Fourier Series

Chapter Intended Learning Outcomes:
(i) Represent continuous-time periodic signals using Fourier series
(ii) Understand the properties of Fourier series
(iii) Understand the relationship between Fourier series and linear time-invariant system

Periodic Signal Representation in Frequency Domain

Fourier series can be considered as the frequency domain representation of a continuous-time periodic signal.

Recall (2.6) that $x(t)$ is said to be periodic if there exists $T_{p}>0$ such that

$$
\begin{equation*}
x(t)=x\left(t+T_{p}\right), \quad t \in(-\infty, \infty) \tag{4.1}
\end{equation*}
$$

The smallest T_{p} for which (4.1) holds is called the fundamental period.

Using (2.26), the fundamental frequency is related to T_{p} as:

$$
\begin{equation*}
\Omega_{0}=\frac{2 \pi}{T_{p}} \tag{4.2}
\end{equation*}
$$

According to Fourier series, $x(t)$ is represented as:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}, \quad t \in(-\infty, \infty) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} x(t) e^{-j k \Omega_{0} t} d t, \quad k=\cdots-1,0,1,2, \cdots \tag{4.4}
\end{equation*}
$$

are called Fourier series coefficients. Note that the integration can be done for any period, e.g., $\left(0, T_{p}\right)$, $\left(-T_{p}, 0\right)$.

That is, every periodic signal can be expressed as a sum of harmonically related complex sinusoids with frequencies $\cdots-\Omega_{0}, 0, \Omega_{0}, 2 \Omega_{0}, 3 \Omega_{0}, \cdots$, where the fundamental frequency Ω_{0} is called the first harmonic, $2 \Omega_{0}$ is called the second harmonic, and so on.

This means that $x(t)$ only contains frequencies $\cdots-\Omega_{0}, 0, \Omega_{0}, 2 \Omega_{0}, \cdots$ with 0 being the DC component.

Note that the sinusoids are complex-valued with both positive and negative frequencies.

Note also that a_{k} is generally complex and we can also use magnitude and phase for its representation:

$$
\begin{equation*}
\left|a_{k}\right|=\sqrt{\left(\Re\left\{a_{k}\right\}\right)^{2}+\left(\Im\left\{a_{k}\right\}\right)^{2}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\angle\left(a_{k}\right)=\tan ^{-1}\left(\frac{\Im\left\{a_{k}\right\}}{\Re\left\{a_{k}\right\}}\right) \tag{4.6}
\end{equation*}
$$

From (4.3), $\left\{a_{k}\right\}$ can be used to represent $x(t)$.

Example 4.1

Find the Fourier series coefficients for
$x(t)=\cos (10 \pi t)+\cos (20 \pi t)$.
It is clear that the fundamental frequency of $x(t)$ is $\Omega_{0}=10 \pi$. According to (4.2), the fundamental period is thus equal to $T_{p}=2 \pi / \Omega_{0}=1 / 5$, which is validated as follows:

$$
\begin{aligned}
x\left(t+\frac{1}{5}\right) & =\cos \left(10 \pi\left(t+\frac{1}{5}\right)\right)+\cos \left(20 \pi\left(t+\frac{1}{5}\right)\right) \\
& =\cos (10 \pi t+2 \pi)+\cos (20 \pi t+4 \pi) \\
& =\cos (10 \pi t)+\cos (20 \pi t)
\end{aligned}
$$

With the use of Euler formula in (2.29):

$$
\cos (u)=\frac{e^{j u}+e^{-j u}}{2}
$$

We can express $x(t)$ as:

$$
\begin{aligned}
x(t) & =\cos (10 \pi t)+\cos (20 \pi t) \\
& =\frac{e^{j 10 \pi t}+e^{-j 10 \pi t}}{2}+\frac{e^{j 20 \pi t}+e^{-j 20 \pi t}}{2} \\
& =\frac{1}{2} e^{-j 20 \pi t}+\frac{1}{2} e^{-j 10 \pi t}+\frac{1}{2} e^{j 10 \pi t}+\frac{1}{2} e^{j 20 \pi t}
\end{aligned}
$$

which only contains four frequencies. Comparing with (4.3):

$$
a_{k}= \begin{cases}0.5, & k=-2 \\ 0.5, & k=-1 \\ 0.5, & k=1 \\ 0.5, & k=2 \\ 0, & \text { otherwise }\end{cases}
$$

Can we use (4.4)? Why?

