SYNC

GRChen / EE / CityU

Sync

Synchrony can be essential

Yik-Chung Wu, Qasim Chaudhari,
and Erchin Serpedin

Clock Synchronization of Wireless Sensor Networks

Message exchange
mechanisms and
statistical signal
processing techniques
lock synchronization is a critical component in the operation of wireless sensor networks (WSNs), as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel shar-

Synchronization
 in

Wireless Sensor Networks Peformance Benctmark. and Protecoll

Erchin Serpedin and Qasim M. Chaudhari
2009
\leftarrow "Clock synchronization is a critical component in the operation of wireless sensor networks, as it provides a common time frame to different nodes."

MIT News

Synchronized brain waves enable rapid learning

MIT study finds neurons that hum together encode new information.

Contents

Network synchronization and criteria

Network spectra and synchronizability
Networks with best synchronizability

Networks with good controllability and strong robustness against attacks

A General Dynamical Network Model

An undirected network:

$f($.$) Lipschitz Coupling strength c>0$
$A=\left[a_{i j}\right]$ - Adjacency matrix H - Coupling matrix function
If there is a connection between node i and node $j(j \neq i)$, then $a_{i j}=a_{i j}=1$; otherwise, $a_{i j}=a_{i j}=0$ and $a_{i i}=0, \quad i=1, \ldots, N$

Laplacian $L=D-A, D=\operatorname{diag}\left\{d_{l}, \ldots, d_{N}\right\}$ (node degrees)
For connected networks, eigenvalues:

$$
0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}
$$

Network Synchronization

$$
\dot{x}_{i}=f\left(x_{i}\right)-c \sum_{j=1}^{N} a_{i j} H\left(x_{j}\right) \quad x_{i} \in R^{n} \quad i=1,2, \ldots, N
$$

(Complete state)
Synchronization:

$$
\lim _{t \rightarrow \infty}\left\|x_{i}(t)-x_{j}(t)\right\|_{2}=0, \quad i, j=1,2, \cdots, N
$$

Numerical example:

Network Synchronization: Analysis

Put all equations together with
$\mathrm{x}=\left[x_{1}^{T}, x_{2}^{T}, \ldots, x_{N}^{T}\right]^{T}$ Then linearize it at equilibrium s :

$$
\dot{\mathrm{x}}=\left[I_{N} \otimes[\nabla f(s)]\right]-c[A \otimes[\nabla H(s)]] \mathrm{x}
$$

$f($.$) Lipschitz, or assume: \|\nabla f(s)\| \leq M \longrightarrow \underset{\text { is important }}{c A \text { or }\left\{c \lambda_{i}\right\}}$

After linearization, perform local analysis

Network Synchronization: Criteria

$$
\dot{\mathrm{x}}=\left[I_{N} \otimes[\nabla f(s)]\right]-c[A \otimes[\nabla H(s)]] \mathrm{x}
$$

$$
0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}
$$

Master stability equation: (L.M. Pecora and T. Carroll, 1998)

$$
\dot{\mathrm{y}}=[[\nabla f(s)]-\alpha[\nabla H(s)]] \mathrm{y}, \quad \alpha=\inf \left\{c \lambda_{i}(s), i=2,3, \ldots, N\right\}
$$

Maximum Lyapunov exponent $L_{\max }$
is a function of α

Network Synchronization: Criteria

Recall: Laplacian eigenvalues: $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}$

synchronizing if $0 \leq \alpha_{1}<c \lambda_{2}<\infty$ or if $0<\alpha_{2}<\frac{\lambda_{2}}{\lambda_{N}}<\alpha_{3}$

Case I:
No sync

Case II:
Sync region
$S_{1}=\left(\alpha_{1}, \infty\right)$

Case III:
Sync region
$S_{2}=\left(\alpha_{2}, \alpha_{3}\right)$

Case IV: Union of intervals

a_{2}bigger is better

In retrospect

Synchronizability characterized by Laplacian eigenvalues:

1. unbounded region (X.F. Wang and GRC, 2002)

$$
\lambda_{2}, \quad 0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N} \quad S_{1}=\left(\alpha_{1}, \infty\right)
$$

2. bounded region (M. Banahona and L.M. Pecora, 2002)

$$
\lambda_{2} / \lambda_{N}, \quad 0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N} \quad S_{2}=\left(\alpha_{2}, \alpha_{3}\right)
$$

3. union of several disconnected regions

$$
S_{m}=\left(\alpha_{1}, \alpha_{2}\right) \cup\left(\alpha_{3}, \alpha_{4}\right) \cup \cdots \cup\left(\alpha_{m}, \infty\right)
$$

