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1. Introduction

The Lorenz system is considered the most impor-
tant chaotic system of differential equations in the
study of chaos theory. Since its discovery [Lorenz,
1963], thousands of papers have been dedicated
to investigating its properties. These investigations
make use of several methods and approaches. One
such approach is the use of modified Lorenz sys-
tems, also called Lorenz-like systems, which are
characterized either by removing terms from the
equations (see e.g. [van der Schrier & Maas, 2000])
or by modifying some terms of the equations. An
example of the latter is the Chen system which,
along with the original Lorenz system, is the sub-
ject of this work.

The paper is organized as follows: in Sec. 2 the
basic equations are presented for future reference;
in Sec. 3 some distinctive features of the two sys-
tems are presented and discussed; in Sec. 4 a unified
system describing both the Lorenz and the Chen
systems is presented and analyzed.

2. Equations

The Lorenz system is given by three coupled first-
order equations:

ẋ = σ(y − x), ẏ = rx − xz − y, ż = xy − bz,

(1)

where b, σ and r are positive real parameters. When
investigating the Lorenz system, Chen and Ueta
[1999] had the idea of modifying it by adding a con-
trol function u(x, y, z) to the second equation of (1):

ẏ = rx − xz − y + u(x, y, z). (2)

By using the anticontrol theory [Chen & Dong,
1998] and numerical experiments, they chose the
linear function u = −σx + (1 + r)y as the one sim-
ple enough giving interesting results [Ueta & Chen,
2000]. Thereafter, the following Lorenz-like system
became known as the Chen system:

ẋ = σ(y − x),

ẏ = (r − σ)x − xz + ry,

ż = xy − bz.

(3)

By setting ẋ = ẏ = ż = 0 the equilibrium points of
the two systems are obtained as:

Lorenz: x = y = z = 0; x = y = ±
√

b(r − 1),

z = r − 1, (4a)

Chen: x = y = z = 0; x = y = ±
√

b(2r − σ),

z = 2r − σ. (4b)

Note that nontrivial equilibria will exist for the
Lorenz system in the r-range (1,∞) and, for the
Chen system, (σ/2,∞).
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3. Five Distinguishing Features
of the Two Systems

3.1. Positive feedback

Despite their similarities, the Lorenz and the Chen
systems can be regarded as distinct because the
Chen system has a feature that is absent in the
Lorenz system, namely positive feedback. Each one
of the three first-order Lorenz equations is dissipa-
tive, characterized, respectively, by the terms −σx,
−y and −bz. On the other hand, the second equa-
tion of the Chen system is regenerative, charac-
terized by the positive-feedback term +ry, as a
result of the control function u(x, y, z) applied to
the Lorenz system. This fundamental property of
the Chen system is the main cause of other distin-
guishing features between the two systems, further
discussed as follows.

3.2. Dissipation

An important quantity associated with system (1)
is the trace of its Jacobian, given by −(σ+ b+1). If
the trace is negative then any volume V0 of initial
conditions in the phase space evolves toward V (t) =
0, meaning that the Lorenz system is dissipative in
the whole (b, σ, r)-space. The intervention (2) mod-
ified the trace, now given by −(σ + b − r), imply-
ing that the Chen system is dissipative only in the
region below the plane given by r = σ + b.

3.3. Hopf bifurcation

Associated with system (1) is the critical r-value
given by the Hopf theorem [Sparrow, 1982]:

r0 = σ
σ + b + 3
σ − b − 1

(5)

which describes a surface separating the region of
sinks and sources from that of periodic and chaotic
dynamics. To derive (5) one first writes the char-
acteristic equation for the nontrivial equilibria as
λ3 + a2λ

2 + a1λ + a0 = 0. Then Eq. (5) is obtained
from the relation a0 = a1a2, where a0 = 2σb(r− 1),
a1 = b(σ + r), and a2 = σ + b + 1. In addition, the
following condition for transversality is verified to
hold at r0 in order to guarantee a Hopf bifurcation:
da0/dr �= d(a1a2)/dr.

Analogously, for system (3) the critical r-value
is given by [Lü et al., 2002]:

r0 =
1
2
(
√

17σ2 − 6bσ + b2 − 3σ + b). (6)

Fig. 1. Hopf bifurcation diagrams of Eqs. (1) and (3) for
b = 8/3.

