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This paper addresses estimating the frequency of a 
cisoid in the presence of white Gaussian noise, which has 
numerous applications in communications, radar, sonar, 
and instrumentation and measurement. Due to the 
nonlinear nature of the frequency estimation problem, 
there is threshold effect, that is, large error estimates or 
outliers will occur at sufficiently low signal-to-noise ratio 
(SNR) conditions. Utilizing the ideas of averaging to 
increase SNR and weighted linear prediction, an optimal 
frequency estimator with smaller threshold SNR is 
developed. Computer simulations are included to compare 
its mean square error performance with that of the 
maximum likelihood (ML) estimator, improved weighted 
phase averager, generalized weighted linear predictor, and 
single weighted sample correlator as well as Cramér-Rao 
lower bound. In particular, with smaller computational 
requirement, the proposed estimator can achieve the same 
threshold and estimation performance of the ML method. 
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I. Introduction 

The problem of estimating the frequency of a complex tone 
in white noise has received considerable attention [1]-[10] 
because it has many applications in science and engineering. 
The complex singletone model is: 

( ) ( ) ( ), 1, 2, , ,x n s n q n n N= + =            (1) 

where ( )( ) += j ns n Ae ω φ is the noisefree cisoid. The 
sinusoidal amplitude, normalized angular frequency, and phase 
are denoted by A>0, ( , ),∈ −ω π π and (0,2 ],φ π∈  
respectively, and they are considered as deterministic but 
unknown constants. The noise q(n) is assumed to be a 
zeromean complex white Gaussian process, that is, its real and 
imaginary components are real white processes with identical 
but unknown variances of 2 / 2σ and uncorrelated with each 
other. Given the N discretetime noisy samples {x(n)}, the 
objective is to estimate ω. Note that ω is assumed constant 
within the observation interval and all the investigated methods 
in this paper are of batch mode. If the frequency varies with 
time, then adaptive frequency estimation algorithms [11], [12] 
are needed for online parameter tracking. 

In the presence of white Gaussian noise, the maximum 
likelihood (ML) estimate of the frequency is obtained from the 
periodogram maximum [5], but it involves extensive 
computations. As frequency estimation is nonlinear in nature, 
there is a threshold effect [4], [5] at sufficiently low signal-to-
noise ratio (SNR) conditions. That is, below a threshold SNR, 
the estimation errors are several orders of magnitude greater 
than the performance benchmark of CramérRao lower bound 
(CRLB) [4]. On the other hand, two fast and accurate 
frequency estimators, namely, weighted linear predictor (WLP) 
and weighted phase averager (WPA), based on 
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crosscorrelation and phase of x(n), respectively, have been 
proposed in [6]. However, their threshold SNR is high. To 
lower the threshold SNR, So and Chan [7] extend the WLP by 
including higherorder crosscorrelation terms and develop the 
socalled generalized WLP (GWLP). Nevertheless, the 
maximum estimation range of ( , )∈ −ω π π  is not required in 
many applications. Frequency offset estimation in wireless 
communications [9] is a representative example where the 
nominal parameter only lies in the lowfrequency range. 
Targeting for estimation with a reduced frequency range, Kim 
and others [8] have modified the WPA by employing the 
average of x(n) while Tavares and others [9] consider 
weighting a higherorder sample correlation for threshold SNR 
reduction. Here, we refer to them as improved weighted phase 
averager (IWPA) and single weighted sample correlator 
(SWSC), respectively. In this paper, we combine the key ideas 
of GWLP and IWPA to devise an optimal frequency estimator 
with better threshold performance than [7]-[9], at the expense 
of reduction in frequency estimation range. 

II. Algorithm Development 

There are two key ideas in our algorithm development. First, 
inspired by [8], we construct yK(n), which is a moving average 
of x(n) to increase the SNR: 
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where 2≥K is a positive integer to represent the number of 
samples involved in the averaging. Second, the GWLP 
approach is utilized for frequency estimation with the use of 
yK(n). For simplicity but without loss of generality, we consider 
K=2, and y2(n) has the form of 

2
( 1) ( )( ) , 1, 2, , 1.