(A. Stefanski, P. Perlikowski, and T. Kapitaniak, 2007) (Z.S. Duan, C. Liu, GRC, and L. Huang, 2007-2009)

Spectra of Networks

$>$ Some theoretical results
> Relation with network topology
$>$ Role in network synchronizability

Spectrum

Theoretical Bounds of Laplacian Eigenvalues

λ_{2} bigger is better $\frac{\lambda_{2}}{\lambda_{N}}$ bigger is better

Concern: upper and lower bounds of Laplacian eigenvalues

There are many classical results in graph special analysis

Graph Theory Textbooks
For example:
P. V. Mieghem, Graph Spectra for Complex Networks (2011)

Theoretical Bounds of Laplacian Eigenvalues

Node-degree sequence

$$
d=\left(d_{1}, d_{2}, \ldots, d_{N}\right)^{T} \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)^{T}
$$

$$
\frac{\|\lambda-d\|_{2}}{\|d\|_{2}} \leq \frac{\sqrt{\|d\|_{1}}}{\|d\|_{2}} \leq \sqrt{\frac{N}{\|d\|_{1}}}
$$

Distribution:
For any node-degree d_{i} there exists a $\lambda_{*} \in\left\{\lambda_{j} \mid j=1,2, \ldots, N\right\}$ such that

$$
d_{i}-\sqrt{d_{i}} \leq \lambda_{*} \leq d_{i}+\sqrt{d_{i}}, \quad i=1,2, \ldots, N
$$

C. Zhan, GRC and L. Yeung (2010)

$$
\frac{\|\lambda-d\|_{2}}{\|d\|_{2}} \leq \frac{\sqrt{\|d\|_{1}}}{\|d\|_{2}} \leq \sqrt{\frac{N}{\|d\|_{1}}}
$$

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)^{T}
$$

$$
d=\left(d_{1}, d_{2}, \ldots, d_{N}\right)^{T}
$$

Lemma (Hoffman-Wielanelt, 1953)

For matrices $B-C=A: \quad \sum_{i=1}^{n}\left|\lambda_{i}(B)-\lambda_{i}(C)\right|^{2} \leq\|A\|_{F}^{2}$
Frobenius Norm
\rightarrow For Laplacian $L=D-A: \quad \sum_{i=1}^{n}\left|\lambda_{i}(L)-d_{i}\right|^{2} \leq\|A\|_{F}^{2}$

$$
\|A\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i=1}^{n} d_{i}
$$

$\rightarrow \quad\left(\frac{\|\lambda-d\|_{2}}{\|d\|_{2}}\right)^{2} \leq \frac{\sum d_{i}}{\sum d_{i}^{2}}\left(=\frac{\sqrt{\|d\|_{1}}}{\|d\|_{2}}\right) \leq \frac{\sum d_{i}}{\left(\sum d_{i}\right)^{2} / N}=\frac{N}{\|d\|_{1}}$
Cauchy Inequality

Random Graphs

Erdós-Rényí

(Publ. Math. Inst. Hung. Acd. Sci. 5, 17 (1960))

Rectangular Random Graphs

N nodes are randomly uniformly and independently distributed in a unit rectangle $[a, b]^{2} \subset R^{2}$ with $a \cdot b=1$ (It can be generalized to higher-dimensional setting)

Two nodes are connected by an edge if they are inside a disc of radius $r>0$

> Example:

> $$
> \begin{array}{r}N=200 \\ a=40 \\ r=2.5\end{array}
>
$$

Theorem: Eigenvalue ratio is bounded by

$$
\frac{1}{(N-1) N^{2}} \leq \frac{\lambda_{2}}{\lambda_{N}} \leq \frac{8(a r)^{2}}{a^{4}+1} \log _{2}^{2} N
$$

Lower bound:
The worst case: all nodes are located on the diagonal

$$
\lambda_{2} \geq \frac{1}{N D} \geq \frac{1}{N(N-1)} \quad(D-\text { diameter }) \quad \text { and } \quad \lambda_{N} \leq N
$$

E. Estrada and GRC (2015)

$$
\frac{1}{(N-1) N^{2}} \leq \frac{\lambda_{2}}{\lambda_{N}} \leq \frac{8(a r)^{2}}{a^{4}+1} \log _{2}^{2} N
$$

Upper bound:
Lemma 1: Diameter $D=$ diagonal length $/ r$

$$
\rightarrow D \geq\left[\frac{\sqrt{a^{4}+1}}{a r}\right]
$$

Lemma 2: Based on a result of Alon-Milman (1985)

$$
\rightarrow \quad \lambda_{2} \leq \frac{8 k_{\text {max }}}{D^{2}} \log _{2}^{2} N
$$

Network Topology and Synchronizability

Topology Determines Synchronizability?

