Chapter 3

= Optimal Filter Theory and Applications
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Optimal Signal Processing is concerned with the design, analysis, and
implementation of processing system that extracts information from
sampled data in a manner that is ‘best’ or optimal in some sense. Such
processing systems can be referred to as optimal filters.

Basic Classes of Optmal Filtering Applications

1.Prediction: use previous samples to predict current samples
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= Speech Modeling using Linear Predictive Coding (LPC)

Since speech signals are highly correlated, a speech signal s(n) can be
accurately modeled by a linear combination of its past samples:

s(n)=8(n)= § w;s(n —1i)
i=1

where {w;} are known as the LPC coefficients. Techniques of optimal
signal processing can be used to determine {w;} in an optimal way.

2. ldentification
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= System ldentification

No(K)

Unknown system  d(k) | \

S(k) ° - 2
H(z)

r(k)

/

N : x(k) | Optimal filter N

n;(k)
W(z)
e(k)

Given noisy input x(k) and/or noisy output r(k), our aim is to determine
the impulse response of the unknown system H(z) using W (z)



3. Inverse Filtering: find the inverse of the system
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= Signhal Recovery

Given a noisy discrete-time signal:
x(k)=s(k)® h(k)+w(k)

where s(k), h(k) and w(k) represent the signal of interest, unknown

impulse response and noise, respectively. Optimal signal processing
can be used to recover s(k) in an optimal way.



4. Interference Canceling: Remove noise using an external reference
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= |nterference Cancellation in Electrocardiogram (ECG) Recording

In biomedical engineering, the measured ECG signal r(n) is corrupted
by the 50Hz power line interference:

r(n)=s(n)+i(n)

where s(n) is the noise-free ECG and i(n) represents the 50Hz
interference. An external reference for i(n) is another 50Hz signal.



Problem Statement for Optimal Filters

Output Desired

Input

Signal y(n) (Fje:ponse

X W) (x2
Estimation
Error
e(n)

Given the input x(n) and the desired response d(n), we want to find the
transfer function W(z) or its impulse response such that a statistical
criterion or a cost function is optimized.



Some common optimization criteria in the literature are:
N-1
1.Least Squares : find W(z) that minimizes ¥ e¢*(n) where N is the
n=0
number of samples available. This corresponds to least-squares filter

design.

2.Minimum Mean Square Error : find W(z) that minimizes E{e2 (n)}. This
corresponds to Wiener filtering problem.

N-1
3.Least Absolute Sum : find W(z) that minimizes Y |e(n) .
n=0

4 .Minimum Mean Absolute Error : find W(z) that minimizes E{/e(n)|}.
5.Least Mean Fourth : find W(z) that minimizes E{e”*(n)}.

The first and second are two commonly used criteria because of their
relatively small computation, ease of analysis and robust performance. In
later sections it is shown that both viewpoints give rise to similar
mathematical expression for W (z).

Q.: An absolute optimization criterion does not exist? Why?



Least Squares Filtering

For simplicity, we assume W (z) is a causal FIR filter of length L so that

L—-1 :
W(z)= > wz" (3.1)
i=0

The error function e(n) is thus given by

e(n) =d(n)— y(n) (3.2)
where
L-1 . T
y(n)= 2Xwx(n—i)=W" X(n),
i=0

W=[wy wi -=wr_, wr]

X(n)=[x(n) x(n—-1) ---x(n—L+2) x(n—L+1)]T

T



The cost function is
N

| 2
JisW) = X e 2(n) = O[d(n)— 2wx<n—z>} (3.3)
which is a function of the filter coefficients {w;} and N is the number of
x(n) (and d(n)).

The minimum of the least squares function can be found by differentiating
J; (W) with respect to wy,w;,---,w;_; and then setting the resultant
expressions to zero as follows,

2
JisW) _ 0 {N l(d(n)—wa(n—z)) }: j=01,---,L—1
ow ow, i=0
N-1
=23 (d(n)— >w; x(n—z)j( x(n—j))=0 (3.4)
n=0 i=0

N-1L-1

= Zd(n)X(n J)= 2 2wix(n—i)x(n—j)= Zw ZX(n—l)x(n J)

n=0i=0 n=

10



Denote

Ry =[Ru(0) Ry(-1) - Ry(-L+2) Ry (-L+1D] (3.5)
where

ay . N_l . .