Example 4.2
Find the Fourier series coefficients for
$x(t)=1+\sin \left(\Omega_{0} t\right)+2 \cos \left(\Omega_{0} t\right)+\cos \left(3 \Omega_{0} t+\pi / 4\right)$.
With the use of Euler formulas in (2.29)-(2.30), $x(t)$ can be written as:

$$
\begin{aligned}
x(t)= & 1+\left(1+\frac{1}{2 j}\right) e^{j \Omega_{0} t}+\left(1-\frac{1}{2 j}\right) e^{-j \Omega_{0} t}+\frac{1}{2} e^{j \pi / 4} e^{3 j \Omega_{0} t}+\frac{1}{2} e^{-j \pi / 4} e^{-3 j \Omega_{0} t} \\
= & \frac{\sqrt{2}}{4}(1-j) e^{-3 j \Omega_{0} t}+\left(1+j \frac{1}{2}\right) e^{-j \Omega_{0} t}+1+\left(1-j \frac{1}{2}\right) e^{j \Omega_{0} t} \\
& +\frac{\sqrt{2}}{4}(1+j) e^{3 j \Omega_{0} t}
\end{aligned}
$$

Again, comparing with (4.3) yields:

$$
a_{k}= \begin{cases}\frac{\sqrt{2}}{4}(1-j), & k=-3 \\ 1+\frac{j}{2}, & k=-1 \\ 1, & k=0 \\ 1-\frac{j}{2}, & k=1 \\ \frac{\sqrt{2}}{4}(1+j), & k=3 \\ 0, & \text { otherwise }\end{cases}
$$

To plot $\left\{a_{k}\right\}$, we may compute $\left|a_{k}\right|$ and $\angle\left(a_{k}\right)$ for all k, e.g.,

$$
\left|a_{-3}\right|=\sqrt{\left(\frac{\sqrt{2}}{4}\right)^{2}+\left(-\frac{\sqrt{2}}{4}\right)^{2}}=\frac{1}{2}
$$

and

$$
\angle\left(a_{-3}\right)=\tan ^{-1}(-1)=-\frac{\pi}{4}
$$

We can also use MATLAB commands abs and angle to compute the magnitude and phase, respectively. After constructing a vector x containing $\left\{a_{k}\right\}$, we can plot $\left|a_{k}\right|$ and $\angle\left(a_{k}\right)$ using:

```
subplot(2,1,1)
stem(n, abs (x) )
xlabel('k')
ylabel('|a_k|')
subplot(2,1,2)
stem(n,angle(x))
xlabel('k')
ylabel('\angle{a_k}')
```


Example 4.3

Find the Fourier series coefficients for $x(t)$, which is a periodic continuous-time signal of fundamental period T and is a pulse with a width of $2 T_{0}$ in each period. Over the specific period from $-T / 2$ to $T / 2, x(t)$ is:

$$
x(t)= \begin{cases}1, & -T_{0}<t<T_{0} \\ 0, & \text { otherwise }\end{cases}
$$

with $T>2 T_{0}$.

Noting that the fundamental frequency is $\Omega_{0}=2 \pi / T$ and using (4.4), we get:

$$
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \Omega_{0} t} d t=\frac{1}{T} \int_{-T_{0}}^{T_{0}} e^{-j k \Omega_{0} t} d t
$$

For $k=0$:

$$
a_{0}=\frac{1}{T} \int_{-T_{0}}^{T_{0}} 1 d t=\frac{2 T_{0}}{T}
$$

For $k \neq 0$:
$a_{k}=\frac{1}{T} \int_{-T_{0}}^{T_{0}} e^{-j k \Omega_{0} t} d t=-\left.\frac{1}{j k \Omega_{0} T} e^{-j k \Omega_{0} t}\right|_{-T_{0}} ^{T_{0}}=\frac{\sin \left(k \Omega_{0} T_{0}\right)}{k \pi}=\frac{\sin \left(2 \pi k T_{0} / T\right)}{k \pi}$

The reason of separating the cases of $k=0$ and $k \neq 0$ is to facilitate the computation of a_{0}, whose value is not straightforwardly obtained from the general expression which involves "0/0".

