z Transform

Chapter Intended Learning Outcomes:
(i) Represent discrete-time signals using z transform
(ii) Understand the relationship between z transform and discrete-time Fourier transform
(iii) Understand the properties of z transform
(iv) Perform operations on z transform and inverse transform
(v) Apply z transform for analyzing linear time-invariant systems

Discrete-Time Signal Representation with z Transform

Apart from discrete-time Fourier transform (DTFT), we can also use z transform to represent discrete-time signals.

The z transform of $x[n]$, denoted by $X(z)$, is defined as:

$$
\begin{equation*}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{8.1}
\end{equation*}
$$

where z is a continuous complex variable.
We can also express z as:

$$
\begin{equation*}
z=r e^{j \omega} \tag{8.2}
\end{equation*}
$$

where $r=|z|>0$ is magnitude and $\omega=\angle(z)$ is angle of z.

Employing (8.2), the z transform can be written as:

$$
\begin{equation*}
\left.X(z)\right|_{z=r e^{j \omega}}=X\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n} \tag{8.3}
\end{equation*}
$$

Comparing (8.3) and the DTFT formula in (6.4):

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8.4}
\end{equation*}
$$

That is, z transform of $x[n]$ is equal to the DTFT of $x[n] r^{-n}$.
When $r=1$ or $z=e^{j \omega},(8.3)$ and (8.4) are identical:

$$
\begin{equation*}
\left.X(z)\right|_{z=e^{j \omega}}=X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8.5}
\end{equation*}
$$

That is, z transform generalizes the DTFT.

Fig.8.1: Relationship between $X(z)$ and $X\left(e^{j \omega}\right)$ on the z-plane

Region of Convergence (ROC)

ROC indicates when z transform of a sequence converges.
Generally there exists some z such that

$$
\begin{equation*}
|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right| \rightarrow \infty \tag{8.6}
\end{equation*}
$$

where the z transform does not converge.
The set of values of z for which $X(z)$ converges or

$$
\begin{equation*}
|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x[n] z^{-n}\right|<\infty \tag{8.7}
\end{equation*}
$$

is called the ROC, which must be specified along with $X(z)$ in order for the z transform to be complete.

Note also that if

$$
\begin{equation*}
\left|X\left(e^{j \omega}\right)\right|=\left|\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right| \rightarrow \infty \tag{8.8}
\end{equation*}
$$

then the DTFT does not exist. While the DTFT converges if
$\left|X\left(e^{j \omega}\right)\right|=\left|\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x[n] e^{-j \omega n}\right|=\sum_{n=-\infty}^{\infty}|x[n]|<\infty$ (8.9)
That is, it is possible that the DTFT of $x[n]$ does not exist.
Also, the z transform does not exist if there is no value of z satisfies (8.7).

Assuming that $x[n]$ is of infinite length, we decompose $X(z)$:

$$
\begin{equation*}
X(z)=X_{-}(z)+X_{+}(z) \tag{8.10}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{-}(z)=\sum_{n=-\infty}^{-1} x[n] z^{-n}=\sum_{m=1}^{\infty} x[-m] z^{m} \tag{8.11}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{+}(z)=\sum_{n=0}^{\infty} x[n] z^{-n} \tag{8.12}
\end{equation*}
$$

Let $f_{n}(z)=x[n] z^{-n}, X_{+}(z)$ is expanded as:

$$
\begin{align*}
X_{+}(z) & =x[0] z^{-0}+x[1] z^{-1}+\cdots+x[n] z^{-n}+\cdots \\
& =f_{0}(z)+f_{1}(z)+\cdots+f_{n}(z)+\cdots \tag{8.13}
\end{align*}
$$

According to the ratio test, convergence of $X_{+}(z)$ requires

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{f_{n+1}(z)}{f_{n}(z)}\right|<1 \tag{8.14}
\end{equation*}
$$

Let $\lim _{n \rightarrow \infty}|x[n+1] / x[n]|=R_{+}>0 . X_{+}(z)$ converges if

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left|\frac{x[n+1] z^{-n-1}}{x[n] z^{-n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x[n+1]}{x[n]}\right|\left|z^{-1}\right|<1 \\
& \Rightarrow|z|>\lim _{n \rightarrow \infty}\left|\frac{x[n+1]}{x[n]}\right|=R_{+} \tag{8.15}
\end{align*}
$$

That is, the ROC for $X_{+}(z)$ is $|z|>R_{+}$.

Let $\lim _{m \rightarrow \infty}|x[-m] / x[-m-1]|=R_{-}>0 . X_{-}(z)$ converges if

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left|\frac{x[-m-1] z^{m+1}}{x[-m] z^{m}}\right|=\lim _{m \rightarrow \infty}\left|\frac{x[-m-1]}{x[-m]}\right||z|<1 \\
& \Rightarrow|z|<\lim _{m \rightarrow \infty}\left|\frac{x[-m]}{x[-m-1]}\right|=R_{-} \tag{8.16}
\end{align*}
$$

As a result, the ROC for $X_{-}(z)$ is $|z|<R_{-}$.
Combining the results, the ROC for $X(z)$ is $R_{+}<|z|<R_{-}$:

- ROC is a ring when $R_{+}<R_{-}$
- No ROC if $R_{-}<R_{+}$and $X(z)$ does not exist

Fig. 8.2: ROCs for $X_{+}(z), X_{-}(z)$ and $X(z)$

Poles and Zeros

Values of z for which $X(z)=0$ are the zeros of $X(z)$.
Values of z for which $X(z)= \pm \infty$ are the poles of $X(z)$.

