Detailed Proof of Lemmas and Theorems

1 Proof of Lemma 2

Proof Define the formation errors $\tilde{x}_{i}(t)=x_{i}(t)-x_{0}(t)-x_{i}^{*}, i=1,2, \cdots N$, with $\tilde{x}_{0}(t)=-x_{0}^{*}=0$. The Filippov solution of $\tilde{x}_{i}(t)$ is defined as the absolutely continuous solution of the differential inclusion

$$
\begin{equation*}
\dot{\tilde{x}}_{i}(t) \in \mathcal{K}\left[f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{j \in \mathcal{N}_{i}} a_{i j}\left[\tilde{x}_{i}(t)-\tilde{x}_{j}(t)\right]\right\}\right], \forall i=1,2, \cdots, N \tag{1}
\end{equation*}
$$

Based on Assumption 1, one follower must receive information from other followers or the leader, namely, it is connected with other followers or the leader. Define $\tilde{x}^{+}(t)$ as the maximal formation error component which is connected with non-maximal error components of the followers or connected with the component of the leader. Similarly, define $\tilde{x}^{-}(t)$ as the minimal formation error component which is connected with non-minimal error components of the followers or connected with the component of the leader. Suppose that, at any time $t, \tilde{x}^{+}(t)$ is the k th error component of agent i, and $\tilde{x}^{-}(t)$ is the l th error component of agent j, where $i, j \in\{1,2, \cdots, N\}$, $k, l \in\{1,2, \cdots, n\}$. The Filippov solutions of $\tilde{x}^{+}(t)$ and $\tilde{x}^{-}(t)$ can be described by

$$
\begin{align*}
& \dot{\tilde{x}}^{+}(t) \in \mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]\right\}\right] \\
& \dot{\tilde{x}}^{-}(t) \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]\right\}\right] \tag{2}
\end{align*}
$$

Based on Assumptions 2 and 3, for any $i=1,2, \cdots, N$ and each $t \in \boldsymbol{R}^{+}$, one has

$$
\begin{align*}
&\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \\
&=\left\|f_{i}\left(t, x_{i}(t)\right)-f_{i}\left(t, x_{0}(t)\right)+f_{i}\left(t, x_{0}(t)\right)+f_{0}\left(t, x_{0}(t)\right)\right\| \\
& \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{i}\left(t, x_{0}(t)\right)\right\|+\left\|f_{i}\left(t, x_{0}(t)\right)\right\|+\left\|f_{0}\left(t, x_{0}(t)\right)\right\| \\
& \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{i}\left(t, x_{0}(t)\right)\right\|+\left\|f_{i}\left(t, x_{0}(t)\right)-f_{i}\left(t, x_{i}^{E}\right)\right\|+\left\|f_{0}\left(t, x_{0}(t)\right)-f_{0}\left(t, x_{0}^{E}\right)\right\| \\
& \leq L_{J}^{F}\left\|x_{i}(t)-x_{0}(t)\right\|+L_{J}^{F}\left\|x_{0}(t)-x_{i}^{E}\right\|+L_{J}^{L}\left\|x_{0}(t)-x_{0}^{E}\right\| \\
& \leq L_{J}^{F}\left(\left\|x_{i}(t)-x_{0}(t)-x_{i}^{*}\right\|+\left\|x_{i}^{*}\right\|+\left\|x_{0}(t)-x_{i}^{E}\right\|\right)+L_{J}^{L}\left\|x_{0}(t)-x_{0}^{E}\right\| \\
& \leq L_{J}^{F}\left(\sqrt{n} \max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}+\max _{i=1,2, \cdots, N}\left\{\left\|x_{i}^{*}\right\|+\left\|x_{i}^{E}\right\|\right\}+\beta\right)+L_{J}^{L}\left(\left\|x_{0}^{E}\right\|+\beta\right) . \tag{3}
\end{align*}
$$

Let

$$
\begin{equation*}
P(t)=L_{J}^{F}\left(\sqrt{n} \max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}+\max _{i=1,2, \cdots, N}\left\{\left\|x_{i}^{*}\right\|+\left\|x_{i}^{E}\right\|\right\}+\beta\right)+L_{J}^{L}\left(\left\|x_{0}^{E}\right\|+\beta\right) . \tag{4}
\end{equation*}
$$

If $\alpha>P(t), \forall t \in \boldsymbol{R}^{+}$, then $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$.
Now, it can be proved that if $\alpha>P(0)$ then $\alpha>P(t), \forall t \in \boldsymbol{R}^{+}$. Because $\alpha>P(0)$ and $P(t)$ are continuously changing, suppose that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=P(t)$. Since $\alpha,\left\|x_{0}^{E}\right\|, \beta, L_{J}^{F}, L_{J}^{L}$ and $\max _{i=1,2, \cdots, N}\left\{\left\|x_{i}^{*}\right\|+\left\|x_{i}^{E}\right\|\right\}$ are constants, one has max $\left\{\left|\tilde{x}^{+}\left(t_{1}\right)\right|, \mid\right.$ $\left.\tilde{x}^{-}\left(t_{1}\right) \mid\right\}>\max \left\{\left|\tilde{x}^{+}(0)\right|,\left|\tilde{x}^{-}(0)\right|\right\}$. So, there must exist a $t_{2} \in\left[0, t_{1}\right)$ such that the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero.

Now, consider the following three cases.

- Case $(i):\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t) \geq 0\right\}$.

In this case, $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=\tilde{x}^{+}(t)$, and the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is $\dot{\tilde{x}}^{+}(t)$. Since Assumption 1 holds and $\tilde{x}^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>0$. Thus,

$$
\dot{\tilde{x}}^{+}(t) \in \mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]
$$

If the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{\tilde{x}}^{+}\left(t_{2}\right)>0$. Then, there must exist $i \in\{1,2, \cdots, N\}$ and $k \in\{1,2, \cdots, n\}$ such that $f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-$ $f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right)>0$ and the positive constant $\alpha<\left|f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right|$. Since \mid $f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \mid \leq\left\|f_{i}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\| f_{i}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-$ $f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \|$. It follows that $\alpha<P\left(t_{2}\right)$ based on (3). Because $\alpha>P(0)$ and $P(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=P\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=P(t)$.

- Case (ii): $\left\{\tilde{x}^{+}(t) \leq 0, \tilde{x}^{-}(t)<0\right\}$.

In this case, $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=-\tilde{x}^{-}(t)$, and the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is $-\dot{\tilde{x}}^{-}(t)$. Since Assumption 1 holds and $\tilde{x}^{-}(t)<0$, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$. Thus,

$$
\dot{\tilde{x}}^{-}(t) \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right] .
$$

If the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{\tilde{x}}^{-}\left(t_{2}\right)<0$. Then, there must exist $j \in\{1,2, \cdots, N\}$ and $l \in\{1,2, \cdots, n\}$ such that $f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-$ $f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right)<0$ and the positive constant $\alpha<\left|f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right|$. Since \mid $f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \mid \leq\left\|f_{j}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\| f_{j}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-$ $f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \|$. It follows that $\alpha<P\left(t_{2}\right)$ based on (3). Because $\alpha>P(0)$ and $P(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=P\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=P(t)$.

- Case (iii): $\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)<0\right\}$.
(i) If $\left\{\tilde{x}^{+}(t) \geq-\tilde{x}^{-}(t)\right\}$, then $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=\tilde{x}^{+}(t)$. So, the proof is the same as that in Case (i).
(ii) If $\left\{\tilde{x}^{+}(t)<-\tilde{x}^{-}(t)\right\}$, then $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=-\tilde{x}^{-}(t)$. So, the proof is the same as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|\right.$, $\left.\left|\tilde{x}^{-}(t)\right|\right\}$ will not be greater than zero. Hence, if $\alpha>P(0)$, i.e., Assumption 4 holds, then $\alpha>P(t), \forall t \in \boldsymbol{R}^{+}$. It follows that $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$, based on (3).

The proof is now completed.

2 Proof of Lemma 3

Proof Six cases are discussed as follows:

- Case $(i):\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right),\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{1}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

- Case (ii): $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right),\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{2}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|\left(\tilde{x}^{+}(t)-\tilde{x}^{-}(t)\right)-\left(\tilde{x}^{+}(t)^{\prime}-\tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

- Case (iii): $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right),\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{3}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|-\tilde{x}^{-}(t)-\left(-\tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

- Case $(i v):\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{1},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{2}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|\tilde{x}^{+}(t)-\left(\tilde{x}^{+}(t)^{\prime}-\tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)^{\prime}\right\| .
\end{aligned}
$$

For $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{1},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{2}$, one has $\tilde{x}^{-}(t) \geq 0, \tilde{x}^{-}(t)^{\prime}<0$, thus

$$
\left\|\tilde{x}^{-}(t)^{\prime}\right\| \leq\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\|
$$

Hence,

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

- Case $(v):\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{1},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{3}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|\tilde{x}^{+}(t)-\left(-\tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)\right\|+\left\|\tilde{x}^{-}(t)^{\prime}\right\| .
\end{aligned}
$$

For $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{1},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{3}$, one has $\tilde{x}^{+}(t) \geq 0, \tilde{x}^{-}(t) \geq 0, \tilde{x}^{+}(t)^{\prime} \leq 0, \tilde{x}^{-}(t)^{\prime}<$ 0 , thus

$$
\left\|\tilde{x}^{+}(t)\right\| \leq\left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|
$$

and

$$
\left\|\tilde{x}^{-}(t)^{\prime}\right\| \leq\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\|
$$

Hence,

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)\right\|+\left\|\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

- Case (vi): $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{2},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{3}$.

