Chapter 1

= Brief Review of Discrete-Time Signal Processing

= Brief Review of Random Processes
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Brief Review of Discrete-Time Signal Processing

There are 3 types of signals that are functions of time:

» continuous-time (analog) : defined on a continuous range of time

» discrete-time : defined only at discrete instants of time (...,(n-1)T,nT,
(n+1)T,...)

= digital (quantized) : both time and amplitude are discrete
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Digital Signal Processing Applications

= Speech

* Coding (compression)
» Synthesis (production of speech signals, e.g., speech development kit

by Microsoft @)

= Recognition (e.g., PCCW'’s 1083 telephone number enquiry system
and many applications for disabled persons as well as security)

= Animal sound analysis

= Music

» Generation of music by different musical instruments such as piano,
cello, guitar and flute using computer 9
= Song with low-cost electronic piano keyboard quality 9



* Image

= Compression

» Recognition such as face, palm and fingerprint

= Construction of 3D objects from 2D images

= Animation, e.g., “Toy Story (@s[ﬁ:ﬁ)”

» Special effects such as adding Forrest Gump to a film of President
Nixon in “[7 [ ~{#*" and removing some objects in a photograph or

movie

» Digital Communications

= Encryption
* Transmission and Reception (coding / decoding, modulation /
demodulation, equalization)
» Biometrics and Bioinformatics

= Digital Control



Transform from Time to Frequency

transform

X)) m—> X(w)
inverse

transform

Fourier Series

» express periodic signals using harmonically related sinusoids
» different definitions for continuous-time & discrete-time signals
= frequency o takes discrete values: ®,, 20, 30, ...

Fourier Transform

* frequency analysis tool for aperiodic signals

» defined on a continuous range of ®

» different definitions for continuous-time & discrete-time signals

» Fast Fourier transform (FFT) — an computationally efficient method for
computing Fourier transform of discrete signals



CONTINUOUS-TIME SIGNALS DISCRETE-TIME SIGNALS
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Transform

Time Domain

Frequency Domain

Fourier Series

periodic & continuous

x(t)= Ycpe/™,
k=—o0
®y = 2TE/TP

aperiodic & discrete

T, /2 -

= [ x(t)e /" gy,
2T 72

Tp is the period
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Discrete-Time
Fourier
Transform

aperiodic & discrete
T n/T

x(nT)=— [ X(w)e/" do,
21 —n/T
T is the sampling interval

periodic & continuous

X(0)= %O:x(nT)e_jwnT

n=—00

Discrete(-Time)
Fourier Series

periodic & discrete
N-1 .

X(ﬂ) — Z Ckejzﬂ',kn/N,
k=0
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Fourier Series

Fourier series are used to represent the frequency contents of a periodic
and continuous-time signal. A continuous-time function x(¢) is said to be

periodic if there exists T, > 0 such that
x(t)=x(t+Tp), t € (—o0,0) (1.1)

The smallest 7, for which (I.1) holds is called the fundamental period.
Every periodic function can be expanded into a Fourier series as

x(t) = OZO:ckejkmot, t € (—00,0) (1.2)
k=—o0
where
Tp/2
Cp = adl Pj x(t)e /M gy (1.3)
2n T,/2

and o, = 2n/Tp Is called the fundamental frequency.



Example 1.1
The signal x(z) = cos(100mt) + cos(200nt) is a periodic and continuous-

time signal.

The fundamental frequency is ®, =100x. The fundamental period is then
Tp =2n/(100m) =1/50:

x(f + lj = COS lOOn(t + 1) + CcOS 2007c(t + 1)
50 50 50

cos(100mt + 21) + cos(200mz + 4m)
cos(1007t) + cos(200mz) = x(¢)

j(Dof —j(x)of j2030t —j20)0t
Since x(t) = cos(1007t) + cos(200mz) = c +2€ + ¢ +2€

By inspection and using (l.2), we have ¢y =1/2, c_1=1/2, ¢, =1/2,
c_, =1/2 while all other Fourier series coefficients are equal to zero.




