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Brief Review of Discrete-Time Signal Processing 
There are 3 types of signals that are functions of time: 
� continuous-time (analog) : defined on a continuous range of time 
� discrete-time : defined only at discrete instants of time (…,(n-1)T,nT, 

(n+1)T,…) 
� digital (quantized) : both time and amplitude are discrete 
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Digital Signal Processing Applications 
 
� Speech 
 

� Coding (compression) 
� Synthesis (production of speech signals, e.g., speech development kit 

by Microsoft ) 
� Recognition (e.g., PCCW’s 1083 telephone number enquiry system 

and many applications for disabled persons as well as security) 
� Animal sound analysis 

 
� Music 
 

� Generation of music by different musical instruments such as piano, 
cello, guitar and flute using computer  
� Song with low-cost electronic piano keyboard quality  
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� Image 
 

� Compression 
� Recognition such as face, palm and fingerprint 
� Construction of 3D objects from 2D images 
� Animation, e.g., “Toy Story (反斗奇兵)” 
� Special effects such as adding Forrest Gump to a film of President 

Nixon in “阿甘正傳” and removing some objects in a photograph or 
movie 

 
� Digital Communications 
 

� Encryption 
� Transmission and Reception (coding / decoding, modulation / 

demodulation, equalization) 
 
� Biometrics and Bioinformatics 
 
� Digital Control 
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Transform from Time to Frequency  
 

    
transform

inverse 
transform

)(tx )(ωX    
 
 
Fourier Series 
 

� express periodic signals using harmonically related sinusoids 
� different definitions for continuous-time & discrete-time signals 

ω ω 2ω 3ω� frequency  takes discrete values: 0, , 0 0, ... 
 
Fourier Transform 
 

� frequency analysis tool for aperiodic signals 
ω� defined on a continuous range of  

� different definitions for continuous-time & discrete-time signals 
� Fast Fourier transform (FFT) – an computationally efficient method for 

computing Fourier transform of discrete signals 
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Fourier Series 
 

Fourier series are used to represent the frequency contents of a periodic 
and continuous-time signal. A continuous-time function ( )tx  is said to be 
periodic if there exists 0>PT  such that 
 

),(),()( ∞−∞∈+= tTtxtx P          (I.1) 
 
The smallest PT  for which (I.1) holds is called the fundamental period. 
Every periodic function can be expanded into a Fourier series as 
 

 ( ) ),(,0 ∞−∞∈∑=
∞

−∞=

ω tectx
k

tjk
k  (I.2) 
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and PT/20 π=ω  is called the fundamental frequency. 
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Example 1.1 
xThe signal ( ) )200cos()100cos( ttt π+π=  is a periodic and continuous-

time signal. 
 
The fundamental frequency is π=ω 1000 . The fundamental period is then 

50/1)100/(2 =ππ=PT : 
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Since ( )
22
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0000 22 tjtjtjtj eeeetttx
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+

+
=π+π=  

 

By inspection and using (I.2), we have 2/11 =c , 2/11 =−c , 2/12 =c , 
2/1=c  while all other Fourier series coefficients are equal to zero. 2−
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Fourier Transform 
 
Fourier transform is used to represent the frequency contents of an 
aperiodic and continuous-time signal )(tx : 

∞
Forward transform:  ∫=ω

∞−

ω− dtetxX tj)()(        (I.4) 

 
and 

Inverse transform:  ω∫ ω
π

= ω
∞

∞−
deXtx tj)(

2
1)(       (I.5) 

 
Some points to note: 
 
� Fourier spectrum (both magnitude and phase) are continuous in 

frequency and aperiodic 
� Convolution in time domain corresponds to multiplication in Fourier 

transform domain, i.e., )()()()( ω⋅ω↔⊗ YXtytx  
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Example 1.2 
Find the Fourier transform of the following rectangular pulse: 
 





>
<

=
1

1

,0
,1

)(
Tt
Tt

tx  

 

11

Using (I.4), 
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Example 1.3 
Find the inverse Fourier transform of  
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
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Using (I.5), 
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Discrete-Time Fourier Transform (DTFT) 
 
DTFT is a frequency analysis tool for aperiodic and discrete-time signals. 
If we sample an aperiodic and continuous-time function )(tx  with a 
sampling interval T , the sampled output )(tx  is expressed as s

 ∑ −δ⋅=
∞

−∞=n
s nTttxtx )()()(      (I.6) 
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The DTFT can be obtained by substituting )(txs  into the Fourier transform 
equation of (1.4): 
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 where sifting property of unit-impulse function is employed to obtain (1.7): 
 