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
= & \left\|\left(\tilde{x}^{+}(t)-\tilde{x}^{-}(t)\right)-\left(-\tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| .
\end{aligned}
$$

For $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{2},\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in D_{3}$, one has $\tilde{x}^{+}(t)>0, \tilde{x}^{+}(t)^{\prime} \leq 0$, thus

$$
\left\|\tilde{x}^{+}(t)\right\| \leq\left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|
$$

Hence,

$$
\begin{aligned}
& \left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq & \left\|\tilde{x}^{+}(t)\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \left\|\tilde{x}^{+}(t)-\tilde{x}^{+}(t)^{\prime}\right\|+\left\|\tilde{x}^{-}(t)-\tilde{x}^{-}(t)^{\prime}\right\| \\
\leq & \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{aligned}
$$

Combining the above six cases, it can be concluded that, for every $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right),\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right) \in$ D, one has

$$
\begin{gathered}
\left\|V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)-V\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)\right\| \\
\leq \sqrt{2}\left\|\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}-\left(\tilde{x}^{+}(t)^{\prime}, \tilde{x}^{-}(t)^{\prime}\right)^{T}\right\| .
\end{gathered}
$$

Therefore, V is a locally Lipschitz function on D.
The proof is now completed.

3 Proof of Lemma 4

Proof If a function is continuously differentiable at x, it is regular at x. Since V is continuously differentiable everywhere except for $\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)=0\right\},\left\{\tilde{x}^{+}(t)=0, \tilde{x}^{-}(t)<0\right\}$ and $\left\{\tilde{x}^{+}(t)=\right.$ $\left.0, \tilde{x}^{-}(t)=0\right\}$, it needs to show that V is regular on these three sets.

Let $y=\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)^{T}$ and $v=\left(v_{1}, v_{2}\right)^{T}$. The right directional derivative of V at $y \in \boldsymbol{R}^{2}$ in the direction $v \in \boldsymbol{R}^{2}$ is defined as

$$
V^{\prime}(y ; v)=\lim _{h \rightarrow 0^{+}} \frac{V\left(\tilde{x}^{+}(t)+h v_{1}, \tilde{x}^{-}(t)+h v_{2}\right)-V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)}{h}
$$

The general directional derivative of V at y in the direction v is defined as

$$
V^{o}(y ; v)=\lim _{\substack{\delta \rightarrow 0^{+} \\ \epsilon \rightarrow 0^{+}}}^{\sup _{z \in B(y, \delta)}^{h \in[0, \epsilon)}} \boldsymbol{} \frac{V\left(z_{1}+h v_{1}, z_{2}+h v_{2}\right)-V\left(z_{1}, z_{2}\right)}{h}
$$

- Case $(i):\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)=0\right\}$.

If $v_{1} \geq 0, v_{2} \geq 0$, then $\left(\tilde{x}^{+}(t)+h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{1}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(\tilde{x}^{+}(t)+h v_{1}\right)-\tilde{x}^{+}(t)}{h} \\
& =v_{1} .
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}$ and $z \in D_{2}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B \in(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}\right\} \\
& =v_{1}
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1} \leq 0, v_{2}<0$, then $\left(\tilde{x}^{+}(t)+h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{2}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(\left(\tilde{x}^{+}(t)+h v_{1}\right)-h v_{2}\right)-\tilde{x}^{+}(t)}{h} \\
& =v_{1}-v_{2}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}$ and $z \in D_{2}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{\in B(y \in, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}\right\} \\
& =v_{1}-v_{2} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1}<0, v_{2} \geq 0$, then $\left(\tilde{x}^{+}(t)+h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{1}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(\tilde{x}^{+}(t)+h v_{1}\right)-\tilde{x}^{+}(t)}{h} \\
& =v_{1} .
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}$ and $z \in D_{2}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}\right\} \\
& =v_{1} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1}>0, v_{2}<0$, then $\left(\tilde{x}^{+}(t)+h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{2}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(\left(\tilde{x}^{+}(t)+h v_{1}\right)-h v_{2}\right)-\tilde{x}^{+}(t)}{h} \\
& =v_{1}-v_{2} .
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}$ and $z \in D_{2}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}\right\} \\
& =v_{1}-v_{2} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.

- Case (ii): $\left\{\tilde{x}^{+}(t)=0, \tilde{x}^{-}(t)<0\right\}$.

If $v_{1}>0, v_{2} \geq 0$, then $\left(h v_{1}, \tilde{x}^{-}(t)+h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{2}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(h v_{1}-\left(\tilde{x}^{-}(t)+h v_{2}\right)\right)-\left(-\tilde{x}^{-}(t)\right)}{h} \\
& =v_{1}-v_{2}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{2}$ and $z \in D_{3}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}, \frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
& =v_{1}-v_{2}
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1} \leq 0, v_{2}<0$, then $\left(h v_{1}, \tilde{x}^{-}(t)+h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{3}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(-\left(\tilde{x}^{-}(t)+h v_{2}\right)\right)-\left(-\tilde{x}^{-}(t)\right)}{h} \\
& =-v_{2}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{2}$ and $z \in D_{3}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B,(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}, \frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
& =-v_{2} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1} \leq 0, v_{2} \geq 0$, then $\left(h v_{1}, \tilde{x}^{-}(t)+h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{3}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(-\left(\tilde{x}^{-}(t)+h v_{2}\right)\right)-\left(-\tilde{x}^{-}(t)\right)}{h} \\
& =-v_{2}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{2}$ and $z \in D_{3}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}, \frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
& =-v_{2}
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1}>0, v_{2}<0$, then $\left(h v_{1}, \tilde{x}^{-}(t)+h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{2}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{\left(h v_{1}-\left(\tilde{x}^{-}(t)+h v_{2}\right)\right)-\left(-\tilde{x}^{-}(t)\right)}{h} \\
& =v_{1}-v_{2} .
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{2}$ and $z \in D_{3}$ are possible, hence

$$
\begin{aligned}
V^{o}(y ; v) & =\lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}, \frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
& =v_{1}-v_{2}
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.

- Case (iii): $\left\{\tilde{x}^{+}(t)=0, \tilde{x}^{-}(t)=0\right\}$.

If $v_{1} \geq 0, v_{2} \geq 0$, then $\left(h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{1}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{h v_{1}-0}{h} \\
& =v_{1}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}, z \in D_{2}$ and $z \in D_{3}$ are all possible, hence

$$
\begin{aligned}
V^{o}(y ; v)= & \lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h},\right. \\
& \left.\frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
= & v_{1} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
If $v_{1} \leq 0, v_{2}<0$, then $\left(h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{3}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{-h v_{2}-0}{h} \\
& =-v_{2} .
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}, z \in D_{2}$ and $z \in D_{3}$ are all possible, hence

$$
\begin{aligned}
V^{o}(y ; v)= & \lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h}\right. \\
& \left.\frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
= & -v_{2} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
The case of $v_{1}<0, v_{2} \geq 0$ is impossible for $\tilde{x}^{+}(t)>\tilde{x}^{-}(t)$.
If $v_{1}>0, v_{2}<0$, then $\left(h v_{1}, h v_{2}\right)_{h \rightarrow 0^{+}} \in D_{2}$, hence

$$
\begin{aligned}
V^{\prime}(y ; v) & =\lim _{h \rightarrow 0^{+}} \frac{h v_{1}-h v_{2}}{h} \\
& =v_{1}-v_{2}
\end{aligned}
$$

For $z \in B(y, \delta)$, when $\delta \rightarrow 0^{+}, z \in D_{1}, z \in D_{2}$ and $z \in D_{3}$ are all possible, hence

$$
\begin{aligned}
V^{o}(y ; v)= & \lim _{\substack{\delta \rightarrow 0^{+} \\
\epsilon \rightarrow 0^{+}}} \sup _{\substack{z \in B(y, \delta) \\
h \in[0, \epsilon)}}\left\{\frac{\left(z_{1}+h v_{1}\right)-z_{1}}{h}, \frac{\left(\left(z_{1}+h v_{1}\right)-\left(z_{2}+h v_{2}\right)\right)-\left(z_{1}-z_{2}\right)}{h},\right. \\
& \left.\frac{-\left(\left(z_{2}+h v_{2}\right)\right)-\left(-\left(z_{2}\right)\right)}{h}\right\} \\
= & v_{1}-v_{2} .
\end{aligned}
$$

So, $V^{\prime}(y ; v)=V^{o}(y ; v)$.
For all the cases, the right directional derivative of V is equal to the generalized directional derivative of V, i.e., $V^{\prime}(y ; v)=V^{o}(y ; v)$. Therefore, the function V is regular on D.

