Fourier Transform

Chapter Intended Learning Outcomes:
(i) Represent continuous-time aperiodic signals using Fourier transform
(ii) Understand the properties of Fourier transform
(iii) Understand the relationship between Fourier transform and linear time-invariant system

Aperiodic Signal Representation in Frequency Domain

For a periodic continuous-time signal, it can be represented in frequency domain using Fourier series.

But in general, signals are not periodic. To address this, we use Fourier transform:

$$
\begin{equation*}
X(j \Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \tag{5.1}
\end{equation*}
$$

where $X(j \Omega)$ is a function of frequency Ω, also known as spectrum, and we can study the signal frequency components from it.

Unlike Fourier series, $X(j \Omega)$ is continuous in frequency, i.e., defined on a continuous range of Ω.

The inverse transform is given by

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega \tag{5.2}
\end{equation*}
$$

As in (4.7), we may write:

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \tag{5.3}
\end{equation*}
$$

That is, both $x(t)$ and $X(j \Omega)$ represent the same signal: $x(t)$ is the time domain representation while $X(j \Omega)$ is the frequency domain representation.

Fig.5.1: Illustration of Fourier transform

Derivation of Fourier Transform

Fourier transform can be derived from Fourier series as follows.

We start with an aperiodic $x(t)$ and then construct its periodic version $\tilde{x}(t)$ with period T.

Fig.5.2: Constructing $\tilde{x}(t)$ from $x(t)$

According to (4.4), the Fourier series coefficients of $\tilde{x}(t)$ are:

$$
\begin{equation*}
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} \tilde{x}(t) e^{-j k \Omega_{0} t} d t \tag{5.4}
\end{equation*}
$$

where $\Omega_{0}=2 \pi / T$.
Noting that $x(t)=\tilde{x}(t)$ for $|t|<T / 2$ and $x(t)=0$ for $|t|>T / 2$, (5.4) can be expressed as:

$$
\begin{equation*}
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \Omega_{0} t} d t=\frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-j k \Omega_{0} t} d t \tag{5.5}
\end{equation*}
$$

As $X(j \Omega)$ is function of Ω, substituting $\Omega=k \Omega_{0}$ in (5.1) gives

$$
\begin{equation*}
X\left(j k \Omega_{0}\right)=\int_{-\infty}^{\infty} x(t) e^{-j k \Omega_{0} t} d t \tag{5.6}
\end{equation*}
$$

We can express a_{k} as:

$$
\begin{equation*}
a_{k}=\frac{1}{T} X\left(j k \Omega_{0}\right) \tag{5.7}
\end{equation*}
$$

According to (4.3) and using (5.7), we get the Fourier series expansion for $\tilde{x}(t)$:

$$
\begin{equation*}
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} \frac{1}{T} X\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t}=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} \Omega_{0} X\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t} \tag{5.8}
\end{equation*}
$$

As $T \rightarrow \infty$ or $\Omega_{0} \rightarrow 0, \tilde{x}(t) \rightarrow x(t)$.
Considering $\Omega_{0} X\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t}$ as the area of a rectangle whose height is $X\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t}$ and width corresponds to the interval of $\left[k \Omega_{0},(k+1) \Omega_{0}\right]$, we obtain:

$$
\begin{align*}
x(t)=\lim _{\Omega_{0} \rightarrow 0} \tilde{x}(t) & =\lim _{\Omega_{0} \rightarrow 0} \frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} \Omega_{0} X\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega \tag{5.9}
\end{align*}
$$

Fig. 5.3: Fourier transform from Fourier series

Example 5.1

Find the Fourier transform of $x(t)$ which is a rectangular pulse of the form:

$$
x(t)= \begin{cases}1, & -T_{0}<t<T_{0} \\ 0, & \text { otherwise }\end{cases}
$$

Note that the signal is of finite length and corresponds to one period of the periodic function in Example 4.3. Applying (5.1) on $x(t)$ yields:

$$
X(j \Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t=\int_{-T_{0}}^{T_{0}} e^{-j \Omega t} d t=\frac{2 \sin \left(\Omega T_{0}\right)}{\Omega}
$$

Define the sinc function:

$$
\operatorname{sinc}(u)=\frac{\sin (\pi u)}{\pi u}
$$

It is seen that $X(j \Omega)$ is a scaled sinc function:

$$
X(j \Omega)=\frac{2 \sin \left(\Omega T_{0}\right)}{\Omega}=2 T_{0} \operatorname{sinc}\left(\frac{\Omega T_{0}}{\pi}\right)
$$

We can see that $X(j \Omega)$ is continuous in frequency. When the pulse width decreases, it covers more frequencies and vice versa.

