-Followers network
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Mathematically:

o Given a network of
dynamical systems
(e.g., ODEs)

o Given a specific
control objective
(e.g., synchronization)

o Assume: a certain
class of controllers
(e.g., local state-
feedback controllers)
are chosen to use



Control Problem
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Pining Control:
= How many controllers to use?

= Where to “pin” them?



Pinning Control: Our Research Progress
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Network Model

Linearly coupled network:

N
X =f(x)+cd BHx, xeR" i=12..,N
j=1

- General assumption: f (.) is Lipschitz. Here, it is linear (or linearized):
N
% =Ax+c> BiHx, xeR" i=12..N
j=1
- Coupling strength ¢ >0 and H — input coupling matrix

- Adjacency matrix: l B. J
1 ANxN

If node 1 points to node j (j #1), then B =1, otherwise g, =0;and g, =0

For undirected networks, [ﬂij JNxN is symmetrical; for directed networks, may not be so



How many? Where to pin?

N
X =Ax +c) BiHx; & +Bu,
j=1

N
X = Ax +c)_ BiHx; +06,Bu,
j=1

o =

1 if to—control
0 if not—control

How many &, =1 ? Which | (i=12,....,.N) = Pinning Control



Controllability Theory




In retrospect, ...

J.S.ILAM. ConTROT
Ser. A, Vol. 1, No. 2
Printed in U.S.A., 1963

MATHEMATICAL DESCRIPTION OF LINEAR
DYNAMICAL SYSTEMS*

R. E. KALMAN

(1930-2016)

Abstract. There are two different ways of deseribing dynamical systems: (i) by
means of state variables and (ii) by input/output relations. The first method may be
regarded as an axiomatization of Newton’s laws of mechanics and is taken to be the
basic definition of a system.

It is then shown (in the linear ease) that the input/output relations determine
only one part of a system, that which is completely observable and completely con-
trollable. Using the theory of controllability and observability, methods are given
for calculating irreducible realizations of a given impulse-response matrix. In par-
ticular, an explicit procedure is given to determine the minimal number of state
variables necessary to realize a given transfer-funetion matrix. Difficulties arising
from the use of reducible realizations are discussed briefly.



System Controllability

Linear Time-Invariant (LTl) system X X;(1

X(t) = Ax(t) + Bu(t) o X(0

xeR": state vector Xo(t)

ue RP: control input
AcR™: system matri <)
€ . System matrix
4 _ X3(t)
B € R™" : control matrix
Controllable: The system
orbit can be driven by an
C. K. Chui and G. Chen, Linear Systems Input from any Initial state to

and Optimal Control, Springer, 1989 any target state |n flnlte tlme



State Controllability Theorems

(i) Kalman Rank Criterion  X(t) = Ax(t) + Bu(t)
The controllability matrix Q has full row rank:

Q=[B AB --- A"'B]
(i1) Popov-Belevitch-Hautus (PBH) Test
The following hold:
VIA=Av', VB0

A eigenvalue of A
Vv : nonzero left eigenvactor with A



System Observability

Linear Time-Invariant (LTI) system (0 1
1

X(t) = Ax(t) + Bu(t) /' X(to)
y(t) = Cx(¢)

X € R": state vector

X,(t)

X(ty)
ue R": control input 1

A e R™: system matrix X3(t)

B € R™" : control matrix Observability: Input-
output pair (u(t), y(t)) on

t
x(t) = x(ty)et=t)4 fe(t—r)ABu(T)dT [t1, t>] uniquely determines
; the initial state x(tp)
0



What About Directed Networks?

dx.
el — X xl_eR”
= Jf(x)

%iz—f‘xi



In retrospect: large-scale systems theory

Structural Analysis of Dynamical Systems

na
II.I_ _%] lﬂlqin Q.
N = u Is this kind of
Iﬁl ~Uh | structure
_—
T T controllable?

A directed network



Structural Controllability

Corresponding linearized system has

the following general form:

X, =8y, %
X, = 8, X + 855X, +bu,
X3 = Azp Xy + 833X3
0 O
rank| B,AB,A’B |=|b a,b
0 a,b

—) Uncontrollable

Ay
A= Ay
] 0

0
az,b

A5 (8, +843)b_

0
Ayy

A3




Structural Controllability

In the controllability matrix:  Q=[B AB --- A™'B]

All O are fixed

There is a realization of
iIndependent nonzero parameters
such that Q has full row rank

Example 1:
0- a 0
|0 d
Realization: All admissible parameters

a=0 d=0

Example 2: Frobinius Canonical Form
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Structural Controllability