The proof is now completed.

4 Proof of Lemma 5

Proof If $\tilde{x}^{+}(t)=0$ and $\tilde{x}^{-}(t)=0$, then $V=0$. If $\tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t) \geq 0$, i.e., $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in$ $D_{1} \backslash\{(0,0)\}$, then $V=\tilde{x}^{+}(t)>0$. If $\tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)<0$, i.e., $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{2}$, then $V=\tilde{x}^{+}(t)-\tilde{x}^{-}(t)>0$. If $\tilde{x}^{+}(t) \leq 0$ and $\tilde{x}^{-}(t)<0$, i.e., $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{3}$, then $V=-\tilde{x}^{-}(t)>0$. So, V is globally positive definite.

If $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{1}$, then as either $\tilde{x}^{+} \rightarrow \infty$ or both $\tilde{x}^{+}, \tilde{x}^{-} \rightarrow \infty$, one has $V=\tilde{x}^{+}(t) \rightarrow \infty$. If $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{2}$, then as either $\tilde{x}^{+} \rightarrow \infty$ or $\tilde{x}^{-} \rightarrow-\infty$, or both, one has $V=\tilde{x}^{+}(t)-$ $\tilde{x}^{-}(t) \rightarrow \infty$. If $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in D_{3}$, then as either $\tilde{x}^{+} \rightarrow-\infty$ or both $\tilde{x}^{+}, \tilde{x}^{-} \rightarrow-\infty$, one has $V=-\tilde{x}^{-}(t) \rightarrow \infty$. So, V is radially unbounded.

The proof is now completed.

5 Proof of Lemma 6

Proof If Assumptions 1-4 hold, then Lemma 2 holds, i.e., $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Five cases are discussed as follows:

- Case $(i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)>0$.

Since $\tilde{x}^{+}(t)>0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(1,0)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right] .
$$

Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=$ $1,2, \cdots, n$, it follows from Lemma 2 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case $(i i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(1,-1)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[\left(f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right)-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right] .
$$

Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=$ $1,2, \cdots, n$, it follows from Lemma 2 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (iii): $\tilde{x}^{+}(t)<0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(0,-1)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right]
$$

Since $\left|f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=$ $1,2, \cdots, n$, it follows from Lemma 2 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (iv): $\tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)=0$.

Since $\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)=0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right] \leq 0$. So, if $v \in \mathcal{F}\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$ and $v_{2} \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right] \cup \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-\right.$ $\left.f_{0}^{l}\left(t, x_{0}(t)\right)\right]$. For

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{1\} \times[-1,0]
$$

if $\zeta \in \partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $\zeta^{T}=(1, y)$ with $y \in[-1,0]$. Therefore,

$$
\zeta^{T} v=v_{1}+y v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[-1,0]$, then $v_{2}=0$. So, if $v_{2} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{2}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$, and then it follows from Lemma 2 that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

- Case $(v): \tilde{x}^{+}(t)=0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{+}(t)=0, \tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right] \geq$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$. So, if $v \in \mathcal{F}\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right] \cup \mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right]$ and $v_{2} \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\right.$ $\alpha]$. For

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=[0,1] \times\{-1\}
$$

if $\zeta \in \partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $\zeta^{T}=(y,-1)$ with $y \in[0,1]$. Therefore,

$$
\zeta^{T} v=y v_{1}-v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[0,1]$, then $v_{1}=0$. So, if $v_{1} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{1}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=-\mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right]$, and then it follows from Lemma 2 that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

Combining the above five cases, it can be concluded that $\max \tilde{\mathcal{L}}_{F} V<0$ for all $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in$ $\mathcal{D} \backslash\{(0,0)\}$.

The proof is now completed.

6 Proof of Theorem 1

Proof The nonsmooth function V, which was given by (6) in the manuscript, is chosen as the Lyapunov function. If Assumptions 1-4 hold, then Lemma 6 holds. By using Lemma 1, it follows from Lemmas 3-6 that $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=(0,0)$ is a globally stable equilibrium point for system (2).

Next, the maximal converging time is considered.

- Case $(i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t) \geq 0$.

In this case, $V=\tilde{x}^{+}(t)$ and $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$. By the proof of Lemma 2, one has $\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq P(t), P(t) \leq P(0), \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=$ $1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-(\alpha-P(t)) \\
& \leq-(\alpha-P(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
T_{1} \leq \frac{1}{\alpha-P(0)} \tilde{x}^{+}(0)
$$

- Case $(i i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)<0$.

In this case, $V=\tilde{x}^{+}(t)-\tilde{x}^{-}(t)$ and $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[\left(f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right)-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-\right.\right.$ $\left.\left.f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right]$. By the proof of Lemma 2, one has $\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq P(t), P(t) \leq$
$P(0), \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|$ $, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-2(\alpha-P(t)) \\
& \leq-2(\alpha-P(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
\begin{aligned}
T_{2} & \leq \frac{1}{2(\alpha-P(0))}\left(\tilde{x}^{+}(0)-\tilde{x}^{-}(0)\right) \\
& \leq \frac{1}{\alpha-P(0)} \max \left\{\tilde{x}^{+}(0),-\tilde{x}^{-}(0)\right\}
\end{aligned}
$$

- Case (iii): $\tilde{x}^{+}(t) \leq 0$ and $\tilde{x}^{-}(t)<0$.

In this case, $V=-\tilde{x}^{-}(t)$. Since $\tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left(\tilde{x}^{-}(t)-\right.$ $\left.\tilde{x}_{s}^{l}(t)\right]<0$, then $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right]$. By the proof of Lemma 2, one has $\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq P(t), P(t) \leq P(0), \forall t \in \boldsymbol{R}^{+}, \forall j=1,2, \cdots, N$. Since $\left|f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=$ $1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-(\alpha-P(t)) \\
& \leq-(\alpha-P(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
T_{3} \leq-\frac{1}{\alpha-P(0)} \tilde{x}^{-}(0)
$$

Combining the above three cases, the maximal converging time is obtained as

$$
T=\frac{1}{\alpha-P(0)} \max _{\substack{i=1,2, \ldots, N \\ k=1,2, \cdots, n}}\left\{\left|x_{i}^{k}(0)-x_{0}^{k}(0)-x_{i}^{* k}\right|\right\}
$$

The proof is now completed.

7 Supplementary Lemma i

Supplementary Lemmai if Assumptions 1,5 and 6 hold, then $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|$ $, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$.

Proof Based on Assumption 5, for any $i=1,2, \cdots, N$ and each $t \in \boldsymbol{R}^{+}$, one has

$$
\begin{align*}
& \left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \\
= & \left\|f_{0}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \\
\leq & L_{J}^{L}\left(\left\|x_{i}(t)-x_{0}(t)\right\|\right) \\
\leq & L_{J}^{L}\left(\left\|x_{i}(t)-x_{0}(t)-x_{i}^{*}\right\|+\left\|x_{i}^{*}\right\|\right) \\
\leq & L_{J}^{L}\left(\sqrt{n} \max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}+\max _{i=1,2, \cdots, N}\left\{\left\|x_{i}^{*}\right\|\right\}\right) . \tag{5}
\end{align*}
$$

Let

$$
\begin{equation*}
Q(t)=L_{J}^{L}\left(\sqrt{n} \max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}+\max _{i=1,2, \cdots, N}\left\|x_{i}^{*}\right\|\right) . \tag{6}
\end{equation*}
$$

If $\alpha>Q(t), \forall t \in \boldsymbol{R}^{+}$, then $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$.
Now, it can be proved that if $\alpha>Q(0)$ then $\alpha>Q(t), \forall t \in \boldsymbol{R}^{+}$. Because $\alpha>Q(0)$ and $Q(t)$ are continuously changing, suppose that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=Q(t)$. Since α, L_{J}^{L} and $\max _{i=1,2, \cdots, N}\left\{\left\|x_{i}^{*}\right\|\right\}$ are constants, one has $\max \left\{\left|\tilde{x}^{+}\left(t_{1}\right)\right|,\left|\tilde{x}^{-}\left(t_{1}\right)\right|\right\}>$ $\max \left\{\left|\tilde{x}^{+}(0)\right|,\left|\tilde{x}^{-}(0)\right|\right\}$. So, there must exist a $t_{2} \in\left[0, t_{1}\right)$ such that the derivative of $\max \{\mid$ $\tilde{x}^{+}(t)\left|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero.