Example 8.1

In many real-world applications, $X(z)$ is represented as a rational function in z^{-1} :

$$
X(z)=\frac{P(z)}{Q(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

Discuss the poles and zeros of $X(z)$.
Multiplying both $P(z)$ and $Q(z)$ by z^{M+N} and then perform factorization yields:

$$
X(z)=\frac{z^{N} \sum_{k=0}^{M} b_{k} z^{M-k}}{z^{M} \sum_{k=0}^{N} a_{k} z^{N-k}}=\frac{z^{N} b_{0}\left(z-d_{1}\right)\left(z-d_{2}\right) \cdots\left(z-d_{M}\right)}{z^{M} a_{0}\left(z-c_{1}\right)\left(z-c_{2}\right) \cdots\left(z-c_{N}\right)}
$$

We see that there are M nonzero zeros, namely, $d_{1}, d_{2}, \cdots, d_{M}$, and N nonzero poles, namely, $c_{1}, c_{2}, \cdots, c_{N}$.

If $M>N$, there are $(M-N)$ poles at zero location.
On the other hand, if $M<N$, there are $(N-M)$ zeros at zero location.

Note that we use a "o" to represent a zero and a " \times " to represent a pole on the z-plane.

Example 8.2

Determine the z transform of $x[n]=a^{n} u[n]$ where $u[n]$ is the unit step function. Then determine the condition when the DTFT of $x[n]$ exists.
Using (8.1) and (2.34), we have

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

According to (8.7), $X(z)$ converges if

$$
\sum_{n=0}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

Applying the ratio test, the convergence condition is

$$
\left|a z^{-1}\right|<1 \Leftrightarrow|z|>|a|
$$

which aligns with the ROC for $X_{+}(z)$ in (8.15).

Note that we cannot write $|z|>a$ because a may be complex. For $|z|>|a|, X(z)$ is computed as

$$
X(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{\infty}}{1-a z^{-1}}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

Together with the ROC, the z transform of $x[n]=a^{n} u[n]$ is:

$$
X(z)=\frac{z}{z-a}, \quad|z|>|a|
$$

It is clear that $X(z)$ has a zero at $z=0$ and a pole at $z=a$. Using (8.5), we substitute $z=e^{j \omega}$ to obtain

$$
X\left(e^{j \omega}\right)=\frac{e^{j \omega}}{e^{j \omega}-a}, \quad\left|e^{j \omega}\right|=1>|a|
$$

As a result, the existence condition for DTFT of $x[n]$ is $|a|<1$.

Otherwise, its DTFT does not exist. In general, the DTFT $X\left(e^{j \omega}\right)$ exists if its ROC includes the unit circle. If $|z|>|a|$ includes $|z|=1,|a|<1$ is required.

$$
|a|<1
$$

$$
|a|>1
$$

Fig. 8.3: ROCs for $|a|<1$ and $|a|>1$ when $x[n]=a^{n} u[n]$

Example 8.3

Determine the z transform of $x[n]=-a^{n} u[-n-1]$. Then determine the condition when the DTFT of $x[n]$ exists.

Using (8.1) and (2.34), we have

$$
X(z)=\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=-\sum_{m=1}^{\infty} a^{-m} z^{m}=-\sum_{m=1}^{\infty}\left(a^{-1} z\right)^{m}
$$

Similar to Example 8.2, $X(z)$ converges if $\left|a^{-1} z\right|<1$ or $|z|<|a|$, which aligns with the ROC for $X_{-}(z)$ in (8.16). This gives

$$
X(z)=-\sum_{m=1}^{\infty}\left(a^{-1} z\right)^{m}=-\frac{a^{-1} z\left(1-\left(a^{-1} z\right)^{\infty}\right)}{1-a^{-1} z}=-\frac{a^{-1} z}{1-a^{-1} z}=\frac{z}{z-a}
$$

Together with ROC, the z transform of $x[n]=-a^{n} u[-n-1]$ is:

$$
X(z)=\frac{z}{z-a}, \quad|z|<|a|
$$

Using (8.5), we substitute $z=e^{j \omega}$ to obtain

$$
X\left(e^{j \omega}\right)=\frac{e^{j \omega}}{e^{j \omega}-a}, \quad\left|e^{j \omega}\right|=1<|a|
$$

As a result, the existence condition for DTFT of $x[n]$ is $|a|>1$.

$|a|<1$

$|a|>1$

Fig. 8.4: ROCs for $|a|<1$ and $|a|>1$ when $x[n]=-a^{n} u[-n-1]$

Example 8.4

Determine the z transform of $x[n]=a^{n} u[n]+b^{n} u[-n-1]$ where $|a|<|b|$.

Employing the results in Examples 8.2 and 8.3, we have

$$
\begin{aligned}
X(z) & =\frac{1}{1-a z^{-1}}+\left(-\frac{1}{1-b z^{-1}}\right), \quad|z|>|a| \quad \text { and } \quad|z|<|b| \\
& =\frac{(a-b) z^{-1}}{\left(1-a z^{-1}\right)\left(1-b z^{-1}\right)} \\
& =\frac{(a-b) z}{(z-a)(z-b)}, \quad|a|<|z|<|b|
\end{aligned}
$$

Note that its ROC agrees with Fig. 8.2.

What are the pole(s) and zero(s) of $X(z)$?

Example 8.5

Determine the z transform of $x[n]=\delta[n+1]$.
Using (8.1) and (2.33), we have

$$
X(z)=\sum_{n=-\infty}^{\infty} \delta[n+1] z^{-n}=z
$$

Example 8.6
Determine the z transform of $x[n]$ which has the form of:

$$
x[n]= \begin{cases}a^{n}, & 0 \leq n \leq N-1 \\ 0, & \text { otherwise }\end{cases}
$$

Using (8.1), we have

$$
X(z)=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
$$

Finite-Duration and Infinite-Duration Sequences

Finite-duration sequence: values of $x[n]$ are nonzero only for a finite time interval.