Fourier Transform

Fourier transform is used to represent the frequency contents of an
aperiodic and continuous-time signal x(¢):

Forward transform: X(0)= [x(t)e ™/ dt (1.4)

and

Inverse transform: x(t) = ZL [ X (o)’ do (1.5)
T _»

Some points to note:

* Fourier spectrum (both magnitude and phase) are continuous in
frequency and aperiodic

= Convolution in time domain corresponds to multiplication in Fourier
transform domain, i.e., x(¢) ® y(¢) <> X(®)-Y(w)

10



Example 1.2
Find the Fourier transform of the following rectangular pulse:

{1, 1 <T,
x(1) =
0, [>T,

2sin(w7)
®

Using (1.4), X () = ITIT o0t gp _

jw)

X{jw
2T,
X(t) /
~_ /\
g \_/\Tr
T

—T1 '|'1 1
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Example 1.3
Find the inverse Fourier transform of

Using (1.5),

W/n

—ua/W /W

12



Discrete-Time Fourier Transform (DTFT)

DTFT is a frequency analysis tool for aperiodic and discrete-time signals.
If we sample an aperiodic and continuous-time function x(¢) with a

sampling interval T', the sampled output x(¢) is expressed as

xg(t)=x(¢)- OZO',S(t—nT) (1.6)
~_ ()
1—4—T—:) p(t) |
A
NAREERE

13



The DTFT can be obtained by substituting x, (¢) into the Fourier transform
equation of (1.4):

X (o) = ofxs (e /' dt

= x(t) S8(t—nT)e ™ dt

n=—00

S (x(0)5(t—nT)e /™ dt

N=—0—o0

_ - —jonT
n:Z_i(nT)e (1.7)

where sifting property of unit-impulse function is employed to obtain (1.7):
| f(@0)d(t—1g)dt = f (1)

14



Some points to note:

» DTFT spectrum (both magnitude and phase) is continuous in frequency
and periodic with period 27t/ T

* When the sampling interval is normalized to 1, we have

Forward Transform: X(w)= OZO:x(n)e_jmn (1.8)

and _

Inverse Transform: x(n) = 2L [ X (w)e’!" dw (1.9)
U

Discrete-Time Fourier Series (DTFS)

DTFS is used for analyzing discrete-time periodic signals. It can be
derived from the Fourier series.

15



Example 1.4
Find the DTFT of the following discrete-time signal:

X[n]

{1, ‘n‘ <N, 1
x[n]= Hm
0, \n\ > N,

' X(e")
Using (1.8), /\ o
\ ~ ~L
—2m \/—'n' \/ 0 \/ T \/ 27 o

N
X(@)= Ye /"
nz—Nl
= /M (1+ e IO L oTI20 Ly e—j2N103) _ Sin((Nl +1/2)o)
sin(®/2)

16



z-Transform

It is a useful transform of processing discrete-time signal. In fact, it is a
generalization of DTFT for discrete-time signals

X(2)=Zixn]} = S an]z”" (1.10)

where z is a complex variable. Substituting z = e/ yields DTFT.

Moreover, substituting z = re’ ® gives

X(z) = Zx[n]r_" e — Fox[n]r ") (1.11)

n=—:a0

17



Advantages of using z-transform over DTFT:

* can encompass a broader class of signal since Fourier transform does
not converge for all sequences:

A sufficient condition for convergence of the DTFT is
| X(@)< X[x(n)|-|e™" < T|x(n)]< o (1.12)

n=—aoo n=—aoo

Therefore, if x(n) is absolutely summable, then X () exists.
On the other hand, by representing z = re’®. the z-transform exists if

| X(2) | X (re’®) < _§|x(n)r—” e /o < _f\x(n)r—” < oo (1.13)

— we can choose a region of convergence (ROC) for z such that the z-
transform converges

= notation convenience : z <> ¢/®

= can solve problems in discrete-time signals and systems, e.g. difference
equations

18



Example 1.5
Determine the z-transform of x[n] = a"u[n].