2
x n x ny n n N+ +

= = −      (3) 

The signal component of y2(n) is 

  
1
2( ( ) )( 1) ( ) cos ,

2 2
j ns n s n A e ω φω + ++ + ⎛ ⎞= ⎜ ⎟

⎝ ⎠
       (4) 

which has a power of 2 2cos ( / 2).A ω On the other hand, 
noting that q(n+1) and q(n) are uncorrelated, the noise power in 
y2(n), namely, [ ( 1) ( )] / 2,q n q n+ + is easily evaluated as 

2 / 2σ . Thus, the SNR in y2(n) is 

2 2

2

2 cos
2 .

A ω

σ

⎛ ⎞
⎜ ⎟
⎝ ⎠                 (5) 

Compared with the SNR in x(n), namely, 2 2/A σ , we see 
that (5) is larger as long as / 2 / 2,− < <π ω π  which 

corresponds to an SNR gain of 22cos ( / 2).ω  According to 
[8], there will be a threshold improvement of 

2
1010log (2cos ( / 2))ω dB in the reduced frequency range of  

( / 2, / 2)−π π because the input to the estimator, namely, y2(n), 
has higher SNR over x(n), which is solely due to the sample 
averaging process. Nevertheless, there is no SNR improvement 
for / 2− < < −π ω π  and / 2 ,< <π ω π  and in particular, (5) 
tends to 0 when .→ ±ω π  

Let .= je ωρ  As the noisefree average is also a pure tone, 
(4) satisfies the linear prediction (LP) property: 

( 1) ( ) ( ( ) ( 1)).s n s n s n s nρ+ + = + −         (6) 

Based on (6), we construct the LP error as 

2 2( ) ( 1), 2,3, , 1,y n y n n Nρ− − = −         (7) 

where ρ  is the variable for .ρ  Let 2 2 2[ (1) (2)l y y=y  

2 ( 2)]Ty N − and 2 2 2 2[ (2) (3) ( 1)] .T
u y y y N= −y To 

achieve accurate estimation of ,ρ  a weighted least squares 
(WLS) cost function constructed from (7) is needed [4]. 
Following [7] which utilizes the sinusoidal LP property and 
WLS, the optimal estimate of ,ρ denoted by ˆ ,ρ is computed 
by 

2 2 2 2 2
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where the optimum weighting matrix, ( 2) ( 2)
2 ( ) ,N Nρ − × −∈W C  

is constructed from the residual error of 2 2( )l uρ= −y ye  and 
hence a function of ,ρ  which is commonly known as the 
GaussMarkov estimate [4]. With the use of (6), we have 

2 2( )l uρ= −q qe where 2 1/ 2[ (2) (1) ( 2)l q q q N= + − +q
( 1)]Tq N − and 2 1/ 2[ (3) (2) ( 1) ( )] .T

u q q q N q N= + − +q  
Utilizing the whiteness of q(n), W2(ρ) is determined as 
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where 2 2*
0 1 22 2 , 1 2 , ,a a aρ ρ ρ ρ ρ ρ= − − + = − + = −  

E denotes expectation, and Toeplitz is the Toeplitz operator. 
Note that the value of 2σ is not required as it will be canceled 
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out in (8). 
As W2(ρ) is characterized by the unknown parameter ,ρ  

we follow [7] to estimate ω in an iterative manner, and the 
estimation procedure is summarized as follows. 

i) Find an initial frequency estimate ω̂  using the WLP [6]. 
Set ˆˆ .= je ωρ  

ii) Use ˆ=ρ ρ to construct (9). 
iii) Compute an updated estimate of ρ̂  using (8). 
iv) Repeat steps (ii) and (iii) for a few iterations. 
v)  Use the finalized ρ̂  to estimate the frequency as 

ω̂ ˆ( ).= ∠ ρ  

Note that when the sample size and/or SNR are large enough, 
the initial frequency estimate based on the WLP will be 
sufficiently close to the true frequency value. According to the 
convergence analysis in [7], the GWLP iterative algorithm 
achieves global convergence when the initial frequency 
estimate is close to ω at .→ ∞N This means that in principle 
the proposed iterative method will provide large frequency 
errors only for a sufficiently small sample size and/or SNR 
conditions, as in the feedforward estimators such as IWPA and 
SWSC. 