Otherwise, $x[n]$ is called an infinite-duration sequence:

- Right-sided: if $x[n]=0$ for $n<N_{+}<\infty$ where N_{+}is an integer (e.g., $x[n]=a^{n} u[n]$ with $N_{+}=0 ; x[n]=a^{n} u[n-10]$ with $N_{+}=10 ; x[n]=a^{n} u[n+10]$ with $\left.N_{+}=-10\right)$.
- Left-sided: if $x[n]=0$ for $n>N_{-}>-\infty$ where N_{-}is an integer (e.g., $x[n]=-a^{n} u[-n-1]$ with $N_{-}=-1$).
- Two-sided: neither right-sided nor left-sided (e.g., Example 8.4).

Fig. 8.5: Finite-duration sequences

Fig. 8.6: Infinite-duration sequences

Sequence	Transform	ROC
$\delta[n]$	1	All z
$\delta[n-m]$	z^{-m}	$\|z\|>0, m>0 ;\|z\|<\infty, m<0$
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$a^{n} \cos (b n) u[n]$	$\frac{1-a \cos (b) z^{-1}}{1-2 a \cos (b) z^{-1}+a^{2} z^{-2}}$	$\|z\|>\|a\|$
$a^{n} \sin (b n) u[n]$	$\frac{a \sin (b) z^{-1}}{1-2 a \cos (b) z^{-1}+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Table 8.1: z transforms for common sequences

Summary of ROC Properties

P1. There are four possible shapes for ROC, namely, the entire region except possibly $z=0$ and/or $z=\infty$, a ring, or inside or outside a circle in the z-plane centered at the origin (e.g., Figures 8.6 and 8.7).

P2. The DTFT of a sequence $x[n]$ exists if and only if the ROC of the z transform of $x[n]$ includes the unit circle (e.g., Examples 8.2 and 8.3).

P3: The ROC cannot contain any poles (e.g., Examples 8.2 to 8.4).

P4: When $x[n]$ is a finite-duration sequence, the ROC is the entire z-plane except possibly $z=0$ and/or $z=\infty$ (e.g., Examples 8.5 and 8.6).

P5: When $x[n]$ is a right-sided sequence, the ROC is of the form $|z|>\left|p_{\max }\right|$ where $p_{\max }$ is the pole with the largest magnitude in $X(z)$ (e.g., Example 8.2).

P6: When $x[n]$ is a left-sided sequence, the ROC is of the form $|z|<\left|p_{\text {min }}\right|$ where $p_{\min }$ is the pole with the smallest magnitude in $X(z)$ (e.g., Example 8.3).
P7: When $x[n]$ is a two-sided sequence, the ROC is of the form $\left|p_{a}\right|<|z|<\left|p_{b}\right|$ where p_{a} and p_{b} are two poles with the successive magnitudes in $X(z)$ such that $\left|p_{a}\right|<\left|p_{b}\right|$ (e.g., Example 8.4).
P8: The ROC must be a connected region.

Example 8.7

A z transform $X(z)$ contains three poles, namely, a, b and c with $|a|<|b|<|c|$. Determine all possible ROCs.

Fig. 8.7: ROC possibilities for three poles What are other possible ROCs?

Properties of z Transform

Linearity

Let $x_{1}[n] \leftrightarrow X_{1}(z)$ and $x_{2}[n] \leftrightarrow X_{2}(z)$ be two z transform pairs with ROCs $\mathcal{R}_{x_{1}}$ and $\mathcal{R}_{x_{2},}$ respectively, we have

$$
\begin{equation*}
a x_{1}[n]+b x_{2}[n] \leftrightarrow a X_{1}(z)+b X_{2}(z) \tag{8.17}
\end{equation*}
$$

Its ROC is denoted by \mathcal{R}, which includes $\mathcal{R}_{x_{1}} \cap \mathcal{R}_{x_{2}}$ where \cap is the intersection operator. That is, \mathcal{R} contains at least the intersection of $\mathcal{R}_{x_{1}}$ and $\mathcal{R}_{x_{2}}$.

Example 8.8
Determine the z transform of $y[n]$ which is expressed as:

$$
y[n]=x_{1}[n]+x_{2}[n]
$$

where $x_{1}[n]=(0.2)^{n} u[n]$ and $x_{2}[n]=(-0.3)^{n} u[n]$.

From Table 8.1, the z transforms of $x_{1}[n]$ and $x_{2}[n]$ are:

$$
x_{1}[n]=(0.2)^{n} u[n] \leftrightarrow \frac{1}{1-0.2 z^{-1}}, \quad|z|>0.2
$$

and

$$
x_{2}[n]=(-0.3)^{n} u[n] \leftrightarrow \frac{1}{1+0.3 z^{-1}}, \quad|z|>0.3
$$

According to the linearity property, the z transform of $y[n]$ is

$$
Y(z)=\frac{1}{1-0.2 z^{-1}}+\frac{1}{1+0.3 z^{-1}}, \quad|z|>0.3
$$

Why the ROC is $|z|>0.3$ instead of $|z|>0.2$?

Example 8.9

Determine the ROC of the z transform of $x[n]$ which is expressed as:

$$
x[n]=a^{n} u[n]-a^{n} u[n-1]
$$

Noting that $a^{n} u[n]-a^{n} u[n-1]=\delta[n]$, we know that the ROC of $x[n]$ is the entire z-plane.
On the other hand, both ROCs of $a^{n} u[n]$ and $a^{n} u[n-1]$ are $|z|>|a|$. We see that the ROC of $x[n]$ contains the intersections of $a^{n} u[n]$ and $a^{n} u[n-1]$, which is $|z|>|a|$.

Time Shifting

A time-shift of n_{0} in $x[n]$ causes a multiplication of $z^{-n_{0}}$ in $X(z)$

$$
\begin{equation*}
x\left[n-n_{0}\right] \leftrightarrow z^{-n_{0}} X(z) \tag{8.18}
\end{equation*}
$$

The ROC for $x\left[n-n_{0}\right]$ is basically identical to that of $X(z)$ except for the possible addition or deletion of $z=0$ or $z=\infty$.