Rdx(_]): Zd(n)x(n—]), ]:Oala"°9[’_1

n=0
and
- R_.(0,0) R.(-1,0) - R_(-L+20) R_(-L+10) |
R_(0-1) '

]AQ _

R_(0,~L+2) .
| R..(0,~L+1) R (-1,-L+1) R, (-L+1,—-L+1)]

where
VA . . N_l . .
R . (=i,—j)= 2 x(n—i)x(n-j)
0

n=

11



In practice, for stationary signals, we use

- R_.(0) R.(-1) - R_(-L+2) R_(-L+1]
R..(1) :
R = (3.6)
R_(L-2) .
R (L-1) R_(L-2) R_(0)
where
. N-1-i )
R, ()= 2 x(m)x(n+i)= R, (-i)
n=0
As a result, we have
Ry =R, W
¢ s (3.7)
— ELS = (Bxx) ‘R gy

provided that R __is nonsingular.
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Example 3.1

Unknown System

X(n)

I R )
din) .
.jZOWiZ' y(n) e(n)

In this example least squares filtering is applied in determining the impulse
response of an unknown system. Assume that the unknown impulse
response is causal and {#;}={1,2,3,2,1}. Given N samples of x(n) and d(n)

where ¢(n) is a measurement noise.
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We can use MATLAB to simulate the least squares filter for impulse
response estimation. The MATLAB source code is as follows,

%define the number of samples
N=50;

%define the noise and signal powers
noise_power = 0.0;
signal_power = 5.0;

%define the unknown system impulse response
h=[12 3 2 1];

%generate the input signal which is a Gaussian white noise with power 5
x=sqrt(signal_power).*randn(1,N);
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%generate R_xx
corr_xx=xcorr(x);

for i=0:4

for j=0:4

R_xx(i+1,j+1)= corr_xx(N+i-j);
end

end

%generate the desired output plus noise
d=conv(x,h);
d=d(1:N)+sqrt(noise_power).*randn(1,N);

%generate R_dx

corr_xd = xcorr(d,x);

for i=0:4

R_dx(i+1) = corr_xd(N-i);
end

%compute the estimate channel response
W _Is = inv(R_xx)*(R_dx)"
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251.6413  24.4044  36.4998 —11.8182  4.5115 |
24.4044  251.6413 244044 36.4998 —11.8182
R.. =] 364998 244044 251.6413 24.4044  36.4998
—-11.8182 36.4998 244044 251.6413 24.4044

45115 118182 36.4998 24.4044  251.6413 |

de:[390.8245 658.8827 &873.3125 616.0732 334.9508]

W, =[1.1095 2.0151 2.8291 1.8501 0.8176]

When N is increased to 500, we have
W,s =[0.9975 1.9943 2.9927 1.9942 O.9828]T
When N is increased to 5000, we have

W, =[1.0000 19981 2.9976 1.9972 0.9984]"
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When N =500 and the noise power is 0.5 (SNR=10 dB), we have
W, =[1.0158 1.9826 2.9728 1.9773 0.9925]"
When N =500 and the noise power is 5.0 (SNR=0 dB), we have
W, =[1.0900 2.0138 2.9484 2.0249 1.0591]"
It is observed that
1. The estimation accuracy improves as N increases. It is reasonable

because as N increases, the accuracy of R __ and R, increases due to
more samples are involved in their computation.

2. The estimation accuracy improves as the noise power decreases.
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Example 3.2

Find the least squares filter of the following one-step predictor system:

d(n)

+

-1 -1 =

x(n) e(n)

where
s(n) = /2 sin(2mn /12)

x(n)=s(n—-1)= \Esin(zn(lnz_ Dj
d(n) = s(n)

18



Given d(n), the aim is to find by and b, in least squares sense.