)()()( 00 tfdttttf =−δ∫
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Some points to note: 
 
� DTFT spectrum (both magnitude and phase) is continuous in frequency 

and periodic with period T/2π  
 

� When the sampling interval is normalized to 1, we have 
 

Forward Transform:  nj

n
enxX ω−∞

−∞=
∑=ω )()(        (I.8) 

   and 

Inverse Transform:  ∫ ωω
π

=
π

π−

ω deXnx nj)(
2
1)(       (I.9) 

 
 
Discrete-Time Fourier Series (DTFS) 
 
DTFS is used for analyzing discrete-time periodic signals. It can be 
derived from the Fourier series. 
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Example 1.4 
Find the DTFT of the following discrete-time signal: 
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z-Transform 
 
It is a useful transform of processing discrete-time signal. In fact, it is a 
generalization of DTFT for discrete-time signals 
 

∑==
∞

−∞=

−

n

nznxnxZzX ][]}[{)(          (I.10) 

where z  is a complex variable. Substituting ω= jez  yields DTFT. 
 
Moreover, substituting ω= jrez  gives 
  

}][{][)( n

n

jnn rnxFernxzX −∞

−∞=

ω−− =∑=        (I.11) 
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Advantages of using z -transform over DTFT: 
 

� can encompass a broader class of signal since Fourier transform does 
not converge for all sequences: 

 

A sufficient condition for convergence of the DTFT is 
∞∞

∞<∑≤⋅∑≤ω
−∞=

ω−

−∞=
|)(||||)(||)(|

n

nj

n
nxenxX         (I.12) 

Therefore, if  is absolutely summable, then )(nx )(ωX  exists. 
ωjOn the other hand, by representing = rez , the z -transform exists if 

 

∞<∑≤⋅∑≤=
∞

−∞=

−ω−∞

−∞=

−ω |)(||||)(||)(||)(|
n

nnj

n

nj rnxernxreXzX        (I.13) 

⇒ we can choose a region of convergence (ROC) for z  such that the z -
transform converges 

 

� notation convenience : ω↔ jez  
 

� can solve problems in discrete-time signals and systems, e.g. difference 
equations 
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Example 1.5 
Determine the z-transform of . ][][ nuanx n=
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In this case, )(zX  converges if 11 <− za  or az < , and 

11
1)( −−

=
az

zX  

 
 

]n ]1[ −−nu
ROC of 

][ −= anx n  
ROC of 

[][ uanx n=  
 
 
 
 
 
 
 
 

Some points to note: 
� Different signals can give same z-transform, although the ROCs differ 

][][ nuanx n= 1||| >a� When  with , its DTFT does not exist 
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Transfer Function and Difference Equation 
A linear time-invariant (LTI) system with input sequence  and output 
sequence )(n

)(nx
y  are related via an Nth-order linear constant coefficient 

difference equation of the form: 
N M

           0,0,)()( 00
0 0

≠≠∑ ∑ −=−
= =

baknxbknya
k k

kk         (I.14) 

Applying z -transform to both sides with the use of the linearity property 
and time-shifting property, we have 

N
 ∑ ∑=

= =
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k

M

k

k
k

k
k zXzbzYza

0 0
)()(         (I.15) 

The system (or filter) transfer function is expressed as 
MM
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where each )1( 1−− zck  contributes a zero at kcz =  and a pole at  
while each  

0=z
)1−− zd1( k  contributes a pole at kdz =  and a zero at 0=z . 

 
22



The frequency response of the system or filter can be computed as 
 
 )exp()()( ω==ω jzzHH           (I.17) 
 
From (1.14), the output )(ny  is expressed as 
 

 





 ∑ −−∑ −=

==

N

k
k

M

k
k knyaknxb

a
ny

100
)()(1)(           (I.18) 

 
When at least one of the },,,{ 21 Naaa L  is non-zero, then )(ny  depends on 
its past samples as well as the input signal )(nx . The system or filter in this 
case is known as an infinite impulse response (IIR) system. Applying 
inverse DTFT or z  transform to the transfer function, it can be shown that 
the system impulse response is of infinite duration.  
 

When all },,,{ 21 Naaa L  are equal to zero, )(ny  depends on  only. It is 
known as a finite impulse response (FIR) system because the impulse 
response is of finite duration. 

)(nx
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Example 1.6 
Consider a LTI system with the input  and output  satisfy the 
following linear constant-coefficient difference equation, 

][nx ][ny

11 ]1[
3

][]1[
2

][ −+=−− nxnxnyny  

 
Find the system function and frequency response. 
 
