
Chapter 3 
 
� Optimal Filter Theory and Applications 
 
References: 
 

 
� B.Widrow and S.D.Stearns, Adaptive Signal Processing, Prentice-Hall, 

1985 
 

� S.M.Stearns and D.R.Hush Digital Signal Analysis, Prentice-Hall, 1990 
 

� P.M.Clarkson, Optimal and Adaptive Signal Processing, CRC Press, 
1993 

 

� S.Haykin, Adaptive Filter Theory, Prentice-Hall, 2002 
 

 
 
 
 

 
1



Optimal Signal Processing is concerned with the design, analysis, and 
implementation of processing system that extracts information from 
sampled data in a manner that is ‘best’ or optimal in some sense. Such 
processing systems can be referred to as optimal filters. 
 
 

Basic Classes of Optmal Filtering Applications 
 

1.Prediction: use previous samples to predict current samples 
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� Speech Modeling using Linear Predictive Coding (LPC) 
 

Since speech signals are highly correlated, a speech signal )(ns  can be 
accurately modeled by a linear combination of its past samples: 
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where }{ iw  are known as the LPC coefficients. Techniques of optimal 
signal processing can be used to determine }{ iw  in an optimal way. 
 

2. Identification 
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� System Identification 

Σ

ΣΣ

H(z)

Unknown system

Optimal filter

W(z)

+

+
+

+

+

-

s(k)

n (k)i

n (k)o

d(k)

r(k)

e(k)

x(k)

 
Given noisy input )(kx  and/or noisy output )(kr , our aim is to determine 
the impulse response of the unknown system )(zH  using )(zW  

 
4



3. Inverse Filtering: find the inverse of the system 

 
 

� Signal Recovery 
 

Given a noisy discrete-time signal: 
 

)()()()( kwkhkskx +⊗=  
 

where )(ks , )(kh  and )(kw  represent the signal of interest, unknown 
impulse response and noise, respectively. Optimal signal processing 
can be used to recover )(ks  in an optimal way. 
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4. Interference Canceling: Remove noise using an external reference 

 
� Interference Cancellation in Electrocardiogram (ECG) Recording 
 

In biomedical engineering, the measured ECG signal )(nr  is corrupted 
by the 50Hz power line interference: 
 

)()()( ninsnr +=  
 

where )(ns  is the noise-free ECG and  represents the 50Hz 
interference. An external reference for )(ni  is another 50Hz signal. 

)(ni
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Problem Statement for Optimal Filters 
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Given the input  and the desired response , we want to find the 
transfer function )

)(nx
(

)(nd
zW  or its impulse response such that a statistical 

criterion or a cost function is optimized. 
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Some common optimization criteria in the literature are: 
−1N

 

1.Least Squares : find )(zW  that minimizes ∑
=0

2 )(
n

ne  where N  is the 

number of samples available. This corresponds to least-squares filter 
design. 

 

2.Minimum Mean Square Error : find )(zW  that minimizes . This 
corresponds to Wiener filtering problem. 

)}({ 2 neE
 

3.Least Absolute Sum  : find )(zW  that minimizes )(
1

0
ne

N

n
∑
−

=
. 

4.Minimum Mean Absolute Error : find )(zW  that minimizes })({ neE . 
 

5.Least Mean Fourth : find )(zW  that minimizes . )}({ 4 neE
 

The first and second are two commonly used criteria because of their 
relatively small computation, ease of analysis and robust performance. In 
later sections it is shown that both viewpoints give rise to similar 
mathematical expression for )(zW . 
 

Q.: An absolute optimization criterion does not exist? Why? 
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Least Squares Filtering 
 
For simplicity, we assume )(zW  is a causal FIR filter of length  so that L
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The error function  is thus given by )(ne
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The cost function is 
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which is a function of the filter coefficients }{ iw  and N  is the number of 
)(nx  (and )(nd ). 

 

The minimum of the least squares function can be found by differentiating 
)(WJLS  with respect to ,,, 110 −Lwww L  and then setting the resultant 

expressions to zero as follows, 
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Denote 
 

T
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In practice, for stationary signals, we use  
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As a result, we have 
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ˆprovided that xxR  is nonsingular. 
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Example 3.1 
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In this example least squares filtering is applied in determining the impulse 
response of an unknown system. Assume that the unknown impulse 
response is causal and {h }={1,2,3,2,1}. Given i N  samples of )(nx  and )(nd  
where )(nq  is a measurement noise.  
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We can use MATLAB to simulate the least squares filter for impulse 
response estimation. The MATLAB source code is as follows, 
 

%define the number of samples 
N=50; 
 

%define the noise and signal powers 
noise_power = 0.0;  
signal_power = 5.0; 
 

%define the unknown system impulse response 
h=[1 2 3 2 1]; 
 

%generate the input signal which is a Gaussian white noise with power 5 
x=sqrt(signal_power).*randn(1,N); 
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%generate R_xx 
corr_xx=xcorr(x); 
for i=0:4 
for j=0:4 
R_xx(i+1,j+1)= corr_xx(N+i-j); 
end 
end 
 

%generate the desired output plus noise 
d=conv(x,h); 
d=d(1:N)+sqrt(noise_power).*randn(1,N); 
 

%generate R_dx 
corr_xd = xcorr(d,x); 
for i=0:4 
R_dx(i+1) = corr_xd(N-i); 
end 
 

%compute the estimate channel response 
W_ls = inv(R_xx)*(R_dx)' 
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4044.246413.2514044.244998.368182.11
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8182.114998.364044.246413.2514044.24