The MATLAB source code is as follows,

N=50; %define the number of samples
n=0:N-1;
d=sin(2.*pi.*n./12); %generate d(n)
x= d(2:N); %generate x(n) from d(n)
d=d(1:N-1); %keep lengths of x(n) and d(n) equal
corr_xx=xcorr(x,’unbiased’); %unbiased estimate of correlation
for i=0:1

for j=0:1

R_xx(i+1,j+1)= corr_xx(N-1+i-j);
end

end
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corr_xd = xcorr(d,x,’unbiased’);

for i=0:1

R_dx(i+1) = corr_xd(N-1-i);
end
W _Is = inv(R_xx)*(R_dx)"
The result is: Wils = [1.7705 -1.0440]
N — 5000 = Wils = [1.7324 -1.0004]
N — 500000 = Wils = [1.7321 -1.0000]

The optimal by, and b, can be shown to be [3  —1]

for a real tone:
s(n) =2cos(w)s(n—1)—s(n—-2)

s(n)=2cos(2n/12)s(n—1)—s(n—-2)
=3s(n—=1)+(=Ds(n—2)
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Wiener Filtering

The cost function to be minimized is

Jvse W) = Efe’ (n)} (3.8)

Following the derivations in the least squares filter, the minimum of
Jyse W) is found by

B 2
O se W) _ 0 {E{(d(n) S (- i)j H 0, j=0L L1
ow i=0

j ow

L-1
= 2E{(d(n) — > w;x(n— i)j(— x(n— j))} =0 (3.9)
i=0

= E{d(n)x(n - j)} = E{%lwix(n —D)x(n - j)} = S wE{(n (- )}

i=0
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Assume d(n) and x(n) are jointly stationary, we have

Racl=i) = ZwiRoali= ). j= 0L, L1
Define |
Ry =[Rg(0) Ry(=1) - Ry(-L+2) Ry(-L+D]
and i )
R, (0) R, (1) - R, (L=2) R (L-])
R, (1) - R (L=2)
R, = : - :
R (L-2) - R (D)
R (L=1) R, (L=2) - R,() R (0)
As a result,

de = Bxx | ZMMSE

—1
= KMMSE = (Bxx) °de
provided that R . is nonsingular.
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Relationship between Least Squares Filter & Wiener Filter

When the number of samples N — « and if ergodicity holds, i.e.,

1 N-1

th{ Ry (=)} = hinoo{ﬁ nZOd(n)X(n i =Ry (=))
and
1 N-I
hm{ Ry (=i,—j)}= lim {— Y x(n—i)x(n- j)}
Now N N—o Nn =0

:Rxx(l_J)_Rxx(]_l)

the least squares filter is equivalent to the Wiener filter, i.e.,

KMMSE = KLS

23
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Properties of the Mean Square Error (MSE) Function

The MSE function E{e*(n)}is also known as performance surface and it
can be written in a matrix form:

B 2
E{e(n)} = E{(d(n) —Lzlwl-x(n —i)j } = E{(d(n) —KTX(H))Z}
i=0

= Bl ()26 X(md () )}+ E{(@Tyn) - (ZTX(n))[)} (3.17)

= EW* (0}~ 20" E{X(ndm)}+ " E{X (n)- X () )
= E{dz(n)}— W' 'R, +W'R_W

—  —XX —

1.The elements of w, in E{e*(n)} appear in first degree and second

degree only. This means that E{e”(n)}is a quadratic error function and

thus it is unimodal, i.e., there is only a unique (global) minimum and no

local minima exist. (However, it is only true for FIR filter but not true for
lIR filter).
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An example for L =2 is shown below:

25



2.The minimum of E{e*(n)} is obtained by substituting W = W ;-

€min = E{dz(”)}_ ZKMMSETde +EMMSETBxleMSE
- B> (- 2R Ry, ) Ry +(RIR, ) R (RUR,)
= Eld*(m) |- 2R (R Ry + RN (RIHT Ry,
= E\d*(m)|~ R R Ry, = B> ()|~ REW s

As a result, the E{e*(n)} can be written as

(3.18)