X(z)= ia"u[n]z_” = i(az_l)”
n=0

n=—ao

X (z) converges if § ‘az_l‘n < o0, This requires ‘az‘l‘ <1 or|z>|a|, and
n=0
X@=
l—az

Notice that for another signal x[n]=—-a"u[-n—1],

X(2)= S(az " =—Fa " =3 (a2

19



In this case, X (z) converges if ‘a_lz <lor|z/<|a, and
X(Z) = %
l—az
ROC of Im ROC of Im

x[n] - —a"u[—n P 1] Unit Circle

Unit Circle
~ z-plane z-plane
Re Re

Some points to note:
» Different signals can give same z-transform, although the ROCs differ

= When x[n]=a"u[n] with||a|>1, its DTFT does not exist

20



Property Signal z-Transform ROC
x[n] X(2) R
x1[n] Xi(2) Ry
x2[n] Xo(2) R,
Linearity ax[n] + bx,[n] aX,(z2) + bX>(2) At least the intersection of R, and R,
Time shifting x[n — ng) 77X (2) R, except for the possible addition or
deletion of the origin
Scaling in the z-domain e/ x[n] X(e Iw0z) R
Zxin] x(£) R
a’x[n] X(@a'2) Scaled version of R (i.e., |a|R = the
set of points {|a|z} for z in R)
Time reversal x[—n] XY Inverted R (i.e., R™' = the set of
points z~!, where z is in R)
. . x[rl, n=rk . . .
Time expansion xXpln] = { for some integer r X5 Rk (i.e., the set of points z'/*, where
0, n#rk z is in R)
Conjugation x*[n] X*(7%) R
Convolution xi[n] * xo[n] X1(2)X2(2) At least the intersection of R, and R,
First difference x[n} — x[n — 1] (1-z"HX(2) At least the intersection of R and
|z >0
Accumulation > re . xLk] —— X At least the intersection of R and
© lz| > 1
Differentiation nx[n] _a';(“iz) R

in the z-domain

Initial Value Theorem
If x[n] = O for n < 0, then
*[0] = lim X(z)

21



Transfer Function and Difference Equation
A linear time-invariant (LTIl) system with input sequence x(n) and output
sequence y(n) are related via an Nth-order linear constant coefficient
difference equation of the form:
N M
> ayy(nm—k)= Y bx(n—-k), ay #0,by #0 (1.14)
k=0 k=0
Applying z-transform to both sides with the use of the linearity property
and time-shifting property, we have

N K Mok
Y apz "Y(z)= Y bz " X(2) (1.15)
k=0 k=0
The system (or filter) transfer function is expressed as
Mk M 4
] —
Y(z) kgobkz by lgl( “F )
(z) = = = (1.16)
X(iz) Y & \ayg)X -1
2.4z [1d-dyz )
k=0 k=1

where each (l—ckz‘l) contributes a zero at z=c¢, and a pole at z=0
while each (1-d,z™") contributes a pole at z =d, and a zero at z = 0.

22



The frequency response of the system or filter can be computed as

H(w)=H(z) (1.17)

z=exp(jm)

From (1.14), the output y(n) is expressed as

1 (M N
y(n) = —( 2 bex(n—k) = Tagy(n- k)j (1.18)

do \k=0

When at least one of the {a,,a,,-:-,a,} is non-zero, then y(n) depends on
its past samples as well as the input signal x(n). The system or filter in this

case is known as an infinite impulse response (lIR) system. Applying
inverse DTFT or z transform to the transfer function, it can be shown that
the system impulse response is of infinite duration.

When all {a,,a,,---,a,} are equal to zero, y(n) depends on x(n) only. It is

known as a finite impulse response (FIR) system because the impulse
response is of finite duration.

23



Example 1.6
Consider a LTI system with the input x[z] and output y|n] satisfy the

following linear constant-coefficient difference equation,

y[n]—%y[n—l] =x[n]+§x[n—1]

Find the system function and frequency response.

Taking z-transform on both sides,

Y(z) - %Z‘IY(Z) = X(2) + %Z‘IX(Z)
Thus,
141 14 Lo
Y(Z) + 3Z e
H(z)= = and HO)=HE)| _ypjo = ]
X(@) o - e /o
2 2

24
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Example 1.7
Suppose you need to high-pass the signal x[n] by the high-pass filter with

the following transfer function

1

H(z) = -
1+0.99z

How to obtain the filtered signal y[n]?

Y(z) 1

X " 120995 = Y(2)+0.9927'Y(2) = X (2)

H(z)=

Taking the inverse z-transform
y[n]+0.99y[n —1] = x[n]

= y|n]=-0.99y|n-1]+x[n] (y|-1]=0 for initialization)

26
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Causality, Stability and ROC:

Causality condition: A[n]=0 forall n <0,

v
h[n] is right-sided
v
The ROC for H(z) is

the exterior of an origin-centered circle (including z = o)

v
If H(z) is rational, the ROC for H(z) is

the exterior outside the outermost pole.