Taking z-transform on both sides, 
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Example 1.7 
Suppose you need to high-pass the signal  by the high-pass filter with 
the following transfer function 

][nx

 

199.01
1)( −+

=
z

zH  

 
How to obtain the filtered signal ? ][ny
 

199.01
1

)(
)()( −+

==
zzX

zYzH   ⇒ )()(99.0)( 1 zXzYzzY =+ −  

 
Taking the inverse z-transform 
 

][]1[99.0][ nxnyny =−+   

 

]⇒ []1[99.0][ nxnyny +−−=  ( 0]1[ =−y  for initialization) 
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Causality, Stability and ROC: 
 

Causality condition:  for all 0][ =nh 0<n , 
 

][nh  is right-sided 
 

The ROC for )(zH  is 
the exterior of an origin-centered circle (including ∞=z ) 

 
If )(zH  is rational, the ROC for )(zH  is 

the exterior outside the outermost pole. 

∞
Stability condition: ∞<∑

−∞=n
nh ][  

 
)( ωjeH , i.e.,  the Fourier transform of , converges ][nh

 
The ROC for )(zH  includes the unit circle 1=z  
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Example 1.8 
Verify if the system impulse response  is causal and stable. ][5.0][ nunh n=
 
It is obvious that  is causal because ][nh 0][ =nh  for all 0<n . On the other 
hand, 

∑=∑=
∞

=

−∞

−∞=

−

0

1)5.0(][5.0)(
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n

n

nn zznuzH 15.01
1
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)(zH  converges if ∞<∑
∞

=

−

0

15.0
n

z
n

. This requires 15.0 1 <−z  or 5.0>z ,  

 
i.e., ROC for )(zH  is the exterior outside the pole of 0.5 
 
(Notice that for another impulse response , and it 
corresponds to an unstable system because the ROC for )(

]1[5.0][ −−−= nunh n

zH  is 
5.0<z ) 
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The z-transform for  is  ][nh
 

5.0||,
5.01

1)( 1 >
−

= − z
z

zH  

 
Hence it is stable because the ROC for )(zH  includes the unit circle 1=z  
 
On the other hand, its stability can also be shown using: 
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Brief Review of Random Processes 
 

Basically there are two types of signals: 
 
� Deterministic Signals 
 
� exactly specified according to some mathematical formulae 
� characterized by finite parameters 
� e.g., exponential signal, sinusoidal signal, ramp signal, etc.  
� a simple mathematical model of a musical signal is 

 

)2cos()()( 0
1

mm
m

tmfctatx φ+π∑=
∞

=
 

 where: 
 

 0f  is the fundamental frequency or pitch 
φ  is the amplitude and mc m  is the phase of the mth harmonic 
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)(ta  is the envelope 
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� Random Signals 
 
� cannot be directly generated by any formulae and their values cannot 

be predicted 
� characterized by probability density function (PDF), mean, variance, 

power spectrum, etc. 
� e.g., thermal noise , stock values, autoregressive (AR) process, 

moving average (MA) process, etc.  
� a simple voiced discrete-time speech model is                
 

][][][
1

nwinxanx i
P

i
+−∑=

=
 

where  
 
{ } are called the AR parameters 

]n
ia
[w  is a noise-like process 
P  is the order of the AR process 
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Definitions and Notations 
 

1. Mean Value 
 

The mean value of a real random variable  at time  is defined as )(nx n
∞

 ( )∫==µ
∞−

)())(()()}({)( nxdnxfnxnxEn        (I.19) 

where ))(( nxf  is the PDF of  such that 
∞

)(nx

                             ( ) 0))((and1)())(( ≥=∫
∞−

nxfnxdnxf  

 
Note that, in general, 
 nmnm ≠µ≠µ ),()(          (I.20) 
and 

                           )(1)(
1

0
nx

N
m

N

n
∑≠µ
−

=
          (I.21) 

 

The mean value is also called expected value and ensemble mean. 
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2. Moment 
 
Moment is the generalization of the mean value: 
 

 ( ) ( ) ( )∫=
∞

∞−
)())(()(})({ nxdnxfnxnxE mm        (I.22) 

 
When 1=m

(nx
, it is the mean while when , it is called the mean square 

value of ). 
2=m

 
3. Variance 
 

The variance of a real random variable  at time  is defined as )(nx n
∞

        ( )∫ µ−=µ−=σ
∞−

)())(())()((}))()({()( 222 nxdnxfnnxnnxEn            (I.23) 