F ) =6 —6 . +Eld 2W' Ry +W' R W
{8 (n)} €min ~ ©min { (n)} — Tdy T S (319)

= € min + (E _EMMSE )TBxx (l _EMMSE)

3.When d(n) is exactly a linear combination of x(n), x(n—-1),---, x(n— L +1),
L—-1
l.e., d(n) = Y h;x(n—1), the Wiener solution is w; =h; for i =0,1,--- L —1
i=0
and ¢, ;. =0.
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Example 3.3

Determine the performance surface and the Wiener filter coefficients of
the following system,

x(n) - \

.

| b i
E{d (n)} — 427 Bxx = o) ’ de =

where
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The performance surface is calculated as
E{e*(n)} = E\d*(n){-2W R, + W R W

T o rxx

eon sz o 12

= 2W5 + 2w + 2wyw; — 14w, — 16w, + 42
While the Wiener filter weight is
s _[2 ]
—MMSE T o 18] |3

Notice that the inverse of any nonsingular two-by-two matrix is

a b7 1 [d -b
¢ d| ad-bc|—c a

In practice, when the E{d*(n)}, R,, and R, are not available, we can
estimate them from x(n) and d(n) using least squares filtering method.
The resultant filter coefficients are least squares filter coefficients.
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Example 3.4

Find the Wiener filter of the following system:

d(n)

-+

7 Z-1 b0+ b1z_1 -

x(n) e(n)
where s(n) = /2 sin(2nn /12).
It can be seen that x(n) = 2 sin(zn(lnz_ l)j and d(n) = s(n) =2 sin(zmj.

12
The required statistics R (0), R..(1), R, (0) and R, .(—1) are computed as
follows.
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Using

sinz(A) _ 1—cos(2A4)
2
and
sin(A) sin(B) = % (cos(4— B)—cos(4+ B))
then

R, (0) = E{«E sin(zn(n - 1)) 2 sin(zn(n — l)j}
12 12

iy {1 — cos(Z(jn(n — 1)))}

=1+ E{cos(4n(n—1))} =1

30



R.()=E <rxf2 sin(zn(n - Dj 2 sin(mj}
; 12 12

2n(n—1) 2nn

)
= FEX cos(
\

_ COS(—lzznj _3

-

\

R, (1) = E<(\f2 sin 2l = 2)j 2 sin(

12
As a result,
O
by _ 2
HEEE
| 2

12 12

o

R, (0) = E{~/25sin 2mlr _l)j-\@sin

2n(n—1) N
12

)



The performance surface is given by

E{e*(n)} = E\d*(n)|-2W R, +W R _W

7 rxx

B 1] [b 1
S b R
| 2

= by +b{" +~/3byb; —~/3by —b, +1

ﬁ_
2
1

Notice that E{d*(n)} = E{x*(n)} =1. Moreover, the minimum MSE is
computed as

Cmin — E{dz (n)}_ ng KMMSE
zl_w lHﬂzl_al:O
2 210 1=1

This means that the optimal predictor is able to shift the phase of the
delayed sine wave and achieve exact cancellation, resultingine_.. =0
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Questions for Discussion

1. Areal sinusoid s(n) = Acos(wn + 0) obeys
s(ny=aprs(n=1)+a, -s(n—-2)
where a; =2cos(w) and a, =—1. Is s(n) a 2nd order AR process?

2. Can we extend the least squares filter or Wiener filter to the general IIR
system model? Try to answer this question by investigating the Wiener
filter using a simple IIR model:

b

I—CZIZ_

W(z)=

That is, given d(k) and x(k). What are the optimal 5, and a; in mean
square error sense? Assume that x(k) is white for simplicity.
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Output Desired

Input

Signal y(k) Z{(ekjponse

XK~ W) 5k
Estimation
Error

e(k)

Steps:
(i) develop e(k)

(i) compute E{ez(k)} in terms of R,, and R, only.
(iii) differentiate E{ez(k)} w.r.t. by and a;
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3. Suppose you have a ECG signal corrupted by 50Hz interference:

200
100+
O M

-~

Suggest methods to eliminate/reduce the 50Hz interference.
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