Stability condition: > |A[n] < o

¢ n=—0o0
H(ej‘”), i.e., the Fourier transform of A[n], converges
v

The ROC for H(z) includes the unit circle |z| =1

28



Example 1.8
Verify if the system impulse response A[n] = 0.5"u[n] is causal and stable.

It is obvious that A[n] is causal because A[n] =0 for all n < 0. On the other
hand,
1

1-0.5z7"

H(z)= 0.5 u[n]z" = 3 (0.5z7")" =
n=0

11=—00

H(z) converges if § ‘O.Sz‘l‘n < . This requires ‘O.Sz‘l‘ <lorl|z>0.5,
n=0

l.e., ROC for H(z) is the exterior outside the pole of 0.5
(Notice that for another impulse response A[n]=-0.5"u[-n 1], and it

corresponds to an unstable system because the ROC for H(z) is
‘Z‘ <0.5)

29



The z-transform for A[n] is

1
1-05z71

H(z) = |z > 0.5

Hence it is stable because the ROC for H(z) includes the unit circle |z| =1

On the other hand, its stability can also be shown using:
S|hn]= Y 05" =1+0.5%+0.5% +---
n=—00 n=0
1

:—:2
1-0.5

< O

30



Brief Review of Random Processes

Basically there are two types of signals:
» Deterministic Signals

exactly specified according to some mathematical formulae
characterized by finite parameters

e.g., exponential signal, sinusoidal signal, ramp signal, etc.
a simple mathematical model of a musical signal is

@) =a(®) Y ¢, cosQumfot + ¢, )

m=1
where:

/o is the fundamental frequency or pitch
c,, is the amplitude and ¢,, is the phase of the mth harmonic

31



a(t) is the envelope

bal(r) (a) ha(r) (b)
05 10 f[s] 0.5 1.0 1[s]
a(t) (c) ha(r) (d)
0.4 0.81[5] 05 1.0 #[4]

Figure 14.8 Envelope waveforms of musical instruments: (a) cello; (b) classical guitar; (c) flute;
(d) French horn.

32
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Figure 14.9 Waveforms of musical instruments, note played is A, 10-millisecond segments: (a)
cello; (b) classical guitar; (c) flute; (d) French horn.
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» Random Signals

= cannot be directly generated by any formulae and their values cannot
be predicted

= characterized by probability density function (PDF), mean, variance,
power spectrum, etc.

* e.g., thermal noise @ stock values, autoregressive (AR) process,
moving average (MA) process, etc.
» a simple voiced discrete-time speech model is

x[n] = § a;x[n—i]+wn]
i=1
where

{a;} are called the AR parameters
wln] is a noise-like process
P is the order of the AR process

34



Definitions and Notations

1. Mean Value

The mean value of a real random variable x(»n) at time » is defined as

o0

u(n) = E{x(n)} = [ x(n) f (x(n))d(x(n)) (1.19)

(0 0]

where f(x(n)) is the PDF of x(n) suc_h that
[/c)d(x(m)=1 and  f(x(n) 20

Note that, in general,

u(m) = w(n), m#n (1.20)
and
LA 1.21)
n(m) # N ;Eo x(n) (I

The mean value is also called expected value and ensemble mean.

35



2. Moment

Moment is the generalization of the mean value:

0 @)

E{(x(m))"} = [(x(m)™ f(x(n))d(x(n)) (1.22)

—Q0

When m =1, it is the mean while when m =2, it is called the mean square
value of x(n).

3. Variance

The variance of a real random variable x(n) at time » is defined as

62 (n) = E{(x(n) — p(m)} = | (x(n) — p(m)>f ()l (x(m) (1.23)

It Is also called second central moment.

36



Example 1.9
Determine the mean, second-order moment, variance of a quantization
error, x, with the following PDF:

pz_(fg}
1
2a
' 112
-a 0 a
o0 a 1 1 1 2a
= |x- xX)dx = X -—dx=— -"x -0
w= fofdv= T o =y o0
E{xz}_ofxzf(X)dx_j‘lxzidx—le?’a —ﬁ
—00 —a 2a 2a 3 _g 3

Cl2

6* = E{(x— )’} = E{x?} =

37



4. Autocorrelation

The autocorrelation of a real random signal x(»n) is defined as
Ryp(mym) = Egx(mx(n)} = ][ x(m)x(n) £ (x(m), x(n)d(x(m)d (x(m) ~ (1:24)

where f(x(m), x(n)) is the joint PDF of x(m) and x(n). It measures the

degree of association or dependence between x at time index » and at
index m.

