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Adaptive Signal Processing is concerned with the design, analysis, and 
implementation of systems whose structure changes in response to the 
incoming data.  
 
Application areas are similar to those of optimal signal processing but now 
the environment is changing, the signals are nonstationary and/or the 
parameters to be estimated are time-varying. For example, 
 
 Echo cancellation for Hand-Free Telephones (The speech echo is a 
nonstationary signal)  

 

 Equalization of Data Communication Channels (The channel impulse 
response is changing, particularly in mobile communications) 

 

 Time-Varying System Identification (the system transfer function to be 
estimated is non-stationary in some control applications) 
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Adaptive Filter Development 
 

Year Application Developer(s)
 

1959  Adaptive pattern recognition
system 

Widrow et al 
 
 

1960   Adaptive waveform recognition Jacowatz
 

1965 Adaptive equalizer for telephone 
channel 

Lucky 
 
 

1967 Adaptive antenna system Widrow et al 
 

1970 Linear prediction for speech 
analysis 

Atal 
 
 

Present  numerous applications, structures,
algorithms 

 

  

 

 
3



Adaptive Filter Definition 
 

An adaptive filter is a time-variant filter whose coefficients are adjusted in 
a way to optimize a cost function or to satisfy some predetermined 
optimization criterion.  
 

Characteristics of adaptive filters: 
 

 They can automatically adapt (self-optimize) in the face of changing 
environments and changing system requirements 
 They can be trained to perform specific filtering and decision-making 
tasks according to some updating equations (training rules) 

 

Why adaptive? 
 

It can automatically operate in  
 

 changing environments (e.g. signal detection in wireless channel) 
 

 nonstationary signal/noise conditions (e.g. LPC of a speech signal) 
 

 time-varying parameter estimation (e.g. position tracking of a moving 
source) 
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Block diagram of a typical adaptive filter is shown below: 
 

Adaptive
Filter

Adaptive
Algorithm

Σx(k)
+-

{h(k)}

d(k)

e(k)

x(k) : input signal                                     y(k) : filtered output
d(k) : desired response
h(k) : impulse response of adaptive filter
The cost function may be E{e (k)} or Σ e (k)2 2

k=0

N-1

y(k)

 
 FIR or IIR adaptive filter 
 filter can be realized in various structures 
 adaptive algorithm depends on the optimization criterion 
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Basic Classes of Adaptive Filtering Applications 
 
1.Prediction : signal encoding, linear prediction coding, spectral analysis 
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2.Identification : adaptive control, layered earth modeling, vibration 
studies of mechanical system 
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3.Inverse Filtering : adaptive equalization for communication channel, 
deconvolution 
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4.Interference Canceling : adaptive noise canceling, echo cancellation 
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Design Considerations 
 
1. Cost Function 
 

 choice of cost functions depends on the approach used and the 
application of interest 

 

 some commonly used cost functions are 
 
mean square error (MSE) criterion : minimizes   )}({ 2 keE

E (dwhere  denotes expectation operation, )())( kykke −=  is the 
estimation error, )(kd  is the desired response and )(ky  is the actual filter 
output 
 

exponentially weighted least squares criterion : minimizes )(
1

0

21∑ λ
−

=

−−N

k

kN ke   

where N  is the total number of samples and λ denotes the exponentially 
weighting factor whose value is positive close to 1. 
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2. Algorithm 
 

 depends on the cost function used 
 
 convergence of the algorithm : Will the coefficients of the adaptive filter 
converge to the desired values? Is the algorithm stable? Global 
convergence or local convergence? 

 
 rate of convergence : This corresponds to the time required for the 
algorithm to converge to the optimum least squares/Wiener solution. 

 

 misadjustment : excess mean square error (MSE) over the minimum 
MSE produced by the Wiener filter, mathematically it is defined as 

 

 
min

min
2 )}({lim

ε

ε−
= ∞→

keE
M k           (4.1) 

 
(This is a performance measure for algorithms that use the minimum MSE 
criterion) 
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 tracking capability : This refers to the ability of the algorithm to track 
statistical variations in a nonstationary environment. 