Now, consider the following three cases.

- Case $(i):\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t) \geq 0\right\}$.

In this case, $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=\tilde{x}^{+}(t)$, and the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is $\dot{\tilde{x}}^{+}(t)$. Since Assumption 1 holds and $\tilde{x}^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>0$. Thus,

$$
\dot{\tilde{x}}^{+}(t) \in \mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right] .
$$

If the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{\tilde{x}}^{+}\left(t_{2}\right)>0$. Then, there must exist $i \in\{1,2, \cdots, N\}$ and $k \in\{1,2, \cdots, n\}$ such that $f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-$ $f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right)>0$ and the positive constant $\alpha<\left|f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right|$. Since \mid $f_{i}^{k}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}^{k}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \mid \leq\left\|f_{i}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\| f_{i}\left(t_{2}, x_{i}\left(t_{2}\right)\right)-$ $f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \|$. It follows that $\alpha<Q\left(t_{2}\right)$ based on (5). Because $\alpha>Q(0)$ and $Q(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=Q\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=Q(t)$.

- Case (ii): $\left\{\tilde{x}^{+}(t) \leq 0, \tilde{x}^{-}(t)<0\right\}$.

In this case, $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=-\tilde{x}^{-}(t)$, and the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is $-\dot{\tilde{x}}^{-}(t)$. Since Assumption 1 holds and $\tilde{x}^{-}(t)<0$, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$. Thus,

$$
\dot{\tilde{x}}^{-}(t) \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right] .
$$

If the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{\tilde{x}}^{-}\left(t_{2}\right)<0$. Then, there must exist $j \in\{1,2, \cdots, N\}$ and $l \in\{1,2, \cdots, n\}$ such that $f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-$ $f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right)<0$ and the positive constant $\alpha<\left|f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right|$. Since \mid $f_{j}^{l}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}^{l}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \mid \leq\left\|f_{j}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\| f_{j}\left(t_{2}, x_{j}\left(t_{2}\right)\right)-$ $f_{0}\left(t_{2}, x_{0}\left(t_{2}\right)\right) \|$. It follows that $\alpha<Q\left(t_{2}\right)$ based on (5). Because $\alpha>Q(0)$ and $Q(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=Q\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=Q(t)$.

- Case (iii): $\left\{\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)<0\right\}$.
(i) If $\left\{\tilde{x}^{+}(t) \geq-\tilde{x}^{-}(t)\right\}$, then $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=\tilde{x}^{+}(t)$. So, the proof is the same as that in Case (i).
(ii) If $\left\{\tilde{x}^{+}(t)<-\tilde{x}^{-}(t)\right\}$, then $\max \left\{\left|\tilde{x}^{+}(t)\right|,\left|\tilde{x}^{-}(t)\right|\right\}=-\tilde{x}^{-}(t)$. So, the proof is the same as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of $\max \left\{\left|\tilde{x}^{+}(t)\right|\right.$, $\left.\left|\tilde{x}^{-}(t)\right|\right\}$ will not be greater than zero. Hence, if $\alpha>Q(0)$, i.e., Assumption 6 holds, then $\alpha>Q(t), \forall t \in \boldsymbol{R}^{+}$. It follows that $\alpha>\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$, based on (5).

The proof is now completed.

8 Supplementary Lemma ii

Supplementary Lemma ii Let \mathcal{F} denote the set-valued map. If Assumptions 1, 5 and 6 hold, then the set-valued Lie derivative $\tilde{\mathcal{L}}_{\mathcal{F}} V$ of V with respect to \mathcal{F} satisfies that max $\tilde{\mathcal{L}}_{\mathcal{F}} V<0$ for all $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in \mathcal{D} \backslash\{(0,0)\}$.

Proof If Assumptions 1, 5 and 6 hold, then Supplementary Lemma i holds, i.e., $\alpha>\|$ $f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right) \|$,
$\forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Five cases are discussed as follows:

- Case $(i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)>0$.

Since $\tilde{x}^{+}(t)>0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(1,0)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right] .
$$

Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=$ $1,2, \cdots, n$, it follows from Supplementary Lemma i that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case $(i i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(1,-1)\},
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[\left(f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right)-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right] .
$$

Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=$ $1,2, \cdots, n$, it follows from Supplementary Lemma i that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (iii): $\tilde{x}^{+}(t)<0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{(0,-1)\},
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right] .
$$

Since $\left|f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=$ $1,2, \cdots, n$, it follows from Supplementary Lemma i that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (iv): $\tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)=0$.

Since $\tilde{x}^{+}(t)>0, \tilde{x}^{-}(t)=0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right] \leq 0$. So, if $v \in \mathcal{F}\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$ and $v_{2} \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right] \cup \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-\right.$ $\left.f_{0}^{l}\left(t, x_{0}(t)\right)\right]$. For

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=\{1\} \times[-1,0]
$$

if $\zeta \in \partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $\zeta^{T}=(1, y)$ with $y \in[-1,0]$. Therefore,

$$
\zeta^{T} v=v_{1}+y v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[-1,0]$, then $v_{2}=0$. So, if $v_{2} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{2}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$, and then it follows from Supplementary Lemmai that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

- Case $(v): \tilde{x}^{+}(t)=0$ and $\tilde{x}^{-}(t)<0$.

Since $\tilde{x}^{+}(t)=0, \tilde{x}^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[\tilde{x}^{+}(t)-\tilde{x}_{r}^{k}(t)\right] \geq$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[\tilde{x}^{-}(t)-\tilde{x}_{s}^{l}(t)\right]<0$. So, if $v \in \mathcal{F}\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right] \cup \mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right]$ and $v_{2} \in \mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\right.$ $\alpha]$. For

$$
\partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=[0,1] \times\{-1\}
$$

if $\zeta \in \partial V\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)$, then $\zeta^{T}=(y,-1)$ with $y \in[0,1]$. Therefore,

$$
\zeta^{T} v=y v_{1}-v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[0,1]$, then $v_{1}=0$. So, if $v_{1} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{1}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=-\mathcal{K}\left[f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right]$, and then it follows from Supplementary Lemma i that max $\tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

Combining the above five cases, it can be concluded that max $\tilde{\mathcal{L}}_{F} V<0$ for all $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right) \in$ $\mathcal{D} \backslash\{(0,0)\}$.

The proof is now completed.

9 Proof of Corollary 1

Proof The nonsmooth function V, which was given by (6) in the manuscript, is chosen as the Lyapunov function. If Assumptions 1, 5 and 6 hold, then Supplementary Lemma ii holds. By using Lemma 1, it follows from Lemmas 3-5 and Supplementary Lemma ii that $\left(\tilde{x}^{+}(t), \tilde{x}^{-}(t)\right)=$ $(0,0)$ is a globally stable equilibrium point for system (2).

Next, the maximal converging time is considered.

- Case $(i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t) \geq 0$.

In this case, $V=\tilde{x}^{+}(t)$ and $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right]$. By the proof of Supplementary Lemma i, one has $\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq Q(t), Q(t) \leq Q(0), \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N$. Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N, \forall k=1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-(\alpha-Q(t)) \\
& \leq-(\alpha-Q(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
T_{1} \leq \frac{1}{\alpha-Q(0)} \tilde{x}^{+}(0)
$$

- Case $(i i): \tilde{x}^{+}(t)>0$ and $\tilde{x}^{-}(t)<0$.

In this case, $V=\tilde{x}^{+}(t)-\tilde{x}^{-}(t)$ and $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[\left(f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)-\alpha\right)-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-\right.\right.$ $\left.\left.f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right]$. By the proof of Supplementary Lemma i, one has $\left\|f_{i}\left(t, x_{i}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq$ $Q(t), Q(t) \leq Q(0), \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Since $\left|f_{i}^{k}\left(t, x_{i}(t)\right)-f_{0}^{k}\left(t, x_{0}(t)\right)\right| \leq \| f_{i}\left(t, x_{i}(t)\right)-$ $f_{0}\left(t, x_{0}(t)\right) \|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-2(\alpha-Q(t)) \\
& \leq-2(\alpha-Q(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
\begin{aligned}
T_{2} & \leq \frac{1}{2(\alpha-Q(0))}\left(\tilde{x}^{+}(0)-\tilde{x}^{-}(0)\right) \\
& \leq \frac{1}{\alpha-Q(0)} \max \left\{\tilde{x}^{+}(0),-\tilde{x}^{-}(0)\right\} .
\end{aligned}
$$

- Case (iii): $\tilde{x}^{+}(t) \leq 0$ and $\tilde{x}^{-}(t)<0$.