In particular,

R, (n,n) = E{x"(n)} (1.25)

is the mean square value or average power of x(n). Moreover, when x(n)
has zero-mean, then

o? (1) = Ry (n,n) = E{x” (n)} (1.26)
That is, the power of x(n) is equal to the variance of x(n).

38



5. Covariance

The covariance of a real random signal x(») is defined as

C oy (m,n) = E{(x(m) — p(m) N x(n) — p(m))}
Expanding (1.27) gives

C oo (m,n) = E{x(m)x(n)} — u(m)u(n)
In particular,

C e (n,1) = E{(x(n) —p(n))*} = 5* (n)
is the variance, and for zero-mean x(n), we have

C.(mn)=R_ (m,n)

39
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6. Crosscorrelation

The crosscorrelation of two real random signals x(n) and y(n) is defined
as

o0 o0

Ry, (m,n) = E{x(m)y(n)} = [ [x(m)y(n)f(x(m), y(n)Md(x(m))d(y(n)) (1.28)

where f(x(m), y(n)) is the joint PDF of x(m) and y(n). It measures the
correlation of x(n) and y(n). The signals x(m) and y(n) are uncorrelated if

Ry, (m,n) = E{x(m);- Eix(n)}.

/. Independence

Two real random variables x(n) and y(»n) are said to be independent if

[(x(n), y(m) = f(x(n))- f(¥(m)) = E{x(m)y(n)} = E{x(n)} - E{y(n)} (1.29)

Q.: Does “uncorrelated” implies “independent” or vice versa?

40



8. Stationarity

A discrete random signal is said to be strictly stationary if its k-th order
PDF f(x(n),x(ny), -+, x(n;)) is shift-invariant for any set of n;,n, ---,n;

and for any k. That is
J(x(ny), x(ny), -+, x(ng ) = f(x(ny +ng), x(ny +ng), -, x(ny +ng)) (1.30)

where n, is an arbitrary shift and for all £. In particular, a real random

signal is said to be wide-sense stationary (WSS) if the first and second
order moments, viz., its mean and autocorrelation, are shift-invariant.

This means
u=E{x(n)} = E{x(m)}, m#n (1.31)
and

Ry (i) = R (m—n) = Ry (m,n) = Ex(m)x(n)} ~ (1.32)

where i = m—n Is called the correlation lag.

41



Three important properties of R (i):
()R, (7) is an even sequence, i.e.,
R (D) = Ry (=) (1.33)
and hence is symmetric about the origin.
Q.: Why is it an even sequence?

(i)The mean square value or power is greater than or equal the magnitude
of the correlation for any other lag, i.e.,

E{x*(n)} = Ry (0) 2| Ry (1) |, i#0 (1.34)
which can be proved by the Cauchy-Schwarz inequality:
| E{a-b} <+ E{a’} -+ E{b’}
(ii)When x(n) has zero-mean, then
6> = E{x*(n)} =R, (0) (1.35)

42



9. Ergodicity

A stationary process is said to be ergodic if its time average using infinite
samples equals its ensemble average. That is, the statistical properties of
the process can be determined by time averaging over a single sample
function of the process. For example,

e Ergodic in the mean if

W= B} = Tim 3 x(n)

N—o N p=_nN/2

e Ergodic in the autocorrelation function if
1 N/2-1

Rei(i) = Efx(n)x(n=i)} = lim 3 x(n)x(n~i)

Unless stated otherwise, we assume that random signals are ergodic (and
thus stationary) in this course.
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Example 1.10
Consider an ergodic stationary process {x[n]}, =---,—1,0,1,--- which is

uniformly distributed between 0 and 1.

The ensemble average or mean of x[n] at time m is

00 1 1
wml = [x{m]- f(mDdxim] = [ x[mldx{m] = %xz[m] :%
0 0

It is clear that the mean of x[n] is also u = 0.5 for all n

Because of ergodicity, the time average is
1 N/2-1

1
lm — xlnl=pn=—-
N—)ooNn:_Z]:\f/z [ ] H 2
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10. Power Spectrum

For random signals, power spectrum or power spectral density (PSD) is
used to describe the frequency spectrum.