It is also called second central moment. 
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Example 1.9 
Determine the mean, second-order moment, variance of a quantization 
error, x, with the following PDF: 
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a
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33
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2
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2
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2
3222 ax

a
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a

a

a
=⋅=∫ ⋅=∫ ⋅=

−−

∞

∞−
 

3
}{}){(

2
222 axExE ==µ−=σ  
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4. Autocorrelation 
 

The autocorrelation of a real random signal  is defined as )(nx
 

( ) ( ) ( ))()()(),()()()}()({),( nxdmxdnxmxfnxmxnxmxEnmRxx ∫ ∫==
∞

∞−

∞

∞−
     (I.24) 

 

where ( ))(),( nxmxf  is the joint PDF of  and . It measures the 
degree of association or dependence between x  at time index n  and at 
index m.  

)(mx )(nx

 

In particular, 
 

  xx =          (I.25) )}({),( 2 nxEnnR
 

is the mean square value or average power of . Moreover, when  
has zero-mean, then 

)(nx )(nx

 

         (I.26) )}({),()( 22 nxEnnRn xx ==σ
 

That is, the power of  is equal to the variance of . )(nx )(nx
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5. Covariance 
 

The covariance of a real random signal  is defined as )(nx
 
                     ( )( )})()()()({),( nnxmmxEnmCxx µ−µ−=         (I.27) 
 
Expanding (I.27) gives 
 

{ } )()()()(),( nmnxmxEnmCxx µµ−=  
In particular,  
 

( ) )(})()({),( 22 nnnxEnnCxx σ=µ−=  
 
is the variance, and for zero-mean , we have )(nx
 

),(),( nmRnmC xxxx =  
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6. Crosscorrelation 
 

The crosscorrelation of two real random signals  and )(nx )(ny  is defined 
as 
 

( ) ( ) ( ))()()(),()()()}()({),( nydmxdnymxfnymxnymxEnmRxy ∫ ∫==
∞

∞−

∞

∞−
     (I.28) 

 
where ( ))(),( nymxf  is the joint PDF of  and )(mx )(ny . It measures the 
correlation of  and )(n)(nx y . The signals  and )(mx )(ny  are uncorrelated if 

)})}),( n({x({ EmxEnmRxy ⋅= . 
 
7. Independence 
 

Two real random variables  and )(nx )(ny  are said to be independent if 
 

( ) ( ) ( ) )}({)}({)}()({)()()(),( nyEnxEnynxEnyfnxfnynxf ⋅=⇒⋅=      (I.29) 
 

Q.: Does “uncorrelated” implies “independent” or vice versa? 
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8. Stationarity 
 

A discrete random signal is said to be strictly stationary if its k -th order 
PDF ))(,),(),(( 21 knxnxnxf L  is shift-invariant for any set of nnn ,L  
and for any 

k,2,1
k . That is 

 

))(,),(),(())(,),(),(( 0020121 nnxnnxnnxfnxnxnxf kk +++= LL      (I.30) 
 
where  is an arbitrary shift and for all 0n k . In particular, a real random 
signal is said to be wide-sense stationary (WSS) if the first and second 
order moments, viz., its mean and autocorrelation, are shift-invariant.  
 

This means 
 nmmxEnxE ≠==µ )},({)}({       (I.31) 
and 
 
 )}()({),()()( nxmxEnmRnmRiR xxxxxx ==−=      (I.32) 
 

where nmi −=  is called the correlation lag.  
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Three important properties of )(iRxx : 
 

(i) )(iRxx  is an even sequence, i.e., 
 

  )()( iRiR xxxx −=          (I.33) 
 

and hence is symmetric about the origin. 
 

Q.: Why is it an even sequence? 
 

(ii)The mean square value or power is greater than or equal the magnitude 
of the correlation for any other lag, i.e., 

 

      (I.34) 0|,)(|)0()}({ 2 ≠≥= iiRRnxE xxxx
 

which can be proved by the Cauchy-Schwarz inequality: 
22

 

}{}{|}{| bEaEbaE ⋅≤⋅  
 

(iii)When  has zero-mean, then 
2

)(nx
 

  xx              (I.35) )0()}({ 2 RnxE ==σ
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9. Ergodicity 
 

A stationary process is said to be ergodic if its time average using infinite 
samples equals its ensemble average. That is, the statistical properties of 
the process can be determined by time averaging over a single sample 
function of the process. For example, 
 
• Ergodic in the mean if 
 

)(1lim)}({
12/

2/
nx

N
nxE

N

NnN
∑==µ

−

−=∞→
 

 
• Ergodic in the autocorrelation function if 
 

)()(1lim)}()({)(
12/

2/
inxnx

N
inxnxEiR

N

NnN
xx −∑=−=

−

−=∞→
 

 

Unless stated otherwise, we assume that random signals are ergodic (and 
thus stationary) in this course. 
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Example 1.10 
Consider an ergodic stationary process { }, ][nx LL ,1,0,1,−=  which is 
uniformly distributed between 0 and 1.  
 