In this case, $V=-\tilde{x}^{-}(t)$ and $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[-\left(f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)+\alpha\right)\right]$. By the proof of Supplementary Lemma i, one has $\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\| \leq Q(t), Q(t) \leq Q(0), \forall t \in$ $\boldsymbol{R}^{+}, \forall j=1,2, \cdots, N$. Since $\left|f_{j}^{l}\left(t, x_{j}(t)\right)-f_{0}^{l}\left(t, x_{0}(t)\right)\right| \leq\left\|f_{j}\left(t, x_{j}(t)\right)-f_{0}\left(t, x_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=1,2, \cdots, n$, one has

$$
\begin{aligned}
\max \tilde{\mathcal{L}}_{\mathcal{F}} V & \leq-(\alpha-Q(t)) \\
& \leq-(\alpha-Q(0))
\end{aligned}
$$

Therefore, the converging time satisfies

$$
T_{3} \leq-\frac{1}{\alpha-Q(0)} \tilde{x}^{-}(0)
$$

Combining the above three cases, the maximal converging time is obtained as

$$
T=\frac{1}{\alpha-Q(0)} \max _{\substack{i=1,2, \ldots, N \\ k=1,2, \ldots, n}}\left\{\left|x_{i}^{k}(0)-x_{0}^{k}(0)-x_{i}^{* k}\right|\right\} .
$$

The proof is now completed.

10 Proof of Lemma 7

Proof Define the formation position errors $\tilde{r}_{i}(t)=r_{i}(t)-r_{0}(t)-r_{i}^{*}$ and the velocity errors $\tilde{v}_{i}(t)=v_{i}(t)-v_{0}(t), i=1,2, \cdots, N$, with $\tilde{r}_{0}(t)=0$ and $\tilde{v}_{0}(t)=0$. Sliding mode is designed as $S_{i}(t)=\tilde{r}_{i}(t)+\tilde{v}_{i}(t)$. The Filippov solution of $S_{i}(t)$ is defined as the absolutely continuous solution of the differential inclusion

$$
\begin{array}{r}
\dot{S}_{i}(t) \in \mathcal{K}\left[F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{j \in \mathcal{N}_{i}} a_{i j}\left[S_{i}(t)-S_{j}(t)\right]\right\}\right], \\
\forall i=1,2, \cdots, N .
\end{array}
$$

Based on Assumption 1, one follower must receive information from other followers or the leader, in other words, it is connected with other followers or the leader. Define $S^{+}(t)$ as the maximal error component which is connected with non-maximal error components of the followers or connected with the component of the leader. Similarly, define $S^{-}(t)$ as the minimal error component which is connected with non-minimal error components of the followers or connected with the component of the leader. Suppose that, at any time $t, S^{+}(t)$ is the k th error component of agent
i and $S^{-}(t)$ is the l th error component of agent j, where $i, j \in\{1,2, \cdots, N\}, k, l \in\{1,2, \cdots, n\}$. The Filippov solutions of $S^{+}(t)$ and $S^{-}(t)$ can be described by

$$
\begin{align*}
& \dot{S}^{+}(t) \in \mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]\right\}\right], \\
& \dot{S}^{-}(t) \in \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha \operatorname{sgn}\left\{\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]\right\}\right] . \tag{7}
\end{align*}
$$

Based on Assumptions 7 and 8 , for any $i=1,2, \cdots, N$ and each $t \in \boldsymbol{R}^{+}$, one has

$$
\begin{aligned}
& \left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\| \\
= & \left\|f_{i}\left(t, r_{i}(t), v_{i}(t)\right)+v_{i}(t)-f_{0}\left(t, r_{0}(t), v_{0}(t)\right)-v_{0}(t)\right\| \\
= & \left\|f_{i}\left(t, r_{i}(t), v_{i}(t)\right)-f_{i}\left(t, r_{0}(t), v_{0}(t)\right)+f_{i}\left(t, r_{0}(t), v_{0}(t)\right)-f_{0}\left(t, r_{0}(t), v_{0}(t)\right)+v_{i}(t)-v_{0}(t)\right\| \\
\leq & \left\|f_{i}\left(t, r_{i}(t), v_{i}(t)\right)-f_{i}\left(t, r_{0}(t), v_{0}(t)\right)\right\|+\left\|f_{i}\left(t, r_{0}(t), v_{0}(t)\right)\right\| \\
& +\left\|f_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|+\left\|v_{i}(t)-v_{0}(t)\right\| \\
\leq & \left\|f_{i}\left(t, r_{i}(t), v_{i}(t)\right)-f_{i}\left(t, r_{0}(t), v_{0}(t)\right)\right\|+\left\|f_{i}\left(t, r_{0}(t), v_{0}(t)\right)-f_{i}\left(t, r_{i}^{E}, v_{i}^{E}\right)\right\| \\
& +\left\|f_{0}\left(t, r_{0}(t), v_{0}(t)\right)-f_{0}\left(t, r_{0}^{E}, v_{0}^{E}\right)\right\|+\left\|v_{i}(t)-v_{0}(t)\right\| \\
\leq & L_{J}^{F}\left(\left\|r_{i}(t)-r_{0}(t)\right\|+\left\|v_{i}(t)-v_{0}(t)\right\|\right)+L_{J}^{F}\left(\left\|r_{0}(t)-r_{i}^{E}\right\|+\left\|v_{0}(t)-v_{i}^{E}\right\|\right) \\
& +L_{J}^{L}\left(\left\|r_{0}(t)-r_{0}^{E}\right\|+\left\|v_{0}(t)-v_{0}^{E}\right\|\right)+\left(\left\|v_{i}(t)-v_{0}(t)\right\|\right) \\
\leq & L_{J}^{F}\left(\left\|r_{i}(t)-r_{0}(t)-r_{i}^{*}\right\|+\left\|r_{i}^{*}\right\|+\left\|v_{i}(t)-v_{0}(t)\right\|\right)+L_{J}^{F}\left(\left\|r_{0}(t)-r_{i}^{E}\right\|+\left\|v_{0}(t)-v_{i}^{E}\right\|\right) \\
& +L_{J}^{L}\left(\left\|r_{0}(t)-r_{0}^{E}\right\|+\left\|v_{0}(t)-v_{0}^{E}\right\|\right)+\left(\left\|v_{i}(t)-v_{0}(t)\right\|\right) \\
\leq & L_{J}^{F}\left\|\tilde{r}_{i}(t)\right\|+\left(L_{J}^{F}+1\right)\left\|\tilde{v}_{i}(t)\right\|+L_{J}^{F}\left(\left\|r_{i}^{*}\right\|+\left\|r_{i}^{E}\right\|+\left\|v_{i}^{E}\right\|+\beta_{r}+\beta_{v}\right) \\
& +L_{J}^{L}\left(\left\|r_{0}^{E}\right\|+\left\|v_{0}^{E}\right\|+\beta_{r}+\beta_{v}\right) .
\end{aligned}
$$

Let

$$
G=L_{J}^{F}\left(\max _{i=1,2, \cdots, N}\left\{\left\|r_{i}^{*}\right\|+\left\|r_{i}^{E}\right\|+\left\|v_{i}^{E}\right\|\right\}+\beta_{r}+\beta_{v}\right)+L_{J}^{L}\left(\left\|r_{0}^{E}\right\|+\left\|v_{0}^{E}\right\|+\beta_{r}+\beta_{v}\right)
$$

Clearly, G is a constant. Since $\tilde{v}_{i}(t)=S_{i}(t)-\tilde{r}_{i}(t)$, one has $\left\|\tilde{v}_{i}(t)\right\| \leq\left\|S_{i}(t)\right\|+\left\|\tilde{r}_{i}(t)\right\|$. Thus,

$$
\begin{align*}
& \left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\| \\
\leq & L_{J}^{F}\left\|\tilde{r}_{i}(t)\right\|+\left(L_{J}^{F}+1\right)\left\|\left(S_{i}(t)-\tilde{r}_{i}(t)\right)\right\|+G \\
\leq & \left(2 L_{J}^{F}+1\right)\left\|\tilde{r}_{i}(t)\right\|+\left(L_{J}^{F}+1\right)\left\|S_{i}(t)\right\|+G \\
\leq & \left(2 L_{J}^{F}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\
k=1,2, \cdots, n}}\left\{\left|\tilde{r}_{i}^{k}(t)\right|,\left|S_{i}^{k}(t)\right|\right\}+\left(L_{J}^{F}+1\right) \sqrt{n} \max _{\substack{i=1,2, \ldots, N \\
k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}(t)\right|\right\}+G \tag{8}
\end{align*}
$$

Let

$$
M(t)=\left(2 L_{J}^{F}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\ k=1,2, \cdots, n}}\left\{\left|\tilde{r}_{i}^{k}(t)\right|,\left|S_{i}^{k}(t)\right|\right\}+\left(L_{J}^{F}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\ k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}(t)\right|\right\}+G .
$$

If $\alpha>M(t), \forall t \in \boldsymbol{R}^{+}$, then $\alpha>\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N$.