Nevertheless, using L'Hôpital's rule:

$$
\lim _{k \rightarrow 0} \frac{\sin \left(2 \pi k T_{0} / T\right)}{k \pi}=\lim _{k \rightarrow 0} \frac{\frac{d \sin \left(2 \pi k T_{0} / T\right)}{d k}}{\frac{d k \pi}{d k}}=\lim _{k \rightarrow 0} \frac{2 \pi T_{0} / T \cos \left(\left(2 \pi k T_{0} / T\right)\right)}{\pi}=\frac{2 T_{0}}{T}
$$

An investigation on the values of $\left\{a_{k}\right\}$ with respect to relative pulse width T_{0} / T is performed as follows.

We see that when T_{0} / T decreases, $\left\{a_{k}\right\}$ seem to be stretched.

Example 4.4

Find the Fourier series coefficients for the following continuous-time periodic signal $x(t)$:

$$
x(t)= \begin{cases}1.5, & 0<t<1 \\ -1.5, & 1<t<2\end{cases}
$$

where the fundamental period is $T_{p}=2$ and fundamental frequency is $\Omega_{0}=\pi$.

Using (4.4) with the period from $t=-1$ to $t=1$:

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \Omega_{0} t} d t \\
& =\frac{1}{2} \int_{-1}^{0}(-1.5) e^{-j k \pi t} d t+\frac{1}{2} \int_{0}^{1} 1.5 e^{-j k \pi t} d t
\end{aligned}
$$

For $k=0$:

$$
a_{k}=\frac{1}{2} \int_{-1}^{0}(-1.5) d t+\frac{1}{2} \int_{0}^{1} 1.5 d t=\frac{1}{2}(-1.5+1.5)=0
$$

For $k \neq 0$:

$$
\begin{aligned}
a_{k} & =\frac{1}{2} \int_{-1}^{0}(-1.5) e^{-j k \pi t} d t+\frac{1}{2} \int_{0}^{1} 1.5 e^{-j k \pi t} d t \\
& =\frac{3}{4}\left[\int_{-1}^{0}-e^{-j k \pi t} d t+\int_{0}^{1} e^{-j k \pi t} d t\right] \\
& =\frac{3}{4}\left[-\left.\frac{1}{-j k \pi} e^{-j k \pi t}\right|_{-1} ^{0}+\frac{1}{-j k \pi}-\left.e^{-j k \pi t}\right|_{0} ^{1}\right] \\
& =\frac{3}{4 j k \pi}\left[1-e^{j k \pi}-e^{-j k \pi}+1\right] \\
& =\frac{3}{2 j k \pi}[1-\cos (k \pi)]
\end{aligned}
$$

MATLAB can be used to validate the answer. First we have:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t} \approx \sum_{k=-K}^{K} a_{k} e^{j k \Omega_{0} t}
$$

for sufficiently large K because $\left|a_{k}\right|$ is decreasing with k

Setting $K=10$, we may use the following code:

```
K=10;
a_p = 3./(j.*2.*[1:K].*pi).*(1-cos([1:K].*pi)); % +ve a_k
a_n = 3./(j.*2.*[-K:-1].*pi).*(1-cos([-K:-1].*pi)); %-ve a_k
a = [a_n 0 a_p]; %construct vector of a_k
for n=1:2000
    t=(n-1000)/500; %time interval of (-2,2);
            %small sampling interval of 1/500 to approximate x(t);
    e = (exp (j.*[-K:K].*pi.*t)).'; %construct exponential vector
    x(n) = a*e;
end
x=real(x); %remove imaginary parts due to precision error
n=1:2000;
t=(n-1000)./500;
plot(t,x)
xlabel('t')
```


For $K=50$:

In summary, if $x(t)$ is periodic, it can be represented as a linear combination of complex harmonics with amplitudes $\left\{a_{k}\right\}$.