Example 8.10

Find the z transform of $x[n]$ which has the form of:

$$
x[n]=a^{n-1} u[n-1]
$$

Employing the time shifting property with $n_{0}=1$ and:

$$
a^{n} u[n] \leftrightarrow \frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

we easily obtain

$$
a^{n-1} u[n-1] \leftrightarrow z^{-1} \cdot \frac{1}{1-a z^{-1}}=\frac{z^{-1}}{1-a z^{-1}}, \quad|z|>|a|
$$

Note that using (8.1) with $|z|>|a|$ also produces the same result but this approach is less efficient:

$$
X(z)=\sum_{n=1}^{\infty} a^{n-1} z^{-n}=a^{-1} \sum_{n=1}^{\infty}\left(a z^{-1}\right)^{n}=a^{-1} \frac{a z^{-1}\left[1-\left(a z^{-1}\right)^{\infty}\right]}{1-a z^{-1}}=\frac{z^{-1}}{1-a z^{-1}}
$$

Multiplication by an Exponential Sequence

If we multiply $x[n]$ by z_{0}^{n} in the time domain, the variable z will be changed to z / z_{0} in the z transform domain. That is:

$$
\begin{equation*}
z_{0}^{n} x[n] \leftrightarrow X\left(z / z_{0}\right) \tag{8.19}
\end{equation*}
$$

If the ROC for $x[n]$ is $R_{+}<|z|<R_{-}$, then the ROC for $z_{0}^{n} x[n]$ is $\left|z_{0}\right| R_{+}<|z|<\left|z_{0}\right| R_{-}$.

Example 8.11

With the use of the following z transform pair:

$$
u[n] \leftrightarrow \frac{1}{1-z^{-1}}, \quad|z|>1
$$

Find the z transform of $x[n]$ which has the form of:

$$
x[n]=a^{n} \cos (b n) u[n]
$$

Noting that $\cos (b n)=\left(e^{j b n}+e^{-j b n}\right) / 2, x[n]$ can be written as:

$$
x[n]=\frac{1}{2}\left(a e^{j b}\right)^{n} u[n]+\frac{1}{2}\left(a e^{-j b}\right)^{n} u[n]
$$

By means of the property of (8.19) with the substitution of $z_{0}=a e^{j b}$ and $z_{0}=a e^{-j b}$, we obtain:

$$
\frac{1}{2}\left(a e^{j b}\right)^{n} u[n] \leftrightarrow \frac{1}{2} \frac{1}{1-\left(z /\left(a e^{j b}\right)\right)^{-1}}=\frac{1}{21-a e^{j b} z^{-1}}, \quad|z|>|a|
$$

and

$$
\frac{1}{2}\left(a e^{-j b}\right)^{n} u[n] \leftrightarrow \frac{1}{2} \frac{1}{1-\left(z /\left(a e^{-j b}\right)\right)^{-1}}=\frac{1}{2} \frac{1}{1-a e^{-j b} z^{-1}}, \quad|z|>|a|
$$

By means of the linearity property, it follows that

$$
X(z)=\frac{1}{2} \frac{1}{1-a e^{j b} z^{-1}}+\frac{1}{2} \frac{1}{1-a e^{-j b} z^{-1}}=\frac{1-a \cos (b) z^{-1}}{1-2 a \cos (b) z^{-1}+a^{2} z^{-2}},|z|>|a|
$$

which agrees with Table 8.1.

Differentiation

Differentiating $X(z)$ with respect to z corresponds to multiplying $x[n]$ by n in the time domain:

$$
\begin{equation*}
n x[n] \leftrightarrow-z \frac{d X(z)}{d z} \tag{8.20}
\end{equation*}
$$

The ROC for $n x[n]$ is basically identical to that of $X(z)$ except for the possible addition or deletion of $z=0$ or $z=\infty$.

Example 8.12
Determine the z transform of $x[n]=n a^{n} u[n]$.
We have:

$$
a^{n} u[n] \leftrightarrow \frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

and

$$
\frac{d}{d z}\left(\frac{1}{1-a z^{-1}}\right)=\frac{d\left(1-a z^{-1}\right)^{-1}}{d\left(1-a z^{-1}\right)} \cdot \frac{d\left(1-a z^{-1}\right)}{d z}=-\frac{a z^{-2}}{\left(1-a z^{-1}\right)^{2}}
$$

By means of the differentiation property, we obtain:

$$
n a^{n} u[n] \leftrightarrow-z \cdot-\frac{a z^{-2}}{\left(1-a z^{-1}\right)^{2}}=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad|z|>|a|
$$

which agrees with Table 8.1.
Conjugation
The z transform pair for $x^{*}[n]$ is:

$$
\begin{equation*}
x^{*}[n] \leftrightarrow X^{*}\left(z^{*}\right) \tag{8.21}
\end{equation*}
$$

The ROC for $x^{*}[n]$ is identical to that of $x[n]$.

Time Reversal

The z transform pair for $x[-n]$ is:

$$
\begin{equation*}
x[-n] \leftrightarrow X\left(z^{-1}\right) \tag{8.22}
\end{equation*}
$$

If the ROC for $x[n]$ is $R_{+}<|z|<R_{-}$, the ROC for $x[-n]$ is $1 / R_{-}<|z|<1 / R_{+}$.