Q.: Can we use DTFT to analyze the spectrum of random signal? Why?

The PSD is defined as:

O (@)= X Re@e ™ = Z[Ru )] o) (1.36)

]=—00
Given @ . (»), we can get R,, (i) using

Tcpxx (0)e’® do (1.37)

, 1
R\ (1) = g
—T

Q.: Why?
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Under a mild assumption:

1
hm N Z ‘k‘ ‘R x(k)‘

k=—N

it can be proved (1.36) is equivalent to

® im £ LS v jon (1.38)
@)= 11 X\n)e .
wlo)= lim B
N-1 . |
Since > x(n)e /®" corresponds to the DTFT of x(n), we can consider the
n=0

PSD as the time average of \X(oa)\z based on infinite samples.

(1.38) also implies that the PSD is a measure of the mean value of the
DTFT of x(n).
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Common Random Signal Models
1. White Process

A discrete-time zero-mean signal w(n) is said to be white if
2

Ry (m = 1) = E{w(n)w(m)} = {GW’
0, otherwise

m=n

(1.39)

Moreover, the PSD of w(n) is flat for all frequencies:

O, ()= Y R, (e /= RWW(O)-e_](D'0 = 52

w
[=—00

Notice that white process does not specify its PDF. They can be of
Gaussian-distributed, uniform-distributed, etc.
Py (f4)

1
2a
i !f2
f1 -a 0 a

47

pg(fz'




2. Autoregressive Process

An autoregressive (AR) process of order M is defined as

x(n)=apx(n—=1)+arx(n=2)+--+ayx(n—M)+w(n) (1.40)

where w(n) is a white process.

Taking the z-transform of (1.40) yields
X(z) 1
W(Z) l—alZ_l—ClzZ_z—"'—ClMZ_

H(z) = 7

Let h(n) = Z 7 {H(z)}, we can write

() = h(m®wm) = S h(n—kwk)= 3 win—khk)
k=—o0 k=—0o0

Q.: What Is the mean value of x(n)?
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Input-output relationship of random signals is:
Ry (m) = E{x(n)x(n +m)j}

=E{ » h(ky)w(n—ky)- > h(kz)w(ner—kz)}

o0 o0

= 3 Y hlkph(ky)E{w(n—ky)-wn+m—ky)}

o0 o0

= X 2 hlkp)h(ky)R,,,(m+ky —ky)

— Y Ry m—k)- Y h()hk+k), k =ky —ky
k=—o0 ey =—00
= Ram =Ry m@gn. @)= 5 Hhhlk+ky) = h) @ )
| =—00
= O, (0) = D, (0) - G(w), G(o) = |H (o)

= D (@) =D, (0) | H () (1.41)
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Note that (1.41) applies for all stationary input processes and impulse

reSponses.

In particular, for the AR process, we have

o,

D (w) = . .
1—ape/® —gye/2®

3. Moving Average Process

A moving average (MA) process of order N is defined as

x(n) =bgw(n)+bywn—-1)+---+byw(n—-N)

Applying (1.41) gives

: : 2
D, (0)=|bg +be/® +-tbye /N .2
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4. Autoregressive Moving Average Process
An autoregressive moving average (ARMA) process is defined as

x(n)=aix(n=1)+arx(n=2)+--+ayx(n—-M) (1.45)
+bow(n) +bypwn—-1)+---+bywn—-N) '

Applying (1.41) gives

‘bo +be/® +-+bye )
O (0) = o2 (1.46)

‘1 —aje /® - aze_]zm — e — aMe_]M(D
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Questions for Discussion

1. Consider a signal x(n) and a stable system with transfer function
H(z) = B(z)/ A(z). Let the system output with input x(n) be y(n).

Can we always recover x(n) from y(n)? Why? You may consider the
simple cases of B(z) =1+2z"!' and A(z)=1 as well as
B(z)=1+0.5z""and A(z) =1.

2. Given a random variable x with mean p, and variance 0326. Determine
the mean, variance, mean square value of
y=ax+b

where a and b are finite constants.

3. Is AR process really stationary? You can answer this question by
examining the autocorrelation function of a first-order AR process, say,

x(n)=ax(n—1)+ w(n)
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