Mean and variance analysis of the proposed method is 
conducted as follows. Based on (8), we construct 

2 2 2 2 2 2
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Upon parameter convergence, ρ̂ should satisfy ˆ( ) 0.=f ρ  
For sufficiently large SNR and/or N, ρ̂  will be located at a 
reasonable proximity of .ρ  Using Taylor’s series to expand 

ˆ( )f ρ around ρ up to the firstorder term, we get 

ˆ0 ( )f ρ= ˆ( ) ( )( ),f fρ ρ ρ ρ′≈ + −       (11) 

where ( )f ρ′  is the first derivative of ( )f ρ evaluated at the 
true value. Let 2 1/ 2[ (2) (1) ( 2) ( 1)]Tl s s s N s N= + − + −s  
and 2 1/ 2[ (3) (2) ( 1) ( )] ,T

u s s s N s N= + − +s and noting 
that 2 2 , ( )u l fρ ρ=s s is approximated as 

2 2 2 2 2 2 2

2 2 2 2

( ) ( ) ( )(( ) ( ))
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While ( )f ρ′  is 
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Combining (11) through (13) yields 
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As 2 2 2( )H
l lρs W s  is deterministic while q2l and q2u are of 

zero mean, we have ˆ{ } ,E ρ ρ≈ and hence ω̂  is an 
approximately unbiased frequency estimate. Employing (14), 
the variance or mean square error (MSE) of ρ̂ is derived as 

ˆvar( )ρ ˆ{(E ρ= *ˆ)( ) }ρ ρ ρ− −  
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Based on the variance relationship between ρ̂ and ω̂  [10], 
the variance of ω̂  is 

2 2 2

ˆvar( ) 1ˆvar( ) .
2 2 ( )H

l l

ρω
ρ

≈ ≈
s W s

        (16) 

Although there is no closedform expression for ˆvar( ),ω  
empirical studies show that (16) is very close to CRLB for 
single frequency estimation [6], which is given as 

2 2 26 /( ( 1)).A N Nσ −   
Finally, extension to an arbitrary value of K is summarized as 

follows. The general form of (4) is 
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where the SNR gain of yK(n) over x(n) is 

( )1 1
2 2

2
/

K Kj je e Kω ω− −−+ +  at the expense of a reduced 

frequency estimation range of approximately ( / , / ).K Kπ π−  
The general conceptual WLS solution for (8) is  
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where [ (1) (2) ( )] , [ (2)T
Kl K K K Ku Ky y y N K y= − =y y   

(3) ( 1)] ,T
K Ky y N K− + and ( )K ρW has the form of 

1
0 1( ) [Toeplitz([ , , , ,0, ,0])] ,K Ka a aρ −=W    (19) 

where 
2 *

0 ( 1) ( 1) ,a K K K Kρ ρ ρ= + − − − −
2 *( ) ( ) ( 1) ( 1) ,ia K i K i K i K iρ ρ ρ= − + − − − − − − +   

1, 2, , 1,i K= −  and .Ka ρ= −   

Following (10) through (16), the approximate unbiasedness 
of (18) can be shown, and the corresponding frequency 
variance is 

1ˆvar( ) ,
2 ( )H

Kl K Kl
ω

ρ
≈

s W s
          (20) 

where sKl is the signal component of yKl. 
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III. Results 