The ensemble average or mean of  at time  is  ][nx m
 

2
1][

2
1][][][])[(][][

1

0

21

0
==∫=∫ ⋅=µ

∞

∞−
mxmdxmxmdxmxfmxm  

 
It is clear that the mean of  is also ][nx 5.0=µ  for all  n
 
Because of ergodicity, the time average is 
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10. Power Spectrum 
 

For random signals, power spectrum or power spectral density (PSD) is 
used to describe the frequency spectrum. 
 
Q.: Can we use DTFT to analyze the spectrum of random signal? Why? 
 
The PSD is defined as: 
 

[ ] )exp()()()( ω=
ω−∞

−∞=
=∑=ωΦ jzxx

ij
xx

i
xx iRZeiR       (I.36) 

 
Given )(ωΦ xx , we can get )(iRxx  using 
 

∫ ωωΦ
π

=
π

π−

ω deiR ij
xxxx )(

2
1)(                 (I.37) 

 

Q.: Why? 
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Under a mild assumption: 
 

0)(1lim =⋅∑
−=∞→

kRk
N xx

N

NkN
 

 
it can be proved (1.36) is equivalent to 
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


∑=ωΦ ω−−

=∞→

21

0
)(1lim)( njN

nN
xx enx

N
E       (1.38) 

 

Since njN

n
enx ω−−

=
∑ )(

1

0
 corresponds to the DTFT of , we can consider the 

PSD as the time average of 

)(nx

2)(ωX  based on infinite samples. 
 
(1.38) also implies that the PSD is a measure of the mean value of the 
DTFT of )(nx . 
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Common Random Signal Models 
 

1. White Process 
 

A discrete-time zero-mean signal  is said to be white if  

 2
)(nw

                        (I.39) 



=σ==−
otherwise,0

,)}()({)( nmmwnwEnmR w
ww

 

Moreover, the PSD of  is flat for all frequencies: )(nw
20)0()()( w

j
ww

ij
ww

i
ww eReiR σ=⋅=∑=ωΦ ⋅ω−ω−∞

−∞=
 

 

Notice that white process does not specify its PDF. They can be of 
Gaussian-distributed, uniform-distributed, etc. 
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2. Autoregressive Process 
 

An autoregressive (AR) process of order M  is defined as 
 

)()()2()1()( 21 nwMnxanxanxanx M +−++−+−= L       (I.40) 
 

where  is a white process. )(nw
 
Taking the z -transform of (1.40) yields 
 

M
M zazazazW
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==
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2
1

11
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Let , we can write { })()( 1 zHZnh −=
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Q.: What Is the mean value of ? )(nx
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Input-output relationship of random signals is: 
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1
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⇒ 2)()(),()()( ω=ωω⋅ωΦ=ωΦ HGGwwxx  
 

⇒      2)()()( ω⋅ωΦ=ωΦ Hwwxx           (I.41) 
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Note that (1.41) applies for all stationary input processes and impulse 
responses.  
 

In particular, for the AR process, we have 
 

22
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ω−ω−ω− −−−−

σ
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      (1.42) 

 
3. Moving Average Process 
 
A moving average (MA) process of order N  is defined as 
 

)()1()()( 10 Nnwbnwbnwbnx N −++−+= L            (I.43) 
 
Applying (1.41) gives 
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4. Autoregressive Moving Average Process 
 
An autoregressive moving average (ARMA) process is defined as 
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Applying (1.41) gives 
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Questions for Discussion 

)(nx
 

1. Consider a signal  and a stable system with transfer function 
)(/)()( zAzBzH = . Let the system output with input )(nx  be )(ny . 

 

Can we always recover  from )(nx )(ny ? Why? You may consider the 
simple cases of 121( ) −+ zB =z  and 1)( =zA  as well as 

1−  and 5.01)( += zzB 1)( =zA . 
 

2. Given a random variable  with mean  and variance . Determine 
the mean, variance, mean square value of 

bax

x xµ 2
xσ

y +=
 

 
 

 where  and  are finite constants. a b
 

3. Is AR process really stationary? You can answer this question by 
examining the autocorrelation function of a first-order AR process, say, 

 

)()1()( nwnaxnx +−=  
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