The importance of (5) and (6) for the sake of
comparing (1) and (3) is better appreciated by
displaying them graphically as shown in Fig. 1, with
constant b = 8/3. For the Lorenz system, chaos
and periodic solutions occur in region 1, while in
regions 2–4 the solutions converge toward a sink (a
more detailed explanation of the solutions’ behavior
in these regions is found in [Sparrow, 1982]). Anal-
ogously, for the Chen system, chaos and periodic
solutions occur in region 3, while in region 4 the
solutions tend toward a sink. In regions 1 and 2 the
Chen system is nondissipative. Special attention is
directed to the plane r = σ + b, which separates the
Hopf surfaces given by (5) and (6):

Lorenz: r0 > σ + b, (7a)

Chen: r0 < σ + b. (7b)

Relations (7a) and (7b) can easily be obtained
from (5) and (6), respectively. Therefore regions 1
and 3 never intersect each other, whatever the val-
ues of b, σ and r are. This result demonstrates the
correctness of the Chen and Ueta [1999] approach,
since they aimed at showing that by using even a
linear controller, one can obtain chaos in a large
region of the (b, σ, r)-space where no chaos exist
in the unmodified Lorenz system — a technique
called anticontrol of chaos that could be applicable
to other chaotic systems [Chen & Dong, 1998].

3.4. Trapping regions

Several simple trapping regions for the Lorenz sys-
tem have been reported, also by Lorenz himself.
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On the other hand, a trapping region for the Chen
system was not identified before the one shown in
this paper, though with a description comparatively
more involved than that for the Lorenz system.

3.4.1. A simple trapping region for the
Lorenz system

� [Lorenz, 1979]: Consider the sphere

S : x2 + y2 + (z − σ − r)2 = R2 (8a)

and the ellipsoid

E : σx2 + y2 + b
(
z − σ

2
− r

2

)2
= b

(σ

2
− r

2

)2
.

(8b)

The sphere S is a trapping region for system (1)
provided that the diameter of S exceeds the maxi-
mum diameter of E.

3.4.2. A trapping region for the Chen
system

� [Barboza & Chen, 2011]: Consider the following
transformation of variables:

X = x, Y = y − Cx, Z = D − z, τ = bt,

(9)

where x = x/b, y = y/b and z = z/b. Then (3) can
be rewritten as

Ẋ = AY − BX ,

Ẏ = −AX + XZ − Y,

Ż = −XY − Z − CX 2 + D,

(10)

where here the dot means d/dτ . The parameters A,
B, C and D are defined in Sec. 3.5. Now, for any
Z0 ≤ 0 and U0 ≥ 1

2(D−Z0)2, consider the ellipsoids

Ei :
1
2

(
A − Zi

A
X2 + Y 2 + (Z − Zi)2

)
= Ui,

i = 0, 1, 2, . . . (11a)

where, for i ≥ 1,

Zi = Zi−1

(
1 +

B

AC

)
− B − 1

C
, (11b)

Ui =
A − Zi

A − Zi−1

[
Ui−1 − (Zi−1 − Zi)2

2

]
(11c)

with B > A
A−Z0

. In the upper half-space Hi : Z >

Zi, let Ωi = EV
i ∩ Hi, where EV

i is the region
enclosed by Ei. Moreover, for N ≥ 0, define

Ω0,1,...,N =
N⋃

i=0

Ωi. (11d)

Then, there exists an integer N , 0 ≤ N < ∞, such
that Ω0,1,...,N is a trapping region for system (3).

3.5. Number of parameters

3.5.1. The Chen system is exactly a
two-parameter system

Consider the Chen system as given by (10). It was
pointed out in the “Appendix C” of [Barboza &
Chen, 2011] that the following identities hold:

B = A − AC, D = 2AC − C − 1 (12)

where A = σ/b and C = (b/σ)(1 + r/b). Rela-
tions (12) reveal that the only independent param-
eters present in (10) are A and C. Clearly, this
implies that when using Eq. (3) one shall have in
mind that any of the three parameters r, σ and b can
be expressed as a function of the other two. Accord-
ingly, since the above referenced work is dated 2011,
formula (12) was the first proof that the Chen sys-
tem can be described by only two parameters.1

Obviously (9), (10) and (12) rely on the following
basic transformation:

x =
x

b
, y =

y

b
, z =

z

b
, τ = bt (13)

and on the following two-parameter b-scaled system
obtained from (3) and (13):