Answer: Yes or No

This makes the situation complicated and the study difficult

More Edges \rightarrow Better Synchronizability ?

Answer: Yes or No

- Lemma: For any given connected undirected graph G, by adding any new edge e, one has

$$
\lambda_{i}(G+e) \geq \lambda_{i}(G), \quad i=1,2, . ., N
$$

- Note:

This also makes the situation complicated and the study difficult
Z.S. Duan, GRC and L. Huang (2007)

What Topology \rightarrow Good Synchronizability ?

Example:

Given Laplacian
$L=\left[\begin{array}{cccccc}2 & 0 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 & 0 \\ 0 & -1 & 3 & 0 & -1 & -1 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ -1 & 0 & -1 & -1 & 4 & -1 \\ -1 & 0 & -1 & -1 & -1 & 4\end{array}\right]$

Q: How to replace 0 and -1 (while keeping the connectivity and all row-sums $=0$), such that $\lambda_{2} / \lambda_{N}=$ maximum ?

Answer:

$L^{*}=\left[\begin{array}{cccccc}3 & -1 & 0 & -1 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 & -1 \\ -1 & 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & -1 & 0 & -1 & 3\end{array}\right]$
$\rightarrow \lambda_{2} / \lambda_{N}=$ maximum

Observation:

Homogeneity + Symmetry

Problem

$>$ With the same numbers of node and edges, while keeping the connectivity, what kind of network has the best possible synchronizability?

Such that

$$
\sum_{i=1}^{N} d_{i}=N \bar{k} \quad \text { and } \quad \lambda_{2}>0
$$

(total degree = constant) \quad (connected)
> Computationally, this is NP-hard:

Our Approach

- Homogeneity + Symmetry
- Same node degree $d_{1}=\cdots=d_{N}$
- Shortest average path length $l_{1}=\cdots=l_{N}$
- Shortest path-sum $l_{i}=\sum_{j \neq i} l_{i j}$
- Longest girth $g_{1}=\cdots=g_{N}$
D.H. Shi, GRC, W.W.K. Thong and X. Yan (2013)

Non-Convex Optimization

Illustration:

White: Optimal solution location

Grey: networks with same numbers of nodes and edges
Green: degree-homogeneous networks
Blue: networks with maximum girths
Pink: possible optimal networks
Red: near homogenous networks

Optimal 3-Regular Networks

Optimal 3-Regular Networks

Open Problems

Looking for optimal solutions:

And so on ???

Multiplex Congruence Networks of Natural Numbers

> Good Sync-Controllability
> Strong Robustness against Attacks

Number Theory and Complex Networks

Chinese Remainder Theorem

三三数之剩二, 五五数之剩三, 七七数之剩二。
$\left\{\begin{array}{l}x \equiv 2(\bmod 3) \\ x \equiv 3(\bmod 5) \\ x \equiv 2(\bmod 7)\end{array}\right.$
（Congruence Equations）

《孙子歌诀》
三人同行七十稀，五树梅花せ一枝，七子团圆正半月，除百零五便得知。
$N=3 \times 5 \times 7=105$
$(2 \times 70+3 \times 21+2 \times 15) / 105$ with remainder 23 （Answer：$x=23$ ）

Notation：Let $n(>1), x(>n), a(<n)$ be integers
If n is divisible by $(x-a)$ ，then x and a are congruent modulo n ， denoted as $x \equiv a(\bmod n)$

Chinese Remainder Theorem

Let n_{1}, \ldots, n_{k} (all >1) be integers
If n_{i} are pairwise coprime, then for integers a_{1}, \ldots, a_{k}, there exist infinitely many integers x satisfying

```
x\equiv\mp@subsup{a}{1}{}(\operatorname{mod}\mp@subsup{n}{1}{})
    (congruence)
```

And, any two such x are congruent modulo $N=n_{1} \times \ldots \times n_{k}$
(Only natural numbers a_{1}, \ldots, a_{k} are discussed here)

Congruence Networks

Given a natural number r, there exist infinitely many pairs of natural numbers (a, m) satisfying $a \equiv r(\bmod m)$

Example:
For $r=2$, one has $(a, m)=(3,5),(5,7),(7,11), \ldots$ namely, $3 \equiv 2(\bmod 5), 5 \equiv 2(\bmod 7), 7 \equiv 2(\bmod 11), \ldots$
Connecting $3 \rightarrow 5,5 \rightarrow 7,7 \rightarrow 11, \ldots, \ldots \rightarrow N$ or $3 \leftarrow 5,5 \leftarrow 7,7 \leftarrow 11, \ldots, \ldots \leftarrow N$
yields a directed congruence network of N nodes
Different r yields different Multiplex Congruence Network (MCN), denoted as $G(r, N)$