Example 8.13
Determine the z transform of $x[n]=-n a^{-n} u[-n]$.
Using Example 8.12:

$$
n a^{n} u[n] \leftrightarrow \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad|z|>|a|
$$

and from the time reversal property:

$$
X(z)=\frac{a z}{(1-a z)^{2}}=\frac{a^{-1} z^{-1}}{\left(1-a^{-1} z^{-1}\right)^{2}}, \quad|z|<\left|a^{-1}\right|
$$

Convolution

Let $x_{1}[n] \leftrightarrow X_{1}(z)$ and $x_{2}[n] \leftrightarrow X_{2}(z)$ be two z transform pairs with ROCs $\mathcal{R}_{x_{1}}$ and $\mathcal{R}_{x_{2}}$, respectively. Then we have:

$$
x_{1}[n] \otimes x_{2}[n] \leftrightarrow X_{1}(z) X_{2}(z)
$$

(8.23)
and its ROC includes $\mathcal{R}_{x_{1}} \cap \mathcal{R}_{x_{2}}$.
The proof is given as follows.
Let

$$
\begin{equation*}
y[n]=x_{1}[n] \otimes x_{2}[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k] \tag{8.24}
\end{equation*}
$$

With the use of the time shifting property, $Y(z)$ is:

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]\right] z^{-n} \\
& =\sum_{k=-\infty}^{\infty} x_{1}[k]\left[\sum_{n=-\infty}^{\infty} x_{2}[n-k] z^{-n}\right] \\
& =\sum_{k=-\infty}^{\infty} x_{1}[k] X_{2}(z) z^{-k} \\
& =X_{1}(z) X_{2}(z)
\end{aligned}
$$

(8.25)

Causality and Stability Investigation with ROC

Suppose $h[n]$ is the impulse response of a discrete-time linear time-invariant (LTI) system. Recall (3.19), which is the causality condition:

$$
\begin{equation*}
h[n]=0, \quad n<0 \tag{8.26}
\end{equation*}
$$

If the system is causal and $h[n]$ is of finite duration, the ROC should include ∞ (See Example 8.5 and Figure 8.5).

If the system is causal and $h[n]$ is of infinite duration, the ROC is of the form $|z|>\left|p_{\max }\right|$ and should include ∞ (See Example 8.2 and Figure 8.6). According to P5, $h[n]$ must be a right-sided sequence.

Example 8.14

Consider a LTI system with impulse response $h[n]$:

$$
h[n]=a^{n+10} u[n+10]
$$

Discuss the causality of the system.
According to (8.26), the system is not causal. Although it is a right-sided sequence, the ROC of $H(z)$ does not include ∞ :

$$
H(z)=\sum_{n=-\infty}^{\infty} a^{n+10} u[n+10] z^{-n}=a^{10}\left(\left(\frac{a}{z}\right)^{-10}+\left(\frac{a}{z}\right)^{-9}+\cdots\right)
$$

where z cannot be equal to ∞ for convergence.

Applying the time shifting property, we get:

$$
a^{n+10} u[n+10] \leftrightarrow z^{10} \cdot \frac{1}{1-a z^{-1}}=\frac{z^{10}}{1-a z^{-1}}=\frac{z^{11}}{z-a}, \quad|z|>|a|
$$

The numerator has degree 11 while the denominator has degree 1 , making the ROC cannot include ∞.

Generalizing the results, for a rational $H(z)$, it will be a causal system if its ROC has the form of $|z|>\left|p_{\text {max }}\right|$ and the order of the numerator is not greater than that of the denominator.

Recall the stability condition in (3.21):

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|h[n]|<\infty \tag{8.27}
\end{equation*}
$$

Based on (8.9), this also means that the DTFT of $h[n]$ exists. According to P2, (8.27) indicates that the ROC of $H(z)$ should include the unit circle.

Example 8.15
Consider a LTI system with impulse response $h[n]$:

$$
h[n]=a^{n+10} u[n+10]
$$

Discuss the stability of the system.
Using the result in Example 8.14, we have:

$$
H(z)=\frac{z^{10}}{1-a z^{-1}}, \quad|z|>|a|
$$

That is, if $|a|<1$, then the system is stable. Otherwise, the system is not stable.

Inverse z Transform

Inverse z transform corresponds to finding $x[n]$ given $X(z)$ and its ROC.

The z transform and inverse z transform are one-to-one mapping provided that the ROC is given:

$$
\begin{equation*}
x[n] \leftrightarrow X(z) \tag{8.28}
\end{equation*}
$$

There are 4 commonly used techniques to evaluate the inverse z transform. They are

1. Inspection
2. Partial Fraction Expansion
3. Power Series Expansion
4. Cauchy Integral Theorem

Inspection

When we are familiar with certain transform pairs, we can do the inverse z transform by inspection.

Example 8.16

Determine the inverse z transform of $X(z)$ which is expressed as:

$$
X(z)=\frac{z}{2 z-1}, \quad|z|>0.5
$$

We first rewrite $X(z)$ as:

$$
X(z)=\frac{0.5}{1-0.5 z^{-1}}
$$

Making use of the following transform pair in Table 8.1:

$$
a^{n} u[n] \leftrightarrow \frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

and putting $a=0.5$, we have:

$$
\frac{0.5}{1-0.5 z^{-1}} \leftrightarrow 0.5(0.5)^{n} u[n]
$$

By inspection, the inverse z transform is:

$$
x[n]=(0.5)^{n+1} u[n]
$$

Partial Fraction Expansion

We consider that $X(z)$ is a rational function in z^{-1} :

$$
\begin{equation*}
X(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \tag{8.29}
\end{equation*}
$$

To obtain the partial fraction expansion from (8.29), the first step is to determine the N nonzero poles, $c_{1}, c_{2}, \cdots, c_{N}$.

There are 4 cases to be considered:
Case 1: $M<N$ and all poles are of first order
For first-order poles, all $\left\{c_{k}\right\}$ are distinct. $X(z)$ is:

$$
\begin{equation*}
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-c_{k} z^{-1}} \tag{8.30}
\end{equation*}
$$

For each first-order term of $A_{k} /\left(1-c_{k} z^{-1}\right)$, its inverse z transform can be easily obtained by inspection.