Now, it can be proved that if $\alpha>M(0)$ then $\alpha>M(t), \forall t \in \boldsymbol{R}^{+}$. Because $\alpha>M(0)$ and $M(t)$ are continuously changing, suppose that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=M(t)$. Thus, $M\left(t_{1}\right)>M(0)$.

Now, consider the following two cases.

- Case (i) : The signs of $\tilde{r}_{i}^{k}(t)$ and $\tilde{v}_{i}^{k}(t)$ are the same. In this case, $\left|\tilde{r}_{i}^{k}(t)\right|$ will increase. Since $\left|\tilde{r}_{i}^{k}(t)\right|+\left|\tilde{v}_{i}^{k}(t)\right|=\left|\tilde{r}_{i}^{k}(t)+\tilde{v}_{i}^{k}(t)\right|=\left|S_{i}^{k}(t)\right|$, it follows that $\left|\tilde{r}_{i}^{k}(t)\right| \leq\left|S_{i}^{k}(t)\right|$.
- Case (ii): The signs of $\tilde{r}_{i}^{k}(t)$ and $\tilde{v}_{i}^{k}(t)$ are opposite. In this case, one has $\left|\tilde{r}_{i}^{k}(t)\right|+\left|\tilde{v}_{i}^{k}(t)\right|$ $=\left|\tilde{r}_{i}^{k}(t)-\tilde{v}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$. Both $\left|\tilde{r}_{i}^{k}(t)\right| \leq\left|S_{i}^{k}(t)\right|$ and $\left|\tilde{r}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$ are possible. For $\tilde{v}_{i}^{k}(t)=\dot{\tilde{r}}_{i}^{k}(t)$ and their signs are opposite, $\left|\tilde{r}_{i}^{k}(t)\right|$ must decrease.

Combining the above two cases, it can be concluded that $\left|\tilde{r}_{i}^{k}(t)\right|$ must be decreasing when $\left|\tilde{r}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$. Since α, L_{J}^{F} and G are constants, if $M\left(t_{1}\right)>M(0)$, then $\max _{\substack{i=1,2, \cdots, N \\ k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}\left(t_{1}\right)\right|\right\}$ must be larger than $\max _{\substack{i=1,2, \cdots, N \\ k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}(0)\right|\right\}$. So, there must exist a $t_{2} \in\left[0, t_{1}\right)$ such that the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero.

Now, consider the following three cases.

- Case (i): $\left\{S^{+}(t)>0, S^{-}(t) \geq 0\right\}$.

In this case, $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=S^{+}(t)$, and the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is $\dot{S}^{+}(t)$. Since Assumption 1 holds and $S^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>0$. Thus,

$$
\dot{S}^{+}(t) \in \mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right]
$$

If the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{S}^{+}\left(t_{2}\right)>0$. Then, there must exist $i \in\{1,2, \cdots, N\}$ and $k \in\{1,2, \cdots, n\}$ such that $F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-$
$F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)>0$ and the positive constant $\alpha<\left|F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right|$. Since $\left|F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right| \leq\left\|F_{i}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\left\|F_{i}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$. It follows that $\alpha<M\left(t_{2}\right)$ based on (8). Because $\alpha>M(0)$ and $M(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=M\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=M(t)$.

- Case (ii): $\left\{S^{+}(t) \leq 0, S^{-}(t)<0\right\}$.

In this case, $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=-S^{-}(t)$, and the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right.$ $\}$ is $-\dot{S}^{-}(t)$. Since Assumption 1 holds and $S^{-}(t)<0$, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$. Thus,

$$
\dot{S}^{-}(t) \in \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right] .
$$

If the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{S}^{-}\left(t_{2}\right)<0$. Then, there must exist $j \in\{1,2, \cdots, N\}$ and $l \in\{1,2, \cdots, n\}$ such that $F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-$ $F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)<0$ and the positive constant $\alpha<\left|F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right|$. Since $\left|F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right| \leq\left\|F_{j}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\left\|F_{j}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$. It follows that $\alpha<M\left(t_{2}\right)$ based on (8). Because $\alpha>M(0)$ and $M(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=M\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=M(t)$.

- Case (iii): $\left\{S^{+}(t)>0, S^{-}(t)<0\right\}$.
(a) If $\left\{S^{+}(t) \geq-S^{-}(t)\right\}$, then $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=S^{+}(t)$. So, the proof is the same as that in Case (i).
(b) If $\left\{S^{+}(t)<-S^{-}(t)\right\}$, then $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=-S^{-}(t)$. So, the proof is the same as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of $\max \left\{\left|S^{+}(t)\right|\right.$, $\left.\left|S^{-}(t)\right|\right\}$ will not be greater than zero. Hence, if $\alpha>M(0)$, i.e., Assumption 9 holds, then $\alpha>M(t), \forall t \in \boldsymbol{R}^{+}$. It follows that $\alpha>\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N$, based on (8).

The proof is now completed.

11 Proof of Lemma 8

Proof If Assumptions 1 and 7-9 hold, then Lemma 7 holds, i.e., $\alpha>\| F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-$ $F_{0}\left(t, r_{0}(t), v_{0}(t)\right) \|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. Based on (6) in the manuscript, the nonsmooth function $V\left(S^{+}(t), S^{-}(t)\right): \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}$ is

$$
V\left(S^{+}(t), S^{-}(t)\right)= \begin{cases}S^{+}(t) & S^{+}(t) \geq 0, S^{-}(t) \geq 0 \tag{9}\\ S^{+}(t)-S^{-}(t) & S^{+}(t)>0, S^{-}(t)<0 \\ -S^{-}(t) & S^{+}(t) \leq 0, S^{-}(t)<0\end{cases}
$$

Five cases are discussed as follows:

- Case $(i): S^{+}(t)>0$ and $S^{-}(t)>0$.

Since Assumption 1 holds and $S^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(1,0)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right] .
$$

Since $\left|F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, it follows from Lemma 7 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case $(i i): S^{+}(t)>0$ and $S^{-}(t)<0$.

Since $S^{+}(t)>0, S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(1,-1)\}
$$

one has

$$
\begin{aligned}
\tilde{\mathcal{L}}_{\mathcal{F}} V= & \mathcal{K}\left[\left(F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right)\right. \\
& \left.-\left(F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right)\right] .
\end{aligned}
$$

Since $\left|F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, it follows from Lemma 7 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (iii): $S^{+}(t)<0$ and $S^{-}(t)<0$.

Since $S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(0,-1)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[-\left(F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right)\right] .
$$

Since $\left|F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{j}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=1,2, \cdots, n$, it follows from Lemma 7 that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case $(i v): S^{+}(t)>0$ and $S^{-}(t)=0$.

Since $S^{+}(t)>0, S^{-}(t)=0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right] \leq 0$. So, if $v \in \mathcal{F}\left(S^{+}(t), S^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right]$ and $v_{2} \in \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\right.$ $\alpha] \cup \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)\right]$. For

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{1\} \times[-1,0]
$$

if $\zeta \in \partial V\left(S^{+}(t), S^{-}(t)\right)$, then $\zeta^{T}=(1, y)$ with $y \in[-1,0]$. Therefore,

$$
\zeta^{T} v=v_{1}+y v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[-1,0]$, then $v_{2}=0$. So, if $v_{2} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{2}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right]$, and then it follows from Lemma 7 that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

- Case $(v): S^{+}(t)=0$ and $S^{-}(t)<0$.

Since $S^{+}(t)=0, S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right] \geq$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$. So, if $v \in \mathcal{F}\left(S^{+}(t), S^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right] \cup \mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right]$ and $v_{2} \in$ $\mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right]$. For

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=[0,1] \times\{-1\}
$$

if $\zeta \in \partial V\left(S^{+}(t), S^{-}(t)\right)$, then $\zeta^{T}=(y,-1)$ with $y \in[0,1]$. Therefore,

$$
\zeta^{T} v=y v_{1}-v_{2} .
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[0,1]$, then $v_{1}=0$. So, if $v_{1} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{1}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=-\mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right]$, and then it follows from Lemma 7 that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

Combining the above five cases, it can be concluded that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ for all $\left(S^{+}(t), S^{-}(t)\right) \in$ $\mathcal{D} \backslash\{(0,0)\}$.

The proof is now completed.

12 Proof of Theorem 2

Proof The nonsmooth function $V\left(S^{+}(t), S^{-}(t)\right)$ in (9) is chosen as the Lyapunov function. If Assumptions 1 and 7-9 hold, then Lemma 8 holds. By Lemma 1, it follows from Lemmas 3 5 and 8 that $\left(S^{+}(t), S^{-}(t)\right)=(0,0)$ is a globally stable equilibrium point for system (7).