ẋ = σ(y − x), ẏ = (r − σ)x − xz + ry,

ż = xy − z
(14)

where σ = σ/b and r = r/b. Note that (9) is the
same as (13) after translation and rotation, thus the
preliminary Eqs. (13) and (14) are implicit in (9),
(10) and (12).2 Also note that there is no special

1Such two-parameter property of the Chen system was decisive for the proof of its boundedness in [Barboza & Chen, 2011].
2Equations (13) and (14) were omitted in [Barboza & Chen, 2011] in order to avoid redundancy and save space.
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reason to choose b as the scaling parameter, since
choosing either σ or r would work equally well for
the proof of the trapping region in Sec. 3.4.2. It
should be mentioned that scaled equations such as
Eqs. (13) and (14) were later derived independently
first by Leonov [2013] and then by Algaba et al.
[2013]. See also [Leonov & Kusnetzov, 2015].

3.5.2. The Lorenz system is essentially a
two-parameter system

Consider a plot of the standard Lorenz butterfly
attractor with r = 28, σ = 10 and b = 8/3. Clearly
the same attractor is obtained (though magnified)
with r = k · 28, σ = k · 10 and b = k · 8/3, where
1 ≤ k < ∞. More precisely, all the qualitative prop-
erties of the system would be preserved after mul-
tiplying all the parameters by k. This is because
in the usual range of parameters found in the lit-
erature, the Lorenz system behaves essentially as
a two-parameter system. To understand this more
clearly, first write (1) with parameters kr, kσ and
kb, then apply transformation (13) with b replaced
by k. After redefining x, y, z and t, the resulting
system is identical to (1) but with the last term of
the second equation divided by k:

ẏ = rx − xz − y

k
. (15)

Fig. 2. One-dimensional bifurcation diagrams of the Lorenz system (17) for two values of k.

Combining (15) with the first equation ẋ = σ(y−x)
one obtains:

ẍ +
(

σ +
1
k

)
ẋ − σ

(
r − 1

k

)
x = −σxz. (16)

Finally, by integrating (16) in order to return to a
first-order system one obtains:

ẋ = σy −
(

σ +
1
k

)
x,

ẏ =
(

r − 1
k

)
x − xz,

ż = xy − bz − x2

kσ
.

(17)

Figure 2 shows the one-dimensional bifurcation dia-
grams for k = 1 and k = 1000. The ordinates in
Fig. 2 correspond to successive maxima of the vari-
able z. Observe that apart from a scale factor the
two diagrams have identical structures. Thus one
can say that the Lorenz system is essentially a two-
parameter system in the sense that it has the same
properties as the following reduced system:

ẋ = σ(y − x), ẏ = rx − xz,

ż = xy − bz − x2

kσ

(18)
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which for any arbitrary k ≥ 1 can be recast as a two-
parameter system via (13). Note that in general one
can assume that |xy| � x2/(kσ), therefore the last
term of the ż-equation can be removed from (18).

4. Joint Analysis Using a Unified
System

4.1. Three-parameter Chen system

An r-scaled Chen system can be obtained anal-
ogously as (14) by applying (13) to (3), with b
replaced by r, thus

˙̃x = σ̃(ỹ − x̃),

˙̃y = r̃x̃ − x̃z̃ + ỹ,

˙̃z = x̃ỹ − b̃z̃,

(19)

where r̃ is defined as a new independent parameter,
with x̃ = x/r, ỹ = y/r, z̃ = z/r, σ̃ = σ/r, b̃ = b/r
and t̃ = rt, with the overdot meaning d/dt̃. Hence,
for convenience in the task of comparing it with
the Lorenz system (1), Eq. (19) is introduced here
as a generic three-parameter Chen system, having
Eq. (3) as an important special case for which one
has r̃ = 1 − σ/r.

4.2. Dropping the tildes

For ease of comparison with (1) let the tildes of (19)
be dropped and from now on consider both (1)
and (19) as controlled by the same parameters b,
σ and r, along with the same time-scale t. There-
fore the symbols b, σ, r and t here will not be con-
founded with those previously used for the original
Chen system (3).

4.3. Simplest unified system

Systems (1) and (19) can be unified as

ẋ = σ(y − x),

ẏ = rx − xz − my,

ż = xy − bz

(20)

which describes either the Lorenz system (m = 1)
or the Chen system (m = −1). Note that Eq. (20)
with m = −1 is the simplest version of the Chen
system since it differs from the Lorenz equations by
the single term +y.