Multiplying both sides by $\left(1-c_{k} z^{-1}\right)$ and evaluating for $z=c_{k}$

$$
\begin{equation*}
A_{k}=\left.\left(1-c_{k} z^{-1}\right) X(z)\right|_{z=c_{k}} \tag{8.31}
\end{equation*}
$$

An illustration for computing A_{1} with $N=2>M$ is:

$$
\begin{align*}
& X(z)=\frac{A_{1}}{1-c_{1} z^{-1}}+\frac{A_{2}}{1-c_{2} z^{-1}} \\
& \Rightarrow\left(1-c_{1} z^{-1}\right) X(z)=A_{1}+\frac{A_{2}\left(1-c_{1} z^{-1}\right)}{1-c_{2} z^{-1}} \tag{8.32}
\end{align*}
$$

Substituting $z=c_{1}$, we get A_{1}.
In summary, three steps are:

- Find poles.
- Find $\left\{A_{k}\right\}$.
- Perform inverse z transform for the fractions by inspection.

Example 8.17

Find the pole and zero locations of $H(z)$:

$$
H(z)=-\frac{1+0.1 z^{-1}}{1-2.05 z^{-1}+z^{-2}}
$$

Then determine the inverse z transform of $H(z)$.
We first multiply z^{2} to both numerator and denominator polynomials to obtain:

$$
H(z)=-\frac{z(z+0.1)}{z^{2}-2.05 z+1}
$$

Apparently, there are two zeros at $z=0$ and $z=-0.1$. On the other hand, by solving the quadratic equation at the denominator polynomial, the poles are determined as $z=0.8$ and $z=1.25$.

According to (8.30), we have:

$$
H(z)=\frac{A_{1}}{1-0.8 z^{-1}}+\frac{A_{2}}{1-1.25 z^{-1}}
$$

Employing (8.31), A_{1} is calculated as:

$$
A_{1}=\left.\left(1-0.8 z^{-1}\right) H(z)\right|_{z=0.8}=-\left.\frac{1+0.1 z^{-1}}{1-1.25 z^{-1}}\right|_{z=0.8}=2
$$

Similarly, A_{2} is found to be -3 . As a result, the partial fraction expansion for $H(z)$ is

$$
H(z)=\frac{2}{1-0.8 z^{-1}}-\frac{3}{1-1.25 z^{-1}}
$$

As the ROC is not specified, we investigate all possible scenarios, namely, $|z|>1.25,0.8<|z|<1.25$, and $|z|<0.8$.

For $|z|>1.25$, we notice that

$$
(0.8)^{n} u[n] \leftrightarrow \frac{1}{1-0.8 z^{-1}}, \quad|z|>0.8
$$

and

$$
(1.25)^{n} u[n] \leftrightarrow \frac{1}{1-1.25 z^{-1}}, \quad|z|>1.25
$$

where both ROCs agree with $|z|>1.25$. Combining the results, the inverse z transform $h[n]$ is:

$$
h[n]=\left(2(0.8)^{n}-3(1.25)^{n}\right) u[n]
$$

which is a right-sided sequence and aligns with P5.
For $0.8<|z|<1.25$, we make use of

$$
(0.8)^{n} u[n] \leftrightarrow \frac{1}{1-0.8 z^{-1}}, \quad|z|>0.8
$$

and

$$
-(1.25)^{n} u[-n-1] \leftrightarrow \frac{1}{1-1.25 z^{-1}}, \quad|z|<1.25
$$

where both ROCs agree with $0.8<|z|<1.25$. This implies:

$$
h[n]=2(0.8)^{n} u[n]+3(1.25)^{n} u[-n-1]
$$

which is a two-sided sequence and aligns with P7.
Finally, for $|z|<0.8$:

$$
-(0.8)^{n} u[-n-1] \leftrightarrow \frac{1}{1-0.8 z^{-1}}, \quad|z|<0.8
$$

and

$$
-(1.25)^{n} u[-n-1] \leftrightarrow \frac{1}{1-1.25 z^{-1}}, \quad|z|<1.25
$$

where both ROCs agree with $|z|<0.8$. As a result, we have:

$$
h[n]=\left(-2(0.8)^{n}+3(1.25)^{n}\right) u[-n-1]
$$

which is a left-sided sequence and aligns with P6.

Suppose $h[n]$ is the impulse response of a discrete-time LTI system.

In terms of causality and stability, there are three possible cases:

- $h[n]=\left(2(0.8)^{n}-(1.25)^{n}\right) u[n]$ is the impulse response of a causal but unstable system (ROC: $|z|>1.25$).
- $h[n]=2(0.8)^{n} u[n]+(1.25)^{n} u[-n-1]$ corresponds to a noncausal but stable system (ROC: $0.8<|z|<1.25$).
- $h[n]=\left(-2(0.8)^{n}+(1.25)^{n}\right) u[-n-1]$ is non-causal and unstable (ROC: $|z|<0.8$).

Case 2: $M \geq N$ and all poles are of first order
In this case, $X(z)$ can be expressed as:

$$
\begin{equation*}
X(z)=\sum_{l=0}^{M-N} B_{l} z^{-l}+\sum_{k=1}^{N} \frac{A_{k}}{1-c_{k} z^{-1}} \tag{8.33}
\end{equation*}
$$

- B_{l} are obtained by long division of the numerator by the denominator, with the division process terminating when the remainder is of lower degree than the denominator.
- A_{k} can be obtained using (8.31).