A network of single-input/single-output
(SISO) node systems




u, u,
b1 bl =—-H.x
< 9
X1 01 ; Qs
Qs
X2 X2 X3
a5,
X3
Q =[B,A-B,A’-B]
(1 0 0 (1 0 O] (1 0 0
0 a, O b0 a, O b0 a, O
_0 0 a32a21_' _0 Ay O_, _O Ay a33a3l_,
rank C=3=n rankC=2<n=3 rank C=3=n
controllable uncontrollable controllable

Y.Y. Liu, J.J. Slotine, and A.L. Barabasi, Nature (2011)



Matching in Directed Networks

e Matching: a set of directed edges without common
heads and talls
e Unmatched node: the tail node of a matching edge

© matched node Maximum matching:
O inindihainoda Cannot be extended
< Perfect matching

Perfect matching:

OO0+ 0+=0
All nodes are
Oj\] 6)\] O/k matched nodes
< Maximum but not
perfect matching



Solution to Pinning Control:

Minimum Inputs Theorem

Q: How many?
A: The minimum number of inputs Ny needed is:
Case 1: If there is a perfect matching, then Q
Np=1
Case 2: If there is no perfect matching, then
N, = number of unmatched nodes
1 0 0
Q: Where to put them? By O g O
A: Case 1: Anywhere 0 (T) :
Case 2: At unmatched nodes bs

This completely answer the pinning control question for SISO networks

Y. Y. Liu, J. J. Slotine, and A. L. Barabasi, Nature (2011)



Characterization of General Topology with SISO Nodes

N

% =Ax+ Y BHCx, +6Bu, i=12--N Xxe€R" yeR" ueR”
=1
| L=[g1e R™™ A=diag(s,,--,6y)

A network with SISO nodes is controllable if and only if

(4, H) is controllable
(4, C) is observable
For any eigenvalue s of A and @ = Re(s), aL # Ofora # 0
For any eigenvalue s of A, rank(l — LT, Al,) = N,
with T, = C[s] — A]"1H, T, = C[s] — A]"!B

L. Wang, X.F. Wang and G. Chen, Royal Phil Trans A (2016)



State Controllability

A network of multi-input/multi-output
(MIMO) node systems, where the node
systems are of higher-dimensional




A Network of Multi-Input/Multi-Output LTI Systems

Node system X, = Ax + Bu, y, =Cx x €R" yeR"™ ueRP
N -

Networked system X =Ax+> BHy,, y;=Cx, i=12--N
j=1

Networked system

N
with external control X = AX +leBinCXj +o,Bu;, 1=12,---,N
J:

6; =1: with external control ~ 6; =0: without external control

Some notations
Node system (A,B,C) Network structure L=[8;1e R™"

Coupling matrix H External control inputs A =diag(d,,-,d,)

L. Wang, X.F. Wang, G. Chen and W.K.S. Tang, Automatica (2016)



Counter-intuitive example 1

Network structure

®

P

/B12

Node system

c=[01]

(A,B) is controllable

Networked MIMO system

(A,C) is observable

state uncontrollable




Counter-intuitive example 2

Network structure

®

P

ﬁlZ

Node system

c=[01]

(A,B) is uncontrollable

Networked MIMO system

(A,C) is observable

state controllable




A Network of Multi-Input/Multi-Output LTI Systems

A necessary and sufficient condition

N S n | — ceoe
% =A%+ gHCx +Y 5By, SER =N
L k=1 u R’ k=1---s
)

N
y|=ZmuDX,- y, eRY, =1
j=1

L=[5]eR™  A=[5]eR"

If and only if Matrix equations

State ATXB =0, ' XHC = X(A1-A) VAie(
Controllable have a unique solution Y=0

L. Wang, X.F. Wang, G. Chen and W.K.S. Tang, Automatica (2016)




Pinning Control of MIMO Networks

If and only if Matrix equations

State ATXB =0, ' XHC = X(A1-A) VAe¢
Controllable have a unique solution Y'=0

Solution to Pinning Control: How many? Where to pin?

- Select A = diag|[d;] such that the above algebraic
matrix equations has a unique zero solution X

- How many §; = 1 and which §; = 1

This completely answer the pinning control question for MIMO networks




Robustness of Network Controllability

Robustness of Controllability

Against Destructive Attacks
(Node-Removals / Edge-Removals)




Measure for Controllability Robustness

Let Np be the minimum number of external control input
needed to maintain the network controllability

Define
Controllability index:

Nnp = ND/N
Controllability Robustness:

The smaller the value of np, the better the robustness
against (node-removal or edge-removal) attacks



Complex Network Models

Random-Graph (RG) Network
Scale-Free (SF) Network

Multiplex Congruence Network (MCN)
g-Snapback Network (QSN)

Random Triangle Network (RTN)
Random Rectangle Network (RRN)



Comparison of Controllability Robustness

« Attack Methods
 Simulation Results

« Comparisons

Y. Lou, L. Wang, G. Chen, “Enhancing controllability robustness of
g-snapback networks through re-directing edges,” Research (2019)



Attack Methods

Node-removal

Edge-removal

Remove the node | Remove the edge

Betweenness | with the largest with the largest
Targeted
betweenness betweenness
Remove the node | Remove the edge
Degree with the largest with the largest
out-degree edge degree
Remove a node Remove an edge
Random
randomly randomly

Edge degree for an edge A;; is \/k; X k;, where k; and k;
are the out-degrees of nodes i and j, respectively.
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Simulation Results (Comparison)

O
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Average over 100 trials

Random Node-Removal

RRN outperforms the
other networks.