 

 computational requirement : number of operations, memory size, 
investment required to program the algorithm on a computer. 

 

 robustness : This refers to the ability of the algorithm to operate 
satisfactorily with ill-conditioned data, e.g. very noisy environment, 
change in signal and/or noise models 

 
3.   Structure 
 

 structure and algorithm are inter-related, choice of structures is based on 
quantization errors, ease of implementation, computational complexity, 
etc. 

 

 four commonly used structures are direct form, cascade form, parallel 
form, and lattice structure. Advantages of lattice structures include 
simple test for filter stability, modular structure and low sensitivity to 
quantization effects. 
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Q. Can you see an advantage of using cascade or parallel form? 
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Commonly Used Methods for Minimizing MSE 
 

For simplicity, it is assumed that the adaptive filter is of causal FIR type 
and is implemented in direct form. Therefore, its system block diagram is 

w (n)0

z-1

w (n)1

z-1

+

w  (n)
L-2

z-1

+

w  (n)

+

L-1

...

...

x(n)

+
d(n)

y(n)
e(n) +

-
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The error signal at time  is given by n
 

  )()()( nyndne −=           (4.2) 
where 

)()()()()(
1

0
nXnWinxnwny TL

i
i =∑ −=

−

=
, 

T

T
LL

LnxLnxnxnxnX

nwnwnwnwnW

)]1()2()1()([)(

)]()()()([)( 1210

+−+−−=

= −−

L

L
 

 

Recall that minimizing the will give the Wiener solution in optimal 
filtering, it is desired that 

)}({ 2 neE

 ( ) dxxxMMSEn
RRWnW ⋅== −

∞→

1)(lim             (4.3) 
 

In adaptive filtering, the Wiener solution is found through an iterative 
procedure, 
 

 )()()1( nWnWnW ∆+=+           (4.4) 
 

where )(nW∆  is an incrementing vector. 
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Two common gradient searching approaches for obtaining the Wiener 
filter are 
 

1. Newton Method 

 










∂
∂

−⋅µ=∆ −

)(
)}({

)(
2

1

nW
neE

RnW xx          (4.5) 

 
where µ is called the step size. It is a positive number that controls the 
convergence rate and stability of the algorithm. The adaptive algorithm 
becomes 
 

                           ( )

MMSE

dxxx

dxxxxx

xx

WnW
RRnW

RnWRRnW

nW
neE

RnWnW

µ+µ−=

µ+µ−=

−⋅µ−=
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∂

⋅µ−=+

−

−

−

2)()21(
2)()21(

)(2)(
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)}({
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        (4.6) 
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Solving the equation, we have 
 
                           ))0(()21()( MMSE

n
MMSE WWWnW −µ−+=         (4.7) 

 
where  )0(W  is the initial value of )(nW . To ensure 
 
  MMSEn

WnW =
∞→

)(lim           (4.8) 

 the choice of  should be µ
 
 101|21|1 <µ<⇒<µ−<−          (4.9) 
 
In particular, when 5.0=µ , we have 
 
                  MMSEMMSEMMSE WWWWW =−⋅−+= ))0(()5.021()1( 1     (4.10) 
 
The weights jump form any initial )0(W  to the optimum setting MMSEW  in a 
single step.  
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An example of the Newton method with 5.0=µ  and 2 weights is illustrated 
below. 
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2. Steepest Descent Method 
 

  








 ∂
µ−=∆

)}({
)(

2 neE
nW

∂ )(nW
        (4.11) 

Thus 

                           ( )

MMSEMMSExx

MMSExxxx

dxxx

WWnWRI
WRnWRI

RnWRnW
nW
neE

nWnW

+−µ−=

µ+µ−=

−⋅µ−=
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))()(2(
2)()2(

)(2)(
)(
)}({

)()1(
2

    (4.12) 

 
where I  is the x  identity matrix. Denote L L
 

  MMSEWnWnV −= )()(         (4.13) 
We have 
 

 )()2()1( nVRInV xxµ−=+         (4.14) 
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Using the fact that xxR  is symmetric and real, it can be shown that 
 
