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Synchrony can be essential
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S < “Clock synchronization

IS a critical component in

sensor networks, as it
provides a common time
frame to different nodes.”




MIT News
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ON CAMPUS AND AROUND THE WORLD |

MIT neuroscientists found that brain
waves originating from the striatum (red)
and from the prefrontal cortex (blue)
become synchronized when an animal
learns to categorize different patterns of
dots.

llustration: Jose-Luis Olivares/MIT

Synchronized brain waves enable rapid learning

MIT study finds neurons that hum together encode new information.

Anne Trafton | MIT News Office
June 12, 2014 PRESS MENTIONS
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A General Dynamical Network Model

An undirected network:

X = f(xi)—cZN:ain(xj)

f (.) — Lipschitz Coupling strength ¢ >0

A = [ai] — Adjacency matrix H — Coupling matrix function

If there is a connection between node i and node j (j #1i),
then aij= a;i= 1; otherwise, ai= ;=0 and ai=0, i=1,...,N

Laplacian L=D —-A, D =diag{ d:, ..., dv} (node degrees)

For connected networks, eigenvalues: m



Network Synchronization




Network Synchronization: Analysis

Put all equations together with EE&IE4RH
Then linearize it at equilibrium S :

x =[1,, ®[VF (s)]]- c[AR[VH (s)]]x
Only

f () Lipschitz, or assume: || VF(S)|| <M B 2 CA or{c4}

IS Important

After linearization, perform local analysis



Network Synchronization: Criteria

0=4 <A, << Ay

X =[l ®[VT(S)]]-c[AK[VH(s)]]X

Master stability equation:
y=[[Vf(S)]-a[VH(S)]ly, a=inf{cA(s),1=23,...,N}

Maximum Lyapunov exponent is a function of 24
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Smex == SYNC region

Synchronizing: If or If

0=, <a<ay <



Network Synchronization: Criteria

Recall: Laplacian eigenvalues: [([EVRYETREYR

synchronizing If or If

Case I: Case II: Case l11: Case IV:
No sync Sync region Sync region Union of

intervals

E—) bigger is better j—z bigger is better

N



In retrospect

Synchronizability characterized by Laplacian eigenvalues:

1. unbounded region (X.F. Wang and GRC, 2002)

2. bounded region (M. Banahona and L.M. Pecora, 2002)
Ll Ay, O0=A4 <A <--<A S, =(a;, 3)

3. union of several disconnected regions

S, =(a,a,)V(ay,0)) UL (e, )

(A. Stefanski, P. Perlikowski, and T. Kapitaniak, 2007)
(Z.S. Duan, C. Liu, GRC, and L. Huang, 2007 - 2009)



Spectra of Networks

Some theoretical results
Relation with network topology

Role in network synchronizability

Spectrum




Theoretical Bounds of Laplacian Eigenvalues

bigger is better bigger is better
N

Concern: upper and lower bounds of Laplacian eigenvalues
There are many classical results in graph special analysis

Graph Theory Textbooks

For example:

P. V. Mieghem, Graph Spectra for Complex Networks (2011)



Theoretical Bounds of Laplacian Eigenvalues

Node-degree sequence  eigenvalue sequence (both in increasing order)

2=y oy )

|| d ||2 || d ||2 IOI I

Distribution:

For any node-degree H NEICENESEN A4 € 4, | ] =1,2,

such that

C. Zhan, GRC and L. Yeung (2010)



|A-dll, _\dl, _ [ N 2= T )
[di, — Idl, Vidl, 4= (0, 0y

Lemma (Hoffman-Wielanelt, 1953)
For matrices B—C=A: A EFAGIEN VY

Frobenius Norm

Dol AL —d P <[ Al

| A|||2= - Zinzlzrjlﬂl a; |2 - Zilldi

jA-dl,) _2d(_Jidl ). >d N
2 ( ld 1, j‘de[‘ ||d||2J_(Zdi)2/N_||d||1

Cauchy Inequality

- For Laplacian L =D —A:




Random Graphs

Erdos-Renyi
(Publ. Math. Inst. Hung. Acd. Sci. 5, 17
(1960))

Pe=, °

N nodes, each

pair of node is
connected with '
probability p

Example 2>




Rectangular Random Graphs

N nodes are randomly uniformly and independently
distributed in a unit rectangle [ENdRsGEIUER !