Example

(a)

(a) MCN: $G(r=\{1,2,3\}, 9) \quad$ (b) Degree distribution, $N=10000$

Sync-Controllability and Robustness

(a)

(a) MCNs have chain-structures (b) Number of control nodes needed: n_{D}

Robustness against attacks:
CN = Congruence Network ($N=100$); SF = Scale-free Network ($N=100$) TA = Targeted Attack; RA = Random Attack

Graphical Explanation

Chain structure is good for both controllability and robustness against attacks

Controllability: \bigcirc is Controller (Driver Node)

Thank You !

References

[1] F.Chung, Spectral Graph Theory, AMS $(1992,1997)$
[2] T.Nishikawa, A.E.Motter, Y.-C.Lai, F.C.Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? PRL 91 (2003) 014101
[3] H.Hong, B.J.Kim, M.Y.Choi, H.Park, Factors that predict better synchronizability on complex networks, PRE 65 (2002) 067105
[4] M.diBernardo, F.Garofalo, F.Sorrentino, Effects of degree correlation on the synchronization of networks of oscillators, IJBC 17 (2007) 3499-3506
[5] M.Barahona, L.M.Pecora, Synchronization in small-world systems, PRL 89 (5) (2002)054101
[6] H.Hong, M.Y.Choi, B.J.Kim, Synchronization on small-world networks, PRE 69 (2004) 026139
[7] F.M. Atay, T.Biyikoglu, J.Jost, Network synchronization: Spectral versus statistical properties, Physica D 224 (2006) 35-41
[8] A.Arenas, A.Diaz-Guilera, C.J.Perez-Vicente, Synchronization reveals topological scales in complex networks, PRL 96(11) (2006)114102
[9] A.Arenas, A.Diaz-Guilerab, C.J.Perez-Vicente, Synchronization processes in complex networks, Physica D 224 (2006) 27-34
[10] B.Mohar, Graph Laplacians, in: Topics in Algebraic Graph Theory, Cambridge University Press (2004) 113-136
[11] F.M.Atay, T.Biyikoglu, Graph operations and synchronization of complex networks, PRE 72 (2005) 016217
[12] T.Nishikawa, A.E.Motter, Maximum performance at minimum cost in network synchronization, Physica D 224 (2006) 77-89
[13] J.Gomez-Gardenes, Y.Moreno, A.Arenas, Paths to synchronization on complex networks, PRL 98 (2007) 034101
[14] C.J.Zhan, G.R.Chen, L.F.Yeung, On the distributions of Laplacian eigenvalues versus node degrees in complex networks, Physica A 389 (2010) 17791788
[15] T.G.Lewis, Network Science -Theory and Applications, Wiley 2009
[16] T.M.Fiedler, Algebraic Connectivity of Graphs, Czech Math J 23 (1973) 298305
[17] W.N.Anderson, T.D.Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Álgebra 18 (1985) 141-145
[18] R.Merris, A note on Laplacian graph eigenvalues, Linear Algebra and its Applications 285 (1998) 33-35
[19] O.Rojo, R.Sojo, H.Rojo, An always nontrivial upper bound for Laplacian graph eigenvalues, Linear Algebra and its
Applications 312 (2000) 155-159
[20] G.Chen, Z.Duan, Network synchronizability analysis: A graph-theoretic approach, CHAOS 18 (2008) 037102
[21] T.Nishikawa, A.E.Motter, Network synchronization landscape reveals compensatory structures, quantization, and the positive effects of negative interactions, PNAS 8 (2010)10342
[22] P.V.Mieghem, Graph Spectra for Complex Networks (2011)
[23] D. Shi, G. Chen, W. W. K. Thong and X. Yan, Searching for optimal network topology with best possible synchronizability, IEEE Circ. Syst. Magazine, (2013) 13(1) 66-75
[24] X. Yan, W. Wang, G. Chen and D. Shi, Multiplex congruence network of natural numbers, Scientific Reports, (2015) 10.1038

Acknowledgements

Prof Xiaofan Wang, Shanghai Jiao Tong University
Prof Dinghua Shi, Shanghai University
Prof Zhi-sheng Duan, Peking University
Prof Ernesto Erstrada, University of Strathclyde, UK
Dr Choujun Zhan, City University of Hong Kong
Dr Wilson W K Thong, City University of Hong Kong
Dr Xiaoyong Yan, Beijing Normal University