Computer simulations have been conducted to evaluate the 
proposed approach for frequency estimation of a single cisoid 
in white Gaussian noise. Five iterations are employed in the 
estimation procedure as no significant improvement is 
observed for more iterations. We compare its MSE 
performance with that of the ML estimator [5], GWLP [7], 
IWPA [8], SWSC [9], as well as CRLB. As the ML cost 
function is multimodal, we employ discrete Fourier transform 
peak as the initial estimate and then apply Newton’s method to 
search for the maximum point. Note that the computational 
requirement for the ML method is the highest, which 
corresponds to 3( ),O N  while those of the proposed scheme 
and GWLP, and IWPA and SWSC, are 2( )O N  and ( ),O N  
respectively. The tone amplitude and phase are A=1 and 

1φ = rad, respectively, while the complex noise is constructed 
as ( ) ( ) ( )q n n jv nμ= + where ( )nμ  and v(n) are 
independent real white Gaussian processes with identical 
variances of 2 / 2.σ  Different SNRs are obtained by proper 
scaling q(n) with 2 2SNR / .A σ=  The data length is N=30. 
All results are based on an average of 1,000 independent runs.  

Figure 1 shows the MSEs of frequency for the five 
estimators as well as CRLB versus SNR, both in dB scales, at 

0.04ω π= rad. Note that the dB values are computed as  
10log10(MSE) and 10log10(SNR). Although all methods show 
their optimality at sufficiently high SNRs, the proposed scheme 
and ML estimator have the best threshold performance, 
followed by GWLP, IWPA, and SWSC. Their average 
computation times for a single trial are measured as 0.0531 s, 
0.0497 s, 0.0972 s, 0.0241 s, and 0.0365s, respectively, which 
agree with the complexity analysis. In particular, the threshold 
improvement of the proposed method over GWLP is around  
2 dB which aligns with the analysis in section II, namely, 

2
1010log (2cos ( / 2))ω dB.  

Figures 2 and 3 show the MSE performance versus ω  at 
SNR=10 dB and SNR=0 dB, respectively. In the former figure, 
we observe that the ML estimator, GWLP, and proposed 
method give optimum performance except when ω  is very 
close to π− and .π On the other hand, the IWPA performance 
approaches CRLB only for ( / 2, / 2)ω π π∈ − and SWSC is 
suboptimum for all frequencies. Their smaller admissible 
frequency estimation range also explains why they have 
smaller MSEs at SNR [ 10, 5]∈ − − dB in Fig. 1. Using the 
IWPA as an illustration, it always produces a frequency 
estimate with a value between / 2π− and / 2,π even when it is 
of large estimation error before the threshold SNR. In the latter 
figure, the performance of the proposed method and periodogram 
is close to CRLB at approximately ( / 2, / 2)ω π π∈ −  and  

 

Fig. 1. Mean square frequency errors versus SNR at 0.04ω π=
rad. 
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Fig. 2. Mean square frequency errors versus ω at SNR=10 dB.

–1.0 –0.5 0 0.5 1.0

20

10

0

–10

–20

–30

–40

–50

Frequency (ω/π) 

GWLP 
SWSC 
IWPA 
ML 
Proposed  
CRLB 

M
ea

n 
sq

ua
re

 fr
eq

ue
nc

y 
er

ro
r (

dB
) 

 
 

 

Fig. 3. Mean square frequency errors versus ω at SNR=0 dB. 
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( , ),ω π π∈ −  respectively, while the remaining estimators are 
suboptimal in the whole frequency range. Note that as (16) 
almost overlaps with the CRLB, the theoretical value of 

ˆvar( )ω  has not been provided in the plots. In summary, the 
proposed method gives optimum estimation performance for 
all frequencies at sufficiently high SNRs. At lower SNR 
conditions, it is optimum only when ω  is approximately 
between / 2π−  and / 2.π That is, it is advantageous to 
employ the devised scheme particularly when the frequency 
parameter lies in the low-frequency range and/or the SNR is 
small enough. 

IV. Conclusion 

A new single frequency estimator based on averaging and 
weighted linear predictor is devised and analyzed. The 
superiority of its threshold performance within the reduced 
estimation range is demonstrated by comparing it with ML 
estimator, GWLP, IWPA, and SWSC. 
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