Example 8.18 Determine $x[n]$ which has z transform of the form:

$$
X(z)=\frac{4-2 z^{-1}+z^{-2}}{1-1.5 z^{-1}+0.5 z^{-2}}, \quad|z|>1
$$

The poles are easily determined as $z=0.5$ and $z=1$
According to (8.33) with $M=N=2$:

$$
X(z)=B_{0}+\frac{A_{1}}{1-0.5 z^{-1}}+\frac{A_{2}}{1-z^{-1}}
$$

The value of B_{0} is found by dividing the numerator polynomial by the denominator polynomial as follows:

$$
\left.0.5 z^{-2}-1.5 z^{-1}+1\right) \frac{2}{z^{-2}-2 z^{-1}+4}+\begin{aligned}
& \frac{z^{-2}-3 z^{-1}+2}{z^{-1}+2}
\end{aligned}
$$

That is, $B_{0}=2$. Thus $X(z)$ is expressed as

$$
X(z)=2+\frac{2+z^{-1}}{\left(1-0.5 z^{-1}\right)\left(1-z^{-1}\right)}=2+\frac{A_{1}}{1-0.5 z^{-1}}+\frac{A_{2}}{1-z^{-1}}
$$

According to (8.31), A_{1} and A_{2} are calculated as

$$
A_{1}=\left.\frac{4-2 z^{-1}+z^{-2}}{1-z^{-1}}\right|_{z=0.5}=-4
$$

and

$$
A_{2}=\left.\frac{4-2 z^{-1}+z^{-2}}{1-0.5 z^{-1}}\right|_{z=1}=6
$$

With $|z|>1$:

$$
\begin{gathered}
\delta[n] \leftrightarrow 1 \\
(0.5)^{n} u[n] \leftrightarrow \frac{1}{1-0.5 z^{-1}}, \quad|z|>0.5
\end{gathered}
$$

and

$$
u[n] \leftrightarrow \frac{1}{1-z^{-1}}, \quad|z|>1
$$

the inverse z transform $x[n]$ is:

$$
x[n]=2 \delta[n]-4(0.5)^{n} u[n]+6 u[n]
$$

Case 3: $M<N$ with multiple-order pole(s)
If $X(z)$ has a s-order pole at $z=c_{i}$ with $s \geq 2$, this means that there are s repeated poles with the same value of $c_{i} . X(z)$ is:

$$
\begin{equation*}
X(z)=\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{1-c_{k} z^{-1}}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-c_{i} z^{-1}\right)^{m}} \tag{8.34}
\end{equation*}
$$

- When there are two or more multiple-order poles, we include a component like the second term for each corresponding pole
- A_{k} can be computed according to (8.31)
- C_{m} can be calculated from:

$$
\begin{equation*}
C_{m}=\left.\frac{1}{(s-m)!\left(-c_{i}\right)^{s-m}} \cdot \frac{d^{s-m}}{d w^{s-m}}\left[\left(1-c_{i} w\right)^{s} X\left(w^{-1}\right)\right]\right|_{w=c_{i}^{-1}} \tag{8.35}
\end{equation*}
$$

Example 8.19

Determine the partial fraction expansion for $X(z)$:

$$
X(z)=\frac{4}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

It is clear that $X(z)$ corresponds to Case 3 with $N=3>M$ and one second-order pole at $z=1$. Hence $X(z)$ is:

$$
X(z)=\frac{A_{1}}{1+z^{-1}}+\frac{C_{1}}{1-z^{-1}}+\frac{C_{2}}{\left(1-z^{-1}\right)^{2}}
$$

Employing (8.31), A_{1} is:

$$
A_{1}=\left.\frac{4}{\left(1-z^{-1}\right)^{2}}\right|_{z=-1}=1
$$

Applying (8.35), C_{1} is:

$$
\begin{aligned}
C_{1} & =\left.\frac{1}{(2-1)!(-1)^{2-1}} \cdot \frac{d}{d w}\left[(1-1 \cdot w)^{2} \frac{4}{(1+w)(1-w)^{2}}\right]\right|_{w=1} \\
& =-\left.\frac{d}{d w} \frac{4}{1+w}\right|_{w=1} \\
& =\left.\frac{4}{(1+w)^{2}}\right|_{w=1} \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
C_{2} & =\left.\frac{1}{(2-2)!(-1)^{2-2}} \cdot\left[(1-1 \cdot w)^{2} \frac{4}{(1+w)(1-w)^{2}}\right]\right|_{w=1} \\
& =\left.\frac{4}{1+w}\right|_{w=1} \\
& =2
\end{aligned}
$$

Therefore, the partial fraction expansion for $X(z)$ is

$$
X(z)=\frac{1}{1+z^{-1}}+\frac{1}{1-z^{-1}}+\frac{2}{\left(1-z^{-1}\right)^{2}}
$$

Case 4: $M \geq N$ with multiple-order pole(s)
This is the most general case and the partial fraction expansion of $X(z)$ is

$$
X(z)=\sum_{l=0}^{M-N} B_{l} z^{-l}+\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{1-c_{k} z^{-1}}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-c_{i} z^{-1}\right)^{m}} \text { (8.36) }
$$

assuming that there is only one multiple-order pole of order $s \geq 2$ at $z=c_{i}$. It is easily extended to the scenarios when there are two or more multiple-order poles as in Case 3. The A_{k}, B_{l} and C_{m} can be calculated as in Cases 1, 2 and 3.

Power Series Expansion

When $X(z)$ is expanded as power series according to (8.1):

$$
\begin{equation*}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\cdots+x[-1] z^{1}+x[0]+x[1] z^{-1}+x[2] z^{-2}+\cdots(\tag{8.37}
\end{equation*}
$$

any particular value of $x[n]$ can be determined by finding the coefficient of the appropriate power of z^{-1}

Example 8.20
Determine $x[n]$ which has z transform of the form:

$$
X(z)=2 z^{2}\left(1-0.5 z^{-1}\right)\left(1+z^{-1}\right)\left(1-z^{-1}\right), \quad 0<|z|<\infty
$$

Expanding $X(z)$ yields

$$
X(z)=2 z^{2}-z-2+z^{-1}
$$

From (8.37), $x[n]$ is deduced as:

$$
x[n]=2 \delta[n+2]-\delta[n+1]-2 \delta[n]+\delta[n-1]
$$

Example 8.21

Determine $x[n]$ whose z transform has the form of:

$$
X(z)=\frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

With the use of

$$
\frac{1}{1-\lambda}=1+\lambda+\lambda^{2}+\cdots, \quad|\lambda|<1
$$

Carrying out long division in $X(z)$ with $\left|a z^{-1}\right|<1$:

$$
X(z)=1+a z^{-1}+\left(a z^{-1}\right)^{2}+\cdots
$$

From (8.37), $x[n]$ is deduced as:

$$
x[n]=a^{n} u[n]
$$

which agrees with Example 8.2 and Table 8.1.