Two nodes are connected by an edge if they are inside
a disc of radiusr >0

Example:
N =200
a=40
r=25




Theorem: Eigenvalue ratio is bounded by

2
< /2 B2 log; N

(N-DN2~ 1, a*+1

Lower bound:

The worst case: all nodes are located on the diagonal

E. Estrada and GRC (2015)



Upper bound:

Lemma 1: Diameter D = diagonal length / r

— D>{ a4+l‘

ar

Lemma 2: Based on a result of Alon-Milman (1985)

8K,
. < = log; N

E. Estrada and GRC (2015)



Network Topology and Synchronizability



Topology Determines Synchronizability?

Answer: Yes NO

This makes the situation complicated and the study difficult



More Edges > Better Synchronizability ?

Answer: Yes or No

« Lemma: For any given connected undirected graph G,
by adding any new edge e, one has

2(G+e)>A(G), i=12.,N

This also makes the situation complicated and the study difficult

Z.S. Duan, GRC and L. Huang (2007)



What Topology = Good Synchronizability ?

Example:

Given Laplacian

Q: How to replace 0 and -1 (while keeping the connectivity
and all row-sums = 0), such that : maximum ?



Answer:

3 -1 0 -1 0 -1
-1 3 -1 0 -1 O
e 0 -1 3 -1 0 -1
-1 0 -1 3 -1 O
O -1 0 -1 3 -1

-1 0 -1 0 -1 3

Observation:

Homogeneity + Symmetry




Problem

» With the same numbers of node and edges, while
keeping the connectivity, what kind of network has
the best possible synchronizability?

Maxﬁ A*-set of N x N adjacency matrices

AcA* ,1N

and

Such that Zilildi — Nk

(total degree = constant) (connected)

» Computationally, this is NP-hard.:

A, .
MaX — =maX< Min

X' [D- A]x/ o xT[D—A]x}
x' e=0,x0

Ach* ] AeA* | XTe=0xx0 X' X X' X



Our Approach

Homogeneity + Symmetry

Same node degree

Shortest average path length |NSkEE

Shortest path-sum [l 3NN

j=i

Longest girth

GRC




Non-Convex Optimization

lllustration:

Grey: networks with same numbers of nodes and edges
Green: degree-homogeneous networks

networks with maximum girths

possible optimal networks

near homogenous networks



Optimal 3-Regular Networks




Optimal 3-Regular Networks
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Open Problems

Looking for optimal solutions:

N .,
can maximize 7 %
N

Constraints: Where to add -1
keeping the graph

connectivity and

all row-sums =0

N .,
can maximize 7 %
N

.. A
Wheretodelete -1 ........................ can maximize ?
N

And soon...... ?7??



Multiplex Congruence Networks
of Natural Numbers

» Good Sync-Controllability

» Strong Robustness against Attacks

Number Theory and Complex Networks



Chinese Remainder Theorem

ZERZHZ, AAKZIF =, LEEZIH =,

X =2(mod 3)
YERE) (Congruence Equations)

X =2(mod7)

CINFaR3)
ZARATETH#H, AMERH—H, £F
ARAEEH, BFRAEIEL,

N =3x5x7 =105
(2x70+3x21+2x15)/105 with remainder 23 (Answer: X =23)

Notation: Let n (> 1), x (> n), a (< n) be integers

If n is divisible by (x-a), then x and a are congruent modulo n,
denoted as x =a (mod n)



Chinese Remainder Theorem
Let n,, ..., n, (all >1) be integers
If n, are pairwise coprime, then for integers a,, ..., a,,

there exist infinitely many integers x satisfying

(congruence)

And, any two such x are congruent modulo N =n, x ... x n,

(Only natural numbers a,, ..., 8, are discussed here)



Congruence Networks

Given a natural number r, there exist infinitely many pairs
of natural numbers (a,m) satisfying a=r (mod m)

Example:

Forr =2, one has (a,m)=(3,5), (5,7), (7,11), ...
namely, 3 =2 (mod 5), 5=2 (mod 7), 7 =2 (mod 11), ...

Connecting 3—>5,5=>7,7—>11,...,... 2 N
or 3557, 7<11,...,...< N

yields a directed congruence network of N nodes

Different r yields different Multiplex Congruence Network (MCN),
denoted as G(r, N)

X.Y. Yan, W.X. Wang, GRC and D.H. Shi (2015)
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(a) MCN: G (r={1,2,3},9) (b) Degree distribution, N = 10000
MCNs are scale-free networks with node-degree distribution [ a



Sync-Controllability and Robustness

(&) MCNs have chain-structures (b) Number of control nodes needed: n,

Robustness against attacks:
CN = Congruence Network (N = 100); SF = Scale-free Network (N = 100)
TA = Targeted Attack; RA = Random Attack



Graphical Explanation

Chain structure is good for both
controllability and robustness against attacks

Controllability: Is Controller



Thank You !
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