Example 5.2

Find the inverse Fourier transform of $X(j \Omega)$ which is a rectangular pulse of the form:

$$
X(j \Omega)= \begin{cases}1, & -W_{0}<\Omega<W_{0} \\ 0, & \text { otherwise }\end{cases}
$$

Using (5.2), we get:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega=\frac{1}{2 \pi} \int_{-W_{0}}^{W_{0}} e^{j \Omega t} d \Omega=\frac{\sin \left(W_{0} t\right)}{\pi t}=\frac{W_{0}}{\pi} \operatorname{sinc}\left(\frac{W_{0} t}{\pi}\right)
$$

Example 5.3

Find the Fourier transform of $x(t)=e^{-a t} u(t)$ with $a>0$.
Employing the property of $u(t)$ in (2.22) and (5.1), we get:

$$
X(j \Omega)=\int_{0}^{\infty} e^{-a t} e^{-j \Omega t} d t=-\left.\frac{1}{a+j \Omega} e^{-(a+j \Omega) t}\right|_{0} ^{\infty}=\frac{1}{a+j \Omega}=\frac{a-j \Omega}{a^{2}+\Omega^{2}}
$$

Note that when $t \rightarrow \infty, e^{-a t} \rightarrow 0$.

$$
|X(j \Omega)|=\frac{1}{\sqrt{a^{2}+\Omega^{2}}}
$$

and

$$
\angle(X(j \Omega))=-\tan ^{-1}\left(\frac{\Omega}{a}\right)
$$

Example 5.4
Find the Fourier transform of the impulse $x(t)=\delta(t)$.
Using (2.19) and (2.20) with $x(t)=e^{-j \Omega t}$ and $t_{0}=0$, we get:

$$
X(j \Omega)=\int_{-\infty}^{\infty} \delta(t) e^{-j \Omega t} d t=\int_{-\infty}^{\infty} \delta(t) e^{-j \Omega \cdot 0} d t=e^{-j \Omega \cdot 0} \int_{-\infty}^{\infty} \delta(t) d t=e^{-j \Omega \cdot 0}=1
$$

Spectrum of $\delta(t)$ has unit amplitude at all frequencies. This aligns with Example 5.1 when $T_{0} \rightarrow 0$. On the other hand, at $T_{0} \rightarrow \infty, x(t)$ will be a DC and only contains frequency 0.

Periodic Signal Representation using Fourier Transform

Fourier transform can be used to represent continuous-time periodic signals with the use of $\delta(t)$.

Instead of time domain, we consider an impulse in the frequency domain:

$$
\begin{equation*}
X(j \Omega)=2 \pi \delta\left(\Omega-\Omega_{0}\right) \tag{5.10}
\end{equation*}
$$

Fig.5.4: Impulse in frequency domain

Taking the inverse Fourier transform of $X(j \Omega)$ and employing the result in Example 5.4, $x(t)$ is computed as:

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} 2 \pi \delta\left(\Omega-\Omega_{0}\right) e^{j \Omega t} d \Omega=e^{j \Omega_{0} t} \tag{5.11}
\end{equation*}
$$

As a result, the Fourier transform pair is:

$$
\begin{equation*}
e^{j \Omega_{0} t} \leftrightarrow 2 \pi \delta\left(\Omega-\Omega_{0}\right) \tag{5.12}
\end{equation*}
$$

From (4.3) and (5.12), the Fourier transform pair for a continuous-time periodic signal is:

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t} \leftrightarrow \sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\Omega-k \Omega_{0}\right) \tag{5.13}
\end{equation*}
$$

Example 5.5

Find the Fourier transform of $x(t)=\sum_{k=-\infty}^{\infty} \delta(t-k T)$ which is called an impulse train.

Clearly, $x(t)$ is a periodic signal with a period of T. Using (4.4) and Example 5.4, the Fourier series coefficients are:

$$
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j k \Omega_{0} t} d t=\frac{1}{T}
$$

with $\Omega_{0}=2 \pi / T$. According to (5.13), the Fourier transform is:

$$
X(j \Omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-\frac{2 \pi k}{T}\right)=\Omega_{0} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-k \Omega_{0}\right)
$$

Properties of Fourier Transform

Linearity
Let $x(t) \leftrightarrow X(j \Omega)$ and $y(t) \leftrightarrow Y(j \Omega)$ be two Fourier transform pairs. We have:

$$
\begin{equation*}
a x(t)+b y(t) \leftrightarrow a X(j \Omega)+b Y(j \Omega) \tag{5.14}
\end{equation*}
$$

Time Shifting

A shift of t_{0} in $x(t)$ causes a multiplication of $e^{-j \Omega t_{0}}$ in $X(j \Omega)$:

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \Rightarrow x\left(t-t_{0}\right) \leftrightarrow e^{-j \Omega t_{0}} X(j \Omega) \tag{5.15}
\end{equation*}
$$

Time Reversal

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \Rightarrow x(-t) \leftrightarrow X(-j \Omega) \tag{5.16}
\end{equation*}
$$

Time Scaling

For a time-scaled version of $x(t), x(\alpha t)$ where $\alpha \neq 0$ is a real number, we have:

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \Rightarrow x(\alpha t) \leftrightarrow \frac{1}{|\alpha|} X\left(\frac{j \Omega}{\alpha}\right) \tag{5.17}
\end{equation*}
$$

Multiplication

Let $x(t) \leftrightarrow X(j \Omega)$ and $y(t) \leftrightarrow Y(j \Omega)$ be two Fourier transform pairs. We have:

$$
x(t) \cdot y(t) \leftrightarrow \frac{1}{2 \pi} X(j \Omega) \otimes Y(j \Omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \tau) Y(j(\Omega-\tau)) d \tau \text { (5.18) }
$$

Conjugation

$$
\begin{equation*}
x(t) \leftrightarrow X(j \Omega) \Rightarrow x^{*}(t) \leftrightarrow X^{*}(-j \Omega) \tag{5.19}
\end{equation*}
$$

Parseval's Relation
The Parseval's relation addresses the energy of $x(t)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \Omega)|^{2} d t \tag{5.20}
\end{equation*}
$$

Convolution

Let $x(t) \leftrightarrow X(j \Omega)$ and $y(t) \leftrightarrow Y(j \Omega)$ be two Fourier transform pairs. We have:

$$
\begin{equation*}
x(t) \otimes y(t) \leftrightarrow X(j \Omega) Y(j \Omega) \tag{5.21}
\end{equation*}
$$

which can be derived as:

$$
\begin{align*}
& \int_{-\infty}^{\infty} x(t) \otimes y(t) e^{-j \Omega t} d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) y(t-\tau) e^{-j \Omega t} d \tau d t \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) y(u) e^{-j \Omega \tau} e^{-j \Omega u} d \tau d u, \quad u=t-\tau \\
= & {\left[\int_{-\infty}^{\infty} x(\tau) e^{-j \Omega \tau} d \tau\right] \cdot\left[\int_{-\infty}^{\infty} y(u) e^{-j \Omega u} d u\right] } \\
= & X(j \Omega) \cdot Y(j \Omega) \tag{5.22}
\end{align*}
$$

Differentation

Differentiating $x(t)$ with respect to t corresponds to multiplying $X(j \Omega)$ by $j \Omega$ in the frequency domain:

$$
\begin{equation*}
\frac{d x(t)}{d t} \leftrightarrow j \Omega X(j \Omega) \Rightarrow \frac{d^{k} x(t)}{d t^{k}} \leftrightarrow(j \Omega)^{k} X(j \Omega) \tag{5.23}
\end{equation*}
$$

Integration

On the other hand, if we perform integration on $x(t)$, then the frequency domain representation becomes:

$$
\begin{equation*}
\int_{-\infty}^{t} x(\tau) d \tau \leftrightarrow \frac{1}{j \Omega} X(j \Omega)+\pi X(0) \delta(\Omega) \tag{5.24}
\end{equation*}
$$

Fourier Transform and Linear Time-Invariant System

Recall in a linear time-invariant (LTI) system, the inputoutput relationship is characterized by convolution in (3.17):

$$
\begin{align*}
y(t) & =x(t) \otimes h(t) \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \tag{5.25}
\end{align*}
$$

Using (5.21), we can consider (5.25) in frequency domain:

$$
\begin{equation*}
y(t)=x(t) \otimes h(t) \leftrightarrow Y(j \Omega)=X(j \Omega) H(j \Omega) \tag{5.26}
\end{equation*}
$$

This suggests apart from computing the output using timedomain approach via convolution, we can convert the input and impulse response to frequency domain, then $y(t)$ is computed from inverse Fourier transform of $X(j \Omega) H(j \Omega)$.

In fact, $H(j \Omega)$ represents the LTI system in the frequency domain, is called the system frequency response.

Recall (3.25) that the input and output of a LTI system satisfy the differential equation:

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}} \tag{5.27}
\end{equation*}
$$

Taking the Fourier transform and using the linearity and differentiation properties, we get:

$$
\begin{equation*}
Y(j \Omega)\left[\sum_{k=0}^{N} a_{k}(j \Omega)^{k}\right]=X(j \Omega)\left[\sum_{k=0}^{M} b_{k}(j \Omega)^{k}\right] \tag{5.28}
\end{equation*}
$$

The system frequency response can also be computed as:

$$
\begin{equation*}
H(j \Omega)=\frac{Y(j \Omega)}{X(j \Omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \Omega)^{k}}{\sum_{k=0}^{M} a_{k}(j \Omega)^{k}} \tag{5.29}
\end{equation*}
$$

Example 5.6

Determine the system frequency response for a LTI system described by the following differential equation:

$$
\frac{d y(t)}{d t}+a y(t)=x(t)
$$

Applying (5.29), we easily obtain:

$$
H(j \Omega)=\frac{Y(j \Omega)}{X(j \Omega)}=\frac{1}{j \Omega+a}
$$