RRN, RG, and RTN
performs similarly.

SF performs the worst.

Observation:

RRN, RTN have many loops

RG is homogeneous
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Simulation Results (Comparison)
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RRN outperforms the
other networks.

RRN, RG, and RTN
performs similarly.

SF performs the worst.

Observation:

RRN, RTN have many loops

RG is homogeneous




Machine Learning

Motivation of applying Machine Learning:
There is no clear correlation between the topological
features and the controllability robustness of a general

(directed or undirected) network

Y. Loy, Y. He, L. Wang, and G. Chen,
"Predicting Network Controllability
Robustness: A Convolutional Neural
Network Approach”, IEEE Transactions
on Cybernetics, 2020 (online)




Machine Learning
using Convolutionary Neural Network (CNN)

sparse data dense data FM 1 FM 2 FM 3 FM 4 FM 5 FM 6 FM 7 FC1 FC2
NxN N1><N1><64 N, % N, <64 N3><N3><128 N4><N4><128N><N *256 N x Ng 256 Nxinlz 1< Npey 1% Npeo

prediction

L (1
| e |~~~

E embedding ~ convolution | max pooling gconcatenation fully connected

and ReLU and ReLLU

CNN architecture used for controllability robustness prediction
FM — feature map

FC — fully connected

datasize N; = [N/(i+ 1)],fori=1,2,...,7.

Ngcqy = Ny X N; X 512, Npey € (Npe1, N — 1) is a hyperparameter
Ngpc, = 4096 for N = {800,1000,1200}



Networks and Image Representation

A B C D E
A 1 0 1 0
B 0 0 0 0
— C 0 0 0 1
D 0 0 1 0
E 1 0 0 0
topology adjacency matrix

image



Erdos-Renyi Random Graph (ER)

ER: uniformly randomly connect any two nodes by M edges; the directions are
evenly-randomly assigned

ER-image: uniformly randomly distribute the M light pixels into an N X N matrix



Barabasi-Albert Scale-Free Network (SF)

SF:nodesiandj (i #j,i,j =1,2,...,N) are randomly picked with a
probability proportional to their weights w; and w;, respectively. Then, an
edge 4;; fromi to j is added only if they are not connected

SF-image: a heterogeneous network and thus a heterogeneous image; very
strong structural characteristics



Simulations

(There are many simulation results, but only one is shown for illustration)

input: image

CNN

output: CR
performance
prediction

CR = Controllability Robustness

RA ER-(k)=5

0 200 400 600 800 1000

"

RA — Random Attack
ER — Erdos-Renyi Random Network

Blue/Red — True/Prediction
Black/Green — Errors/Deviations



Knowledge-Based Learning

Sufficiently utilize the prior knowledge (network
types) in pre-processing for improving predictions

CNNc]:—P classifiable &, CNN_,
?

yes e output: CR
CNN, Filter:|#| performance
prediction
CNN,
input: image
CR = Controllability Robustness
CNN, .

Y Lou, Y D He, L Wang, K F Tsang, G Chen. "Knowledge-based prediction of network
controllability robustness,” IEEE Trans. Neur. Nets. Learn. Sys., accepted, 2021



Simulation

10"

(C) QSN (k)=3

107 |

1072

A)
- = = PCR tVal 10°% % 107 107
----- iPCR
3 107 107 T
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 I 0 02 04 06 08 l
P\ PN P\ P\

BA = BA scale-free network tVal Training size = 4000

ER = ER random-graph network
QSN = g-snapback network

SW = Small-world network

PCR = Predicted controllability robustness
tVal = True value

iPCR = improved Predicted controllability robustness

Testing size = 1000
Network size = 200

Py = Attack probability



Significant Finding:

Cycles and Homogeneity are good for

both Controllability and Robustness

An empirical necessary (homogeneity) condition:
IM/N] < k™" < [M/N] (i=12,..,N)

M- number of edges, N — number of nodes, k- degree

Y. Lou, L. Wang, K. F. Tsang and G. Chen, IEEE Trans. Circ. Syst.-| (2020)



Research Outlook

General Theory ?

Higher-order Topology ?
Cycle, Clique, Cavity

Betti Number, Euler Characteristic Number
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