 T

xx QQQQR ⋅Λ⋅=⋅Λ⋅= −1        (4.15) 
 
where the modal matrix Q  is orthonormal. The columns of Q , which are 
the  eigenvectors of L xxR , are mutually orthogonal and normalized. Notice 
that T−1 . While Q=Q Λ  is the so-called spectral matrix and all its elements 
are zero except for the main diagonal, whose elements are the set of 
eigenvalues of xxR , Lλλλ ,,, L . It has the form 21
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It can be proved that the eigenvalues of xxR  are all real and greater or 
equal to zero. Using these results and let 
 

  )()( nUQnV ⋅=         (4.17) 
We have 
 

                           ( )
( ) )(2

)(2

)()2()1(

)()2()1(

11

1

nUI

nUQRQQIQ

nUQRIQnU

nUQRInUQ

xx

xx

xx

Λµ−=

⋅⋅µ−⋅⋅=

⋅µ−=+

⇒⋅µ−=+⋅

−−

−

        (4.18) 

The solution is 
  ( ) )0(2)( UInU nΛµ−=         (4.19) 
 

where )0(U  is the initial value of )(nU . Thus the steepest descent 
algorithm is stable and convergent if 
 

( ) 02lim =Λµ−
∞→

n

n
I  
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or 

     

( )

( )

( )

0

21lim00
0

21lim0

0021lim
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=
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    (4.20) 

which implies 

 
max

max
1

01|21|
λ

<µ<⇒<µλ−       (4.21) 

where maxλ  is the largest eigenvalue of xxR . 
 

If this condition is satisfied, it follows that 
 

      
( )

MMSEn

MMSEnnn

WnW

WnWQnVQnU

=⇒

⇒−⋅=⋅⇒=

∞→

−

∞→

−

∞→∞→

)(lim

0)(lim)(lim0)(lim 11

    (4.22) 
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An illustration of the steepest descent method with two weights and 
3.0=µ  is given as below. 
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Remarks: 
 
 Steepest descent method is simpler than the Newton method since no 
matrix inversion is required. 

 

 The convergence rate of Newton method is much faster than that of the 
steepest descent method. 

 

 When the performance surface is unimodal, )0(W  can be arbitrarily 
chosen. If it is multimodal, good initial values of )0  is necessary in 
order for global minimization. 

(W

 

 However, both methods require exact values of xxR  and dxR  which are 
not commonly available in practical applications. 
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Widrow’s Least Mean Square (LMS) Algorithm 
 
A. Optimization Criterion 
 
To minimize the mean square error  )}({ 2 neE
 
B. Adaptation Procedure 
 
It is an approximation of the steepest descent method where the 
expectation operator is ignored, i.e., 

 

)(
)}({ 2

nW
neE

∂
∂  is replaced by 

)(
)(2

nW
ne

∂
∂  
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The LMS algorithm is therefore: 
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                1,,1,0),()(2)()1( −=−µ+=+ Liinxnenwnw ii L     (4.23) 
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C. Advantages 
 
 low computational complexity 
 simple to implement 
 allow real-time operation 
 does not need statistics of signals, i.e., xxR  and dxR  

 
D. Performance Surface 
 
The mean square error function or performance surface is identical to that 
in the Wiener filtering: 
 
                  ( ) ( )MMSExx

T
MMSE WnWRWnWneE −−+ε= )()()}({ min

2     (4.24) 
 
where )(nW  is the adaptive filter coefficient vector at time . n
 
 
 

 
27



E. Performance Analysis 
 

Two important performance measures in LMS algorithms are rate of 
convergence & misadjustment (relates to steady state filter weight 
variance). 
 