4.4. Equilibria and parameter
ranges

The equilibrium points of (20) are

x = y = z = 0; x = y = ±
√

b(r − m),

z = r − m. (21)

In the present section the restriction imposed in
Sec. 2 is removed, allowing each parameter r, σ and
b to take any real value. Note in (21) that in the
case of b > 0 the range of r for the Chen system
(m = −1) can be extended to negative values still
guaranteeing nontrivial equilibria:

r > m

{
r ∈ (1,∞) Lorenz

r ∈ (−1,∞) Chen.
(22)

4.5. The regenerative term

By adopting Eq. (20) for both the Lorenz and the
Chen systems it is crucial to explain their distinct
behaviors, as already detailed in Sec. 3.1. Indeed,
in the Lorenz system the last term −y of the sec-
ond equation merely adds dissipation and can in
fact be removed from system (1) without affecting
the main qualitative properties of the system — see
Sec. 3.5.2. In contrast, in the Chen system the term
+y makes the ẏ-equation regenerative, thus making
the Chen system potentially unstable.

4.6. Hopf bifurcation

The Jacobian corresponding to (20) has the trace
−(σ + b + m), therefore the system is dissipative
only if σ + b > −m. Proceeding as in Sec. 3.3, the
critical r-value for Eq. (20) is obtained as

r0 = σ
m(σ + b) + 3
m(σ − b) − 1

. (23)

This equation is illustrated in Fig. 3, which is anal-
ogous to Fig. 1, showing r0 as a function of σ with
constant b = 3/28 for m = ±1. Referring in the
figure only to positive parameters b and σ, for the
Lorenz system, chaos and periodic solutions occur
in region 1, while in regions 2–4 the solutions con-
verge toward a sink (see [Sparrow, 1982] for a bet-
ter explanation). Analogously, for the Chen sys-
tem chaos and periodic solutions occur in regions 1
and 3, while in region 4 the solutions tend toward a
sink. In region 2 the Chen system is nondissipative.
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Fig. 3. Hopf bifurcation diagram given by (23) for b = 3/28.

4.7. One-dimensional bifurcation
diagrams

By using the same procedure as in Sec. 3.5.2 with
k = 1, the unified system (20) can be expressed as

ẋ = σy − (σ + m)x,

ẏ = (r − m)x − xz,

ż = xy − bz − mx2

σ

(24)

which indicates that for large σ and r the bifurca-
tion diagrams of (20) are qualitatively the same for
both m = 1 and m = −1. On the other hand, for
small values of σ and r the term my becomes impor-
tant, and the distinct behavior of the Chen system
when compared with the Lorenz system takes place.
In fact, for small r the Lorenz system (m = 1)
is nonchaotic, in contrast with the Chen system
(m = −1), as shown in Fig. 4, which displays a
one-dimensional bifurcation diagram of the Chen
system with r as the varying parameter along with
small fixed values of σ and b. Note that for positive
b and σ, chaotic solutions of the Chen system can
be obtained for both positive and negative r.

4.8. Symmetry

4.8.1. Parameters space

Consider the parameters space (b, σ, r). Since dis-
sipation does not depend on r, in Fig. 5 only the
plane (b, σ) is shown. The region where the Lorenz

Fig. 4. One-dimensional bifurcation diagram of the Chen
system (20), m = −1, for b = 3/28 and σ = 35/28.

system is dissipative is given by σ + b > −1, shown
as regions 1 and 2. In region 3 the Lorenz system is
nondissipative. The Chen system (20) with m = −1
is dissipative only in region 1, given by σ + b > +1,
being nondissipative in regions 2 and 3. Also shown
in Fig. 5 is a point P1 = (b, σ, r) and its symmetric
image P2 = (−b,−σ,−r).

4.8.2. Equations

The basic and important symmetry property of
the Lorenz equations is well known [Sparrow, 1982;
Dullin et al., 2007], which is also valid for the Chen
system. It shows that the system equations are
invariant under replacement of the variables x and
y by −x and −y, respectively. Applying it to (20)

Fig. 5. Dissipative regions σ + b > −m of the Lorenz and
Chen systems.
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yields

(−ẋ) = σ[(−y) − (−x)],

(−ẏ) = r(−x) − (−x)z − m(−y),

+ż = (−x)(−y) − bz.