That is, $\left\{a_{k}\right\}$ correspond to the frequency domain representation of $x(t)$ and we may write:

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \quad \text { or } \quad x(t) \leftrightarrow a_{k} \tag{4.7}
\end{equation*}
$$

where $X(j \Omega)$, a function of frequency Ω, is characterized by $\left\{a_{k}\right\}$.

Both $x(t)$ and $X(j \Omega)$ represent the same signal: we observe the former in time domain while the latter in frequency domain.

time domain	frequency domain
$a_{k}=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} x(t) e^{-j k \Omega_{0} t} d t=$	$c(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}$
continuous and periodic	discrete and aperiodic

Fig.4.1: Illustration of Fourier series

Properties of Fourier Series

Linearity

Let $x(t) \leftrightarrow a_{k}$ and $y(t) \leftrightarrow b_{k}$ be two Fourier series pairs with the same period of T_{p}. We have:

$$
\begin{equation*}
A x(t)+B y(t) \leftrightarrow A a_{k}+B b_{k} \tag{4.8}
\end{equation*}
$$

This can be proved as follows. As $x(t)$ and $y(t)$ have the same fundamental period of T_{p} or fundamental frequency Ω_{0}, we can write:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}, \quad y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \Omega_{0} t}
$$

Multiplying $x(t)$ and $y(t)$ by A and B, respectively, yields:

$$
A x(t)=A \sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}, \quad B y(t)=B \sum_{k=-\infty}^{\infty} b_{k} e^{j k \Omega_{0} t}
$$

Summing $A x(t)$ and $B y(t)$, we get:

$$
A x(t)+B y(t)=\sum_{k=-\infty}^{\infty}\left(A a_{k}+B b_{k}\right) e^{j k \Omega_{0} t} \leftrightarrow A a_{k}+B b_{k}
$$

Time Shifting
A shift of t_{0} in $x(t)$ causes a multiplication of $e^{-j k \Omega_{0} t_{0}}$ in a_{k} :

$$
\begin{equation*}
x(t) \leftrightarrow a_{k} \Rightarrow x\left(t-t_{0}\right) \leftrightarrow e^{-j k \Omega_{0} t_{0}} a_{k}=e^{-j k(2 \pi) / T_{p} t_{0}} a_{k} \tag{4.9}
\end{equation*}
$$

Time Reversal

$$
\begin{equation*}
x(t) \leftrightarrow a_{k} \Rightarrow x(-t) \leftrightarrow a_{-k} \tag{4.10}
\end{equation*}
$$

(4.9) and (4.10) are proved as follows.

Recall (4.3):

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}
$$

Substituting t by $t-t_{0}$, we obtain:

$$
x\left(t-t_{0}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0}\left(t-t_{0}\right)}=\sum_{k=-\infty}^{\infty}\left(e^{-j k \Omega_{0} t_{0}} a_{k}\right) e^{j k \Omega_{0} t} \leftrightarrow e^{-j k \Omega_{0} t_{0}} a_{k}
$$

Substituting t by $-t$ yields:

$$
x(-t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0}(-t)}=\sum_{\substack{l=-\infty \\ \text { Page 26 }}}^{\infty} a_{-l} e^{j l \Omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{-k} e^{j k \Omega_{0} t} \leftrightarrow a_{-k}
$$

Time Scaling

For a time-scaled version of $x(t), x(\alpha t)$ where $\alpha>0$ is a real number, we have:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t} \Rightarrow x(\alpha t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\alpha \Omega_{0}\right) t} \tag{4.11}
\end{equation*}
$$

Multiplication

Let $x(t) \leftrightarrow a_{k}$ and $y(t) \leftrightarrow b_{k}$ be two Fourier series pairs with the same period of T_{p}. We have:

$$
\begin{equation*}
x(t) y(t) \leftrightarrow \sum_{l=-\infty}^{\infty} a_{l} b_{k-l}=a_{k} \otimes b_{k} \tag{4.12}
\end{equation*}
$$

(4.12) is proved as follows.