1. Convergence Analysis 
 

For ease of analysis, it is assumed that )(nW  is independent of )(nX . 
Taking expectation on both sides of the LMS algorithm, we have 
 

        { }

( ) MMSExxxx

xxdx

T

WRnWERI
nWERRnWE

nWnXnXnXndEnWE

nXneEnWEnWE

µ+µ−=

µ−µ+=
⋅−µ+=

µ+=+

2)}({2
)}({22)}({

))()(()()()(2)}({

)}()({2)}({)}1({

    (4.25) 

 
which is very similar to the adaptive equation (4.12) in the steepest 
descent method.  
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Following the previous derivation, )(nW  will converge to the Wiener filter 
weights in the mean sense if 

( ) n
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⇒ Lii ,,2,1,1|21| L=<µλ−  
 

                       ⇒
max

1
λ

<µ<0          (4.26) 

Define geometric ratio of the th term as 
r ,2

p
µλ− Lppp ,,2,11 L==       (4.27) 

It is observed that each term in the main diagonal forms a geometric 
series },,,,,,,1{ 1121 LL +− nnn rrrrr . ppppp
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Exponential function can be fitted to approximate each geometric series: 
 

                         { }























τ
−≈⇒











τ
−≈

p

n
p

p
p

nrr exp1exp         (4.28) 

where pτ  is called the th time constant . p
 

For slow adaptation, i.e., 12 <<µλ p , pτ  is approximated as 
 

  

( ) ( )

p
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p

µλ
≈τ⇒
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1
32

L

    (4.29) 

 

Notice that the smaller the time constant the faster the convergence rate. 
Moreover, the overall convergence is limited by the slowest mode of 
convergence which in turns stems from the smallest eigenvalue of xxR , 
λ . min
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That is, 

                                       
min

max 2
1

µλ
≈τ          (4.30) 

 
In general, the rate of convergence depends on two factors: 
 
 the step size  : the larger the µ µ,  the faster the convergence rate 

 

 the eigenvalue spread of xxR ,  )( xxRχ  : the smaller )( xxRχ , the faster the 
convergence rate. )( xxRχ is defined as  

λ
                          

min

max)(
λ

=χ xxR          (4.31) 

 
Notice that ∞<χ≤ )(1 xxR . It is worthy to note that although )( xxRχ  
cannot be changed, the rate of convergence will be increased if we 
transform )(nx  to another sequence, say, )(ny , such that )( yyRχ  is close 
to 1. 
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Example 4.1 
An Illustration of eigenvalue spread for LMS algorithm is shown as follows. 
 

Σ h z
i=0

1

i
-i

Σ w z
i=0

1

i
-i

Σ

x(n)

d(n)

y(n) e(n)

+

-

Unknown System

Σ
q(n)
+

+

 
d(n) = h0x(n) + h1x(n-1) + q(n) 
y(n) = w0(n)x(n) + w1(n)x(n-1) 
e(n) = d(n) – y(n) = d(n) – w0(n)x(n) – w1(n)x(n-1) 
 
w0(n+1) = w0(n) + 2ue(n)x(n) 
w1(n+1) = w1(n) + 2ue(n)x(n-1) 
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; file name is es.m 
clear all 
N=1000;      % number of sample is 1000 
np = 0.01;     % noise power is 0.01 
sp = 1;      % signal power is 1 which implies SNR = 20dB 
h=[1 2];      % unknown impulse response 
x = sqrt(sp).*randn(1,N); 
d = conv(x,h); 
d = d(1:N) + sqrt(np).*randn(1,N); 
 
w0(1) = 0;     % initial filter weights are 0 
w1(1) = 0; 
 
mu = 0.005;     % step size is fixed at 0.005 
 
 
y(1) = w0(1)*x(1);    % iteration at “n=0” 
e(1) = d(1) - y(1);    % separate because “x(0)” is not defined  
w0(2) = w0(1) + 2*mu*e(1)*x(1); 
w1(2) = w1(1); 
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for n=2:N     % the LMS algorithm 
    y(n) = w0(n)*x(n) + w1(n)*x(n-1); 
    e(n) = d(n) - y(n); 
    w0(n+1) = w0(n) + 2*mu*e(n)*x(n); 
    w1(n+1) = w1(n) + 2*mu*e(n)*x(n-1); 
end 
 
n = 1:N+1; 
subplot(2,1,1) 
plot(n,w0)     % plot filter weight estimate versus time 
axis([1 1000 0 1.2]) 
subplot(2,1,2) 
plot(n,w1) 
axis([1 1000 0 2.2]) 
figure(2) 
subplot(1,1,1) 
n = 1:N; 
semilogy(n,e.*e);    % plot square error versus time 
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Note that both filter weights converge at similar speed because the 
eigenvalues of the xxR  are identical: 
 