(25)

As usual, the above operation can be denoted as
(x, y, z; t;σ, b, r;m) → (−x,−y, z; t;σ, b, r;m). Now,
observe that Eq. (25) remains the same if the minus
signs before the variables x and y are displaced to
z, t, b, σ, r and m:

−ẋ = (−σ)(y − x),

−ẏ = −rx − x(−z) − (−m)y,

−(−ż) = xy − (−b)(−z).

(26)

Here the minus signs on the left-hand side indicate
that the integration of (26) has to be done backward
in time, because t → −t, thus d/dt → d/d(−t). The
above operation can be denoted as

(x, y, z; t;σ, b, r;m)

→ (x, y,−z;−t;−σ,−b,−r;−m). (27)

For simplicity, assume σ > 0 and b > 0. Then, with
z′ = −z and m = ±1, consider the Lorenz and
the Chen systems listed separately, along with their
symmetric versions:

A




ẋ = σ(y − x)

ẏ = rx − xz − y

ż = xy − bz

Lorenz,

B



−ẋ = −σ(y − x)

−ẏ = −rx − xz′ + y

−ż′ = xy + bz′
symmetric Lorenz,

C




ẋ = σ(y − x)

ẏ = rx − xz + y

ż = xy − bz

Chen,

D



−ẋ = −σ(y − x)

−ẏ = −rx − xz′ − y

−ż′ = xy + bz′
symmetric Chen.

(28)

Note that on comparing the solutions of the above
systems one has A = B �= C = D. However, because
of the conversion m → −m the right-hand side of
B looks like that of the Chen system at the point

P2 in Fig. 5, and the right-hand side of D looks
like that of the Lorenz system at P2. This allows
the interpretation that the forward-time solutions of
the Lorenz system corresponding to the point P1 in
Fig. 5 are the same as the backward-time solutions
of the Chen system corresponding to the point P2 —
although with an inversion of the z-axis — and vice
versa. Therefore the Lorenz and the Chen systems
are mutually symmetric. Note that such solutions
show identical stability properties. For example, a
stable limit cycle obtained with A corresponds to a
stable limit cycle obtained with B, and similarly for
C and D.

Now, consider Eq. (29). Following Algaba et al.
[2013], the solutions of the Lorenz system E are also
the same as those of D, and thus of C, but with
opposite stability properties (implying an unstable
limit cycle in the above example) because −t → t.
Analogous considerations can be made involving A,
B and the Chen system F.

E




ẋ = −σ(y − x)

ẏ = −rx − xz − y

ż = xy + bz

Lorenz, at P2,

F




ẋ = −σ(y − x)

ẏ = −rx − xz + y

ż = xy + bz

Chen, at P2.

(29)

Therefore, the Lorenz system in the nondissipa-
tive region 3 of Fig. 5 can be analyzed using the
Chen system in the dissipative region 1, and the
Chen system in region 3 can be analyzed using
the Lorenz system in region 1. This symmetry prop-
erty is conceptually and aesthetically pleasing and
makes the Lorenz and the Chen systems much more
strongly related. One can say that the Chen system
is symmetrically contained in the Lorenz system
and vice versa. Despite this, however, the Lorenz
and the Chen systems remain distinct. For example,
as referred to in Sec. 3.4, a simple nonintricate trap-
ping region continues to be difficult to find for the
Chen system using forward- or backward-time inte-
gration, while it is very easy to find for the Lorenz
system in forward time.

From the above, it seems clear that what
really matters in practice is the investigation of
the forward-time Lorenz and Chen systems in their
respective dissipative regions of parameters. More-
over, as pointed out in [Leonov & Kusnetzov, 2015],
a number of the main available tools for studying
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dissipative dynamical systems usually work well
only in forward time, which makes the study of
the Chen system meaningful besides the Lorenz
system.

5. Conclusion

In this paper it was shown that at least five dis-
tinctive features can be identified in order to illus-
trate the differences between the Lorenz and the
Chen systems. It was emphasized that the regener-
ative action of the term +ry on the second equation
of (3) is the essential particularity that is the source
of all the main distinctive aspects of the Chen sys-
tem in comparison with the Lorenz system. In addi-
tion it was shown that the Lorenz system behaves
essentially as a two-parameter system. Finally, by
using a simple unified system a symmetry property
connecting the Lorenz and the Chen systems was
established.
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