Solving

$$
S_{i}^{k}(t)=\tilde{r}_{i}^{k}(t)+\dot{\tilde{r}}_{i}^{k}(t)=0
$$

one has

$$
\tilde{r}_{i}^{k}(t)=c e^{-t}, \dot{\hat{r}}_{i}^{k}(t)=-c e^{-t}
$$

where c is a constant determined by the initial conditions. Therefore, the errors $\tilde{r}_{i}(t)$ and $\tilde{v}_{i}(t)$ converge to zero exponentially; that is, the second-order multi-agent system achieves the desired formation asymptotically.

The proof is now completed.

13 Supplementary Lemma iii

Supplementary Lemma iii If Assumptions 1, 10 and 11 hold, then $\alpha>\| F_{i}\left(t, r_{i}(t), v_{i}(t)\right)$ $F_{0}\left(t, r_{0}(t), v_{0}(t)\right) \|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$, where $F_{i}\left(t, r_{i}(t), v_{i}(t)\right)=v_{i}(t)+f_{i}\left(t, r_{i}(t), v_{i}(t)\right)$
and $F_{0}\left(t, r_{0}(t), v_{0}(t)\right)=v_{0}(t)+f_{0}\left(t, r_{0}(t), v_{0}(t)\right)$.
Proof Based on Assumption 10, for any $i=1,2, \cdots, N$ and each $t \in \boldsymbol{R}^{+}$, one has

$$
\begin{aligned}
& \left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\| \\
= & \left\|f_{i}\left(t, r_{i}(t), v_{i}(t)\right)+v_{i}(t)-f_{0}\left(t, r_{0}(t), v_{0}(t)\right)-v_{0}(t)\right\| \\
= & \left\|f_{0}\left(t, r_{i}(t), v_{i}(t)\right)-f_{0}\left(t, r_{0}(t), v_{0}(t)\right)+v_{i}(t)-v_{0}(t)\right\| \\
\leq & \left\|f_{0}\left(t, r_{i}(t), v_{i}(t)\right)-f_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|+\left\|v_{i}(t)-v_{0}(t)\right\| \\
\leq & L_{J}^{L}\left(\left\|r_{i}(t)-r_{0}(t)\right\|+\left\|v_{i}(t)-v_{0}(t)\right\|\right)+\left\|v_{i}(t)-v_{0}(t)\right\| \\
\leq & L_{J}^{L}\left(\left\|r_{i}(t)-r_{0}(t)-r_{i}^{*}\right\|+\left\|r_{i}^{*}\right\|+\left\|v_{i}(t)-v_{0}(t)\right\|\right)+\left\|v_{i}(t)-v_{0}(t)\right\| \\
\leq & L_{J}^{L}\left(\left\|\tilde{r}_{i}(t)\right\|+\left\|r_{i}^{*}\right\|+\left\|\tilde{v}_{i}(t)\right\|\right)+\left\|\tilde{v}_{i}(t)\right\|
\end{aligned}
$$

Since $\tilde{v}_{i}(t)=S_{i}(t)-\tilde{r}_{i}(t)$, one has $\left\|\tilde{v}_{i}(t)\right\| \leq\left\|S_{i}(t)\right\|+\left\|\tilde{r}_{i}(t)\right\|$. Thus,

$$
\begin{align*}
& \left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\| \\
\leq & \left(2 L_{J}^{L}+1\right)\left\|\tilde{r}_{i}(t)\right\|+\left(L_{J}^{L}+1\right)\left\|S_{i}(t)\right\|+L_{J}^{L}\left\|r_{i}^{*}\right\| \\
\leq & \left(2 L_{J}^{L}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\
k=1,2, \cdots, n}}\left\{\left|\tilde{r}_{i}^{k}(t)\right|,\left|S_{i}^{k}(t)\right|\right\}+\left(L_{J}^{L}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots \cdots, N \\
k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}(t)\right|\right\} \\
& +L_{J}^{L} \max _{i=1,2, \cdots, N}\left\{\left\|r_{i}^{*}\right\|\right\} . \tag{10}
\end{align*}
$$

Let

$$
\begin{aligned}
W(t)= & \left(2 L_{J}^{L}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\
k=1,2, \cdots, n}}\left\{\left|\tilde{r}_{i}^{k}(t)\right|,\left|S_{i}^{k}(t)\right|\right\} \\
& +\left(L_{J}^{L}+1\right) \sqrt{n} \max _{\substack{i=1,2, \cdots, N \\
k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}(t)\right|\right\}+L_{J}^{L} \max _{i=1,2, \cdots, N}\left\{\left\|r_{i}^{*}\right\|\right\} .
\end{aligned}
$$

If $\alpha>W(t), \forall t \in \boldsymbol{R}^{+}$, then $\alpha>\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N$.

Now, it can be proved that if $\alpha>W(0)$ then $\alpha>W(t), \forall t \in \boldsymbol{R}^{+}$. Because $\alpha>W(0)$ and $W(t)$ are continuously changing, suppose that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=W(t)$. Thus, $W\left(t_{1}\right)>W(0)$.

Now, consider the following two cases.

- Case (i) : The signs of $\tilde{r}_{i}^{k}(t)$ and $\tilde{v}_{i}^{k}(t)$ are the same. In this case, $\left|\tilde{r}_{i}^{k}(t)\right|$ will increase. Since $\left|\tilde{r}_{i}^{k}(t)\right|+\left|\tilde{v}_{i}^{k}(t)\right|=\left|\tilde{r}_{i}^{k}(t)+\tilde{v}_{i}^{k}(t)\right|=\left|S_{i}^{k}(t)\right|$, it follows that $\left|\tilde{r}_{i}^{k}(t)\right| \leq\left|S_{i}^{k}(t)\right|$.
- Case (ii): The signs of $\tilde{r}_{i}^{k}(t)$ and $\tilde{v}_{i}^{k}(t)$ are opposite. In this case, one has $\left|\tilde{r}_{i}^{k}(t)\right|+\left|\tilde{v}_{i}^{k}(t)\right|$ $=\left|\tilde{r}_{i}^{k}(t)-\tilde{v}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$. Both $\left|\tilde{r}_{i}^{k}(t)\right| \leq\left|S_{i}^{k}(t)\right|$ and $\left|\tilde{r}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$ are possible. For $\tilde{v}_{i}^{k}(t)=\dot{\tilde{r}}_{i}^{k}(t)$ and their signs are opposite, $\left|\tilde{r}_{i}^{k}(t)\right|$ must decrease.

Combining the above two cases, it can be concluded that $\left|\tilde{r}_{i}^{k}(t)\right|$ must be decreasing when $\left|\tilde{r}_{i}^{k}(t)\right| \geq\left|S_{i}^{k}(t)\right|$. Since α, L_{J}^{L} and $\max _{i=1,2, \cdots, N}\left\{\left\|r_{i}^{*}\right\|\right\}$ are constants, if $W\left(t_{1}\right)>W(0)$, then $\max _{\substack{i=1,2, \cdots, N \\ k=1,2, \cdots, n}}\left\{\left|S_{i}^{k}\left(t_{1}\right)\right|\right\}$ must be larger than $\max _{\substack{i=1,2, \ldots, N \\ k=1,2, \ldots, n}}\left\{\left|S_{i}^{k}(0)\right|\right\}$. So, there must exist a $t_{2} \in\left[0, t_{1}\right)$ such that the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero.

Now, consider the following three cases.

- Case $(i):\left\{S^{+}(t)>0, S^{-}(t) \geq 0\right\}$.

In this case, $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=S^{+}(t)$, and the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is $\dot{S}^{+}(t)$. Since Assumption 1 holds and $S^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>0$. Thus,

$$
\dot{S}^{+}(t) \in \mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right] .
$$

If the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{S}^{+}\left(t_{2}\right)>0$. Then, there must exist $i \in\{1,2, \cdots, N\}$ and $k \in\{1,2, \cdots, n\}$ such that $F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-$ $F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)>0$ and the positive constant $\alpha<\left|F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right|$. Since $\left|F_{i}^{k}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}^{k}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right| \leq\left\|F_{i}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\left\|F_{i}\left(t_{2}, r_{i}\left(t_{2}\right), v_{i}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$. It follows that $\alpha<W\left(t_{2}\right)$ based on (10). Because $\alpha>W(0)$ and $W(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=W\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=W(t)$.

- Case (ii): $\left\{S^{+}(t) \leq 0, S^{-}(t)<0\right\}$.