Applying (4.3) again, the product of $x(t)$ and $y(t)$ is:

$$
\begin{aligned}
x(t) y(t) & =\sum_{l=-\infty}^{\infty} a_{l} e^{j l \Omega_{0} t} \sum_{n=-\infty}^{\infty} b_{n} e^{j n \Omega_{0} t} \\
& =\sum_{l=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{l} b_{n} e^{j(l+n) \Omega_{0} t} \\
& =\sum_{l=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_{l} b_{l-k} e^{j k \Omega_{0} t}, \quad k=l+n \\
& =\sum_{k=-\infty}^{\infty}\left(\sum_{l=-\infty}^{\infty} a_{l} b_{l-k}\right) e^{j k \Omega_{0} t} \leftrightarrow \sum_{l=-\infty}^{\infty} a_{l} b_{k-l}
\end{aligned}
$$

Conjugation

$$
\begin{equation*}
x(t) \leftrightarrow a_{k} \Rightarrow x^{*}(t) \leftrightarrow a_{-k}^{*} \tag{4.13}
\end{equation*}
$$

Parseval's Relation

The Parseval's relation addresses the power of $x(t)$:

$$
\begin{equation*}
\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2} \tag{4.14}
\end{equation*}
$$

That is, we can compute the power in either the time domain or frequency domain.

Example 4.5

Prove the Parseval's relation.

Using (4.3), we have:

$$
\begin{aligned}
\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2}|x(t)|^{2} d t & =\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2}\left(\sum_{m=-\infty}^{\infty} a_{m} e^{j m \Omega_{0} t}\right)\left(\sum_{n=-\infty}^{\infty} a_{n} e^{j n \Omega_{0} t}\right)^{*} d t \\
& =\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2}\left(\sum_{m=-\infty}^{\infty} a_{m} e^{j m \Omega_{0} t}\right)\left(\sum_{n=-\infty}^{\infty} a_{n}^{*} e^{-j n \Omega_{0} t}\right) d t \\
& =\frac{1}{T_{p}} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{m} a_{n}^{*} \int_{-T_{p} / 2}^{T_{p} / 2} e^{j(m-n) \Omega_{0} t} d t \\
& =\frac{1}{T_{p}} \sum_{m=-\infty}^{\infty}\left|a_{m}\right|^{2} \int_{-T_{p} / 2}^{T_{p} / 2} d t=\sum_{m=-\infty}^{\infty}\left|a_{m}\right|^{2}
\end{aligned}
$$

Linear Time-Invariant System with Periodic Input

Recall for a linear time-invariant (LTI) system, the inputoutput relationship is characterized by convolution in (3.17):

$$
\begin{align*}
y(t) & =x(t) \otimes h(t) \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \tag{4.15}
\end{align*}
$$

If the input to the system with impulse response $h(t)$ is $x(t)=e^{j \Omega_{0} t}$, then the output is:

$$
\begin{align*}
y(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} h(\tau) e^{j \Omega_{0}(t-\tau)} d \tau \\
& =e^{j \Omega_{0} t} \int_{-\infty}^{\infty} h(\tau) e^{-j \Omega_{0} \tau} d \tau \tag{4.16}
\end{align*}
$$

Note that $\int_{-\infty}^{\infty} h(\tau) e^{-j \Omega_{0} \tau} d \tau$ is independent of t but a function of Ω_{0} and we may denote it as $H\left(j \Omega_{0}\right)$:

$$
\begin{equation*}
y(t)=e^{j \Omega_{0} t} H\left(j \Omega_{0}\right)=H\left(j \Omega_{0}\right) x(t) \tag{4.17}
\end{equation*}
$$

If we input a sinusoid through a LTI system, there is no change in frequency in the output but amplitude and phase are modified.

Generalizing the result to any periodic signal in (4.3) yields:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t} \rightarrow y(t)=\sum_{k=-\infty}^{\infty} a_{k} H\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t} \tag{4.18}
\end{equation*}
$$

where only the Fourier series coefficients are modified.
Note that discrete Fourier series is used to represent discrete periodic signal in (2.7) but it will not be discussed.