5115.48182.114998.364044.246413.251

ˆ
xxR  

 

]9508.3340732.6163125.8738827.6588245.390[ˆ =dxR  
 

T
LSW ]8176.08501.18291.20151.21095.1[=  

 
When N  is increased to 500, we have 
 

T
LSW ]9828.09942.19927.29943.19975.0[=  

 

When N  is increased to 5000, we have 
 

T
LSW ]9984.09972.19976.29981.10000.1[=  
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When 500=N  and the noise power is 0.5 (SNR=10 dB), we have 
 

T
LSW ]9925.09773.19728.29826.10158.1[=  

 
When 500=N  and the noise power is 5.0 (SNR=0 dB), we have 
 

T
LSW ]0591.10249.29484.20138.20900.1[=  

 
It is observed that  
 
1. The estimation accuracy improves as N  increases. It is reasonable 

because as N  increases, the accuracy of xxR̂  and dxR̂  increases due to 
more samples are involved in their computation. 

 
2. The estimation accuracy improves as the noise power decreases. 
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Example 3.2 
 

 

Find the least squares filter of the following one-step predictor system: 
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Given , the aim is to find  and  in least squares sense. )(nd 0b 1b
 
The MATLAB source code is as follows, 
 

 
N=50;         %define the number of samples 
 

n=0:N-1; 
d=sin(2.*pi.*n./12);     %generate d(n) 
x= d(2:N);        %generate x(n) from d(n) 
d=d(1:N-1);       %keep lengths of x(n) and d(n) equal 
 
corr_xx=xcorr(x,’unbiased’);  %unbiased estimate of correlation  
for i=0:1 

for j=0:1 
R_xx(i+1,j+1)= corr_xx(N-1+i-j); 

end 
end 
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corr_xd = xcorr(d,x,’unbiased’); 
for i=0:1 

R_dx(i+1) = corr_xd(N-1-i); 
end 
W_ls = inv(R_xx)*(R_dx)' 
 

The result is:    W_ls  =    [1.7705  -1.0440] 
 

5000→N      W_ls  =    [1.7324    -1.0004] ⇒
 

500000→N     W_ls  =    [1.7321    -1.0000] ⇒
 
The optimal  and  can be shown to be  [0b 1b 13 − ] 
 

Q for a real tone: 

)2()1()cos(2)( −−−ω= nsnsns  
 

⇒     
)2()1()1(3

)2()1()12/2cos(2)(
−−+−=

−−−π=

nsns
nsnsns
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Wiener Filtering 
 
The cost function to be minimized is 
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Following the derivations in the least squares filter, the minimum of 
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Assume  and  are jointly stationary, we have )(nd )(nx
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As a result, 
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provided that xxR  is nonsingular. 
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Relationship between Least Squares Filter & Wiener Filter 
 

When the number of samples ∞→N  and if ergodicity holds, i.e., 
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the least squares filter is equivalent to the Wiener filter, i.e., 
 
  LSMMSE         (3.16) WW =
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Properties of the Mean Square Error (MSE) Function 
 

The MSE function is also known as performance surface and it 
can be written in a matrix form: 
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1.The elements of  in  appear in first degree and second 
degree only. This means that 2 is a quadratic error function and 
thus it is unimodal, i.e., there is only a unique (global) minimum and no 
local minima exist. (However, it is only true for FIR filter but not true for 
IIR filter).  
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An example for  is shown below: 2=L
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2.The minimum of  is obtained by substituting )}({ 2 neE MMSEWW = : 
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As a result, the  can be written as )}({ 2 neE
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Example 3.3 
 
Determine the performance surface and the Wiener filter coefficients of 
the following system, 
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The performance surface is calculated as 
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While the Wiener filter weight is  
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Notice that the inverse of any nonsingular two-by-two matrix is  
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In practice, when the )}({ 2 ndE , xxR  and dxR  are not available, we can 
estimate them from (x  and (n  using least squares filtering method. 
The resultant filter coefficients are least squares filter coefficients. 

)n d )
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Example 3.4 
 

Find the Wiener filter of the following system: 
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The required statistics )0(xxR , )1(xxR , )0(dxR  and )1(−dxR  are computed as 
follows. 
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As a result,  
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The performance surface is given by 
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Notice that  Moreover, the minimum MSE is 
computed as 
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This means that the optimal predictor is able to shift the phase of the 
delayed sine wave and achieve exact cancellation, resulting in 0min =ε  
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Questions for Discussion 
 
1. A real sinusoid )cos()( θ+ω= nAns  obeys 
 

)2()1()( 21̀ −⋅+−= nsansans  
 

where )cos(21 ω=a  and 12 −=a . Is )(ns  a 2nd order AR process? 
 
2. Can we extend the least squares filter or Wiener filter to the general IIR 

system model? Try to answer this question by investigating the Wiener 
filter using a simple IIR model: 

 

1
1

0

1
)(

−−
=

za

b
zW  

  
That is, given )(kd  and )(kx . What are the optimal  and  in mean 
square error sense? Assume that )(

0b 1a
kx  is white for simplicity. 
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W(z)x(k) Σ

y(k)
d(k)

Estimation
Error

+-

Input
Signal

Output

e(k)

Desired
Response

 
 
 Steps: 

(i) develop )(ke  
(ii) compute )}({ 2 keE  in terms of xxR  and dxR  only. 
(iii) differentiate )}({ 2 keE  w.r.t.  and  0b 1a
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3. Suppose you have a ECG signal corrupted by 50Hz interference: 
 

 
 
 Suggest methods to eliminate/reduce the 50Hz interference. 
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