In this case, $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=-S^{-}(t)$, and the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right.$ $\}$ is $-\dot{S}^{-}(t)$. Since Assumption 1 holds and $S^{-}(t)<0$, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$. Thus,

$$
\dot{S}^{-}(t) \in \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right]
$$

If the derivative of $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}$ is greater than zero at $t_{2} \in\left[0, t_{1}\right)$, one has $\dot{S}^{-}\left(t_{2}\right)<0$. Then, there must exist $i \in\{1,2, \cdots, N\}$ and $k \in\{1,2, \cdots, n\}$ such that $F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-$ $F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)<0$ and the positive constant $\alpha<\left|F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right|$. Since $\left|F_{j}^{l}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}^{l}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right| \leq\left\|F_{j}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$, one has $\alpha<\left\|F_{j}\left(t_{2}, r_{j}\left(t_{2}\right), v_{j}\left(t_{2}\right)\right)-F_{0}\left(t_{2}, r_{0}\left(t_{2}\right), v_{0}\left(t_{2}\right)\right)\right\|$. It follows that $\alpha<W\left(t_{2}\right)$ based on
(10). Because $\alpha>W(0)$ and $W(t)$ are continuously changing, there must be a $t_{3} \in\left[0, t_{2}\right)$ such that $\alpha=W\left(t_{3}\right)$. It contradicts the assumption that $t_{1} \in \boldsymbol{R}^{+}$is the first time at which $\alpha=W(t)$.

- Case (iii): $\left\{S^{+}(t)>0, S^{-}(t)<0\right\}$.
(a) If $\left\{S^{+}(t) \geq-S^{-}(t)\right\}$, then $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=S^{+}(t)$. So, the proof is the same as that in Case (i).
(b) If $\left\{S^{+}(t)<-S^{-}(t)\right\}$, then $\max \left\{\left|S^{+}(t)\right|,\left|S^{-}(t)\right|\right\}=-S^{-}(t)$. So, the proof is the same as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of $\max \left\{\left|S^{+}(t)\right|\right.$, $\left.\left|S^{-}(t)\right|\right\}$ will not be greater than zero. Hence, if $\alpha>W(0)$, i.e., Assumption 11 holds, then $\alpha>W(t), \forall t \in \boldsymbol{R}^{+}$. It follows that $\alpha>\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=$ $1,2, \cdots, N$, based on (10).

The proof is now completed.

14 Supplementary Lemma iv

Supplementary Lemma iv Let \mathcal{F} denote the set-valued map. If Assumptions 1, 10 and 11 hold, then the set-valued Lie derivative $\tilde{\mathcal{L}}_{\mathcal{F}} V$ of V with respect to \mathcal{F} satisfies that max $\tilde{\mathcal{L}}_{\mathcal{F}} V<0$ for all $\left(S^{+}(t), S^{-}(t)\right) \in \mathcal{D} \backslash\{(0,0)\}$.
Proof If Assumptions 1, 10 and 11 hold, then Supplementary Lemma iii holds, i.e., $\alpha>$ $\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in \boldsymbol{R}^{+}, \forall i=1,2, \cdots, N$. The nonsmooth function $V\left(S^{+}(t), S^{-}(t)\right): \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}$ was given by (9).

Five cases are discussed as follows:

- Case $(i): S^{+}(t)>0$ and $S^{-}(t)>0$.

Since Assumption 1 holds and $S^{+}(t)>0$, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(1,0)\}
$$

one has

$$
\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right] .
$$

Since $\left|F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$
$\boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, it follows from Supplementary Lemma iii that

$$
\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0
$$

- Case (ii): $S^{+}(t)>0$ and $S^{-}(t)<0$.

Since $S^{+}(t)>0, S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(1,-1)\}
$$

one has

$$
\begin{aligned}
\tilde{\mathcal{L}}_{F} V= & \mathcal{K}\left[\left(F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right)\right. \\
& \left.-\left(F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right)\right]
\end{aligned}
$$

Since $\left|F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{i}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall i=1,2, \cdots, N, \forall k=1,2, \cdots, n$, it follows from Supplementary Lemma iii that

$$
\max \tilde{\mathcal{L}}_{F} V<0
$$

- Case (iii): $S^{+}(t)<0$ and $S^{-}(t)<0$.

Since $S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$, and for

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{(0,-1)\}
$$

one has

$$
\tilde{\mathcal{L}}_{F} V=\mathcal{K}\left[-\left(F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right)\right] .
$$

Since $\left|F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)\right| \leq\left\|F_{j}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}\left(t, r_{0}(t), v_{0}(t)\right)\right\|, \forall t \in$ $\boldsymbol{R}^{+}, \forall j=1,2, \cdots, N, \forall l=1,2, \cdots, n$, it follows from Supplementary Lemma iii that

$$
\max \tilde{\mathcal{L}}_{F} V<0
$$

- Case (iv): $S^{+}(t)>0$ and $S^{-}(t)=0$.

Since $S^{+}(t)>0, S^{-}(t)=0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right]>$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right] \leq 0$. So, if $v \in \mathcal{F}\left(S^{+}(t), S^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$
$\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right]$ and $v_{2} \in \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\right.$ $\alpha] \cup \mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)\right]$. For

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=\{1\} \times[-1,0]
$$

if $\zeta \in \partial V\left(S^{+}(t), S^{-}(t)\right)$, then $\zeta^{T}=(1, y)$ with $y \in[-1,0]$. Therefore,

$$
\zeta^{T} v=v_{1}+y v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[-1,0]$, then $v_{2}=0$. So, if $v_{2} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{2}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right]$, and then it follows from Supplementary Lemma iii that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

- Case $(v): S^{+}(t)=0$ and $S^{-}(t)<0$.

Since $S^{+}(t)=0, S^{-}(t)<0$ and Assumption 1 holds, one has $\sum_{r \in \mathcal{N}_{i}} a_{i r}\left[S^{+}(t)-S_{r}^{k}(t)\right] \geq$ $0, \sum_{s \in \mathcal{N}_{j}} a_{j s}\left[S^{-}(t)-S_{s}^{l}(t)\right]<0$. So, if $v \in \mathcal{F}\left(S^{+}(t), S^{-}(t)\right)$, then $v^{T}=\left(v_{1}, v_{2}\right)$ with $v_{1} \in$ $\mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)-\alpha\right] \cup \mathcal{K}\left[F_{i}^{k}\left(t, r_{i}(t), v_{i}(t)\right)-F_{0}^{k}\left(t, r_{0}(t), v_{0}(t)\right)\right]$ and $v_{2} \in$ $\mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right]$. For

$$
\partial V\left(S^{+}(t), S^{-}(t)\right)=[0,1] \times\{-1\}
$$

if $\zeta \in \partial V\left(S^{+}(t), S^{-}(t)\right)$, then $\zeta^{T}=(y,-1)$ with $y \in[0,1]$. Therefore,

$$
\zeta^{T} v=y v_{1}-v_{2}
$$

If there exists an element a satisfying that $\zeta^{T} v=a$ for all $y \in[0,1]$, then $v_{1}=0$. So, if $v_{1} \neq 0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$; if $v_{1}=0$, one has $\tilde{\mathcal{L}}_{\mathcal{F}} V=-\mathcal{K}\left[F_{j}^{l}\left(t, r_{j}(t), v_{j}(t)\right)-F_{0}^{l}\left(t, r_{0}(t), v_{0}(t)\right)+\alpha\right]$, and then it follows from Supplementary Lemma iii that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$. Thus, $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ or $\tilde{\mathcal{L}}_{\mathcal{F}} V=\emptyset$ in this case.

Combining the above five cases, it can be concluded that $\max \tilde{\mathcal{L}}_{\mathcal{F}} V<0$ for all $\left(S^{+}(t), S^{-}(t)\right) \in$ $\mathcal{D} \backslash\{(0,0)\}$.

The proof is now completed.

15 Proof of Corollary 2

Proof The nonsmooth function $V\left(S^{+}(t), S^{-}(t)\right)$ in (9) is chosen as the Lyapunov function. If Assumptions 1, 10 and 11 hold, then Supplementary Lemma iv holds. By Lemma 1, it follows
from Lemmas 3-5 and Supplementary Lemma iv that $\left(S^{+}(t), S^{-}(t)\right)=(0,0)$ is a globally stable equilibrium point for system (7).

Solving

$$
S_{i}^{k}(t)=\tilde{r}_{i}^{k}(t)+\dot{\dot{r}}_{i}^{k}(t)=0
$$

one has

$$
\tilde{r}_{i}^{k}(t)=c e^{-t}, \dot{\tilde{r}}_{i}^{k}(t)=-c e^{-t}
$$

where c is a constant determined by the initial conditions. Therefore, the errors $\tilde{r}_{i}(t)$ and $\tilde{v}_{i}(t)$ converge to zero exponentially; that is, the second-order multi-agent system achieves the desired formation asymptotically.

The proof is now completed.