Example 8.22

Determine $x[n]$ whose z transform has the form of:

$$
X(z)=\frac{1}{1-a z^{-1}}, \quad|z|<|a|
$$

We first express $X(z)$ as:

$$
X(z)=\frac{-a^{-1} z}{-a^{-1} z} \cdot \frac{1}{1-a z^{-1}}=\frac{-a^{-1} z}{1-a^{-1} z}
$$

Carrying out long division in $X(z)$ with $\left|a^{-1} z\right|<1$:

$$
X(z)=-a^{-1} z\left(1+a^{-1} z+\left(a^{-1} z\right)^{2}+\cdots\right)
$$

From (8.37), $x[n]$ is deduced as:

$$
x[n]=-a^{n} u[-n-1]
$$

which agrees with Example 8.3 and Table 8.1.

Transfer Function of Linear Time-Invariant System

A LTI system can be characterized by the transfer function, which is a z transform expression

Starting with:

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \tag{8.38}
\end{equation*}
$$

Applying z transform on (8.38) with the use of the linearity and time shifting properties, we have:

$$
\begin{equation*}
Y(z) \sum_{k=0}^{N} a_{k} z^{-k}=X(z) \sum_{k=0}^{M} b_{k} z^{-k} \tag{8.39}
\end{equation*}
$$

The transfer function, denoted by $H(z)$, is defined as:

$$
\begin{equation*}
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \tag{8.40}
\end{equation*}
$$

The system impulse response $h[n]$ is given by the inverse z transform of $H(z)$ with an appropriate ROC, that is, $h[n] \leftrightarrow H(z)$, such that $y[n]=x[n] \otimes h[n]$. This suggests that we can first take the z transforms for $x[n]$ and $h[n]$, then multiply $X(z)$ by $H(z)$, and finally perform the inverse z transform of $X(z) H(z)$.

Comparing with (6.25), we see that the system frequency response can be obtained as $\left.H(z)\right|_{z=e^{j \omega}}=H\left(e^{j \omega}\right)$ if it exists.

Example 8.23

Determine the transfer function for a LTI system whose input $x[n]$ and output $y[n]$ are related by:

$$
y[n]=0.1 y[n-1]+x[n]+x[n-1]
$$

Applying z transform on the difference equation with the use of the linearity and time shifting properties, $H(z)$ is:

$$
Y(z)\left(1-0.1 z^{-1}\right)=X(z)\left(1+z^{-1}\right) \Rightarrow H(z)=\frac{Y(z)}{X(z)}=\frac{1+z^{-1}}{1-0.1 z^{-1}}
$$

Note that there are two ROC possibilities, namely, $|z|>0.1$ and $|z|<0.1$, and we cannot uniquely determine $h[n]$. However, if it is known that the system is causal, $h[n]$ can be uniquely found because the ROC should be $|z|>0.1$.

Example 8.24

Find the difference equation of a LTI system whose transfer function is given by

$$
H(z)=\frac{\left(1+z^{-1}\right)\left(1-2 z^{-1}\right)}{\left(1-0.5 z^{-1}\right)\left(1+2 z^{-1}\right)}
$$

Let $H(z)=Y(z) / X(z)$. Performing cross-multiplication and inverse z transform, we obtain:

$$
\begin{aligned}
& \left(1-0.5 z^{-1}\right)\left(1+2 z^{-1}\right) Y(z)=\left(1+z^{-1}\right)\left(1-2 z^{-1}\right) X(z) \\
& \Rightarrow\left(1+1.5 z^{-1}-z^{-2}\right) Y(z)=\left(1-z^{-1}-2 z^{-2}\right) X(z) \\
& \Rightarrow y[n]+1.5 y[n-1]-y[n-2]=x[n]-x[n-1]-2 x[n-2]
\end{aligned}
$$

Examples 8.23 and 8.24 imply the equivalence between the difference equation and transfer function.

Example 8.25

Compute the impulse response $h[n]$ for a LTI system which is characterized by the following difference equation:

$$
y[n]=x[n]-x[n-1]
$$

Applying z transform on the difference equation with the use of the linearity and time shifting properties, $H(z)$ is:

$$
Y(z)=X(z)\left(1-z^{-1}\right) \Rightarrow H(z)=\frac{Y(z)}{X(z)}=1-z^{-1}
$$

There is only one ROC possibility, namely, $|z|>0$. Taking the inverse z transform on $H(z)$, we get:

$$
h[n]=\delta[n]-\delta[n-1]
$$

which agrees with Example 3.18.

Example 8.26

Determine the output $y[n]$ if the input is $x[n]=u[n]$ and the LTI system impulse response is $h[n]=\delta[n]+0.5 \delta[n-1]$
The z transforms for $x[n]$ and $h[n]$ are

$$
X(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

and

$$
H(z)=1+0.5 z^{-1} \quad|z|>0
$$

As a result, we have:

$$
Y(z)=X(z) H(z)=\frac{1}{1-z^{-1}}+0.5 \frac{z^{-1}}{1-z^{-1}}, \quad|z|>1
$$

Taking the inverse z transform of $Y(z)$ with the use of the time shifting property yields:

$$
y[n]=u[n]+0.5 u[n-1]
$$

which agrees with Example 3.13.