Recall 
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; file name is es1.m 
clear all 
N=1000; 
np = 0.01; 
sp = 1; 
h=[1 2]; 
u = sqrt(sp/2).*randn(1,N+1); 
x = u(1:N) + u(2:N+1);    % x(n) is now a MA process with power 1  
d = conv(x,h); 
d = d(1:N) + sqrt(np).*randn(1,N); 
 
w0(1) = 0; 
w1(1) = 0; 
 
mu = 0.005; 
 
y(1) = w0(1)*x(1); 
e(1) = d(1) - y(1); 
w0(2) = w0(1) + 2*mu*e(1)*x(1); 
w1(2) = w1(1); 
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for n=2:N 
    y(n) = w0(n)*x(n) + w1(n)*x(n-1); 
    e(n) = d(n) - y(n); 
    w0(n+1) = w0(n) + 2*mu*e(n)*x(n); 
    w1(n+1) = w1(n) + 2*mu*e(n)*x(n-1); 
end 
 
n = 1:N+1; 
subplot(2,1,1) 
plot(n,w0) 
axis([1 1000 0 1.2]) 
subplot(2,1,2) 
plot(n,w1) 
axis([1 1000 0 2.2]) 
figure(2) 
subplot(1,1,1) 
n = 1:N; 
semilogy(n,e.*e); 
 

 
39



 

 
40
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Note that the convergence speed of  is slower than that of  )(0 nw )(1 nw
 
Investigating the xxR  : 
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⇒ 5.0min =λ  and 5.1max =λ    ⇒ 3)( =χ xxR  (MATLAB command: eig) 
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; file name is es2.m 
clear all 
N=1000; 
np = 0.01; 
sp = 1; 
h=[1 2]; 
u = sqrt(sp/5).*randn(1,N+4); 
x = u(1:N) + u(2:N+1) + u(3:N+2) + u(4:N+3) +u(5:N+4); % x(n) is 5th order MA process 
d = conv(x,h); 
d = d(1:N) + sqrt(np).*randn(1,N); 
 
w0(1) = 0; 
w1(1) = 0; 
 
mu = 0.005; 
 
y(1) = w0(1)*x(1); 
e(1) = d(1) - y(1); 
w0(2) = w0(1) + 2*mu*e(1)*x(1); 
w1(2) = w1(1); 
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for n=2:N 
    y(n) = w0(n)*x(n) + w1(n)*x(n-1); 
    e(n) = d(n) - y(n); 
    w0(n+1) = w0(n) + 2*mu*e(n)*x(n); 
    w1(n+1) = w1(n) + 2*mu*e(n)*x(n-1); 
end 
 
n = 1:N+1; 
subplot(2,1,1) 
plot(n,w0) 
axis([1 1000 0 1.5]) 
subplot(2,1,2) 
plot(n,w1) 
axis([1 1000 0 2.5]) 
figure(2) 
subplot(1,1,1) 
n = 1:N; 
semilogy(n,e.*e); 
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We see that the convergence speeds of both weights are very slow, 
although that of )(nw  is faster. 1
 
Investigating the xxR  : 
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2. Misadjustment 
 
Upon convergence, if MMSEn

WnW =
∞→

)(lim , then the minimum MSE will be 

equal to  
 
                                  { } MMSE

T
dxWRndE −=ε )(2

min         (4.32) 
 
However, this will not occur in practice due to random noise in the weight 
vector )(nW . Notice that we have MMSEn
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The second term of the right hand side at ∞→n  is known as the excess 
MSE and it is given by 
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)()(lim

)()(limMSEexcess

µε=∑ λµε=

⋅Λ⋅=

⋅⋅=

−⋅⋅−=

−

=

∞→

∞→

∞→

     (4.34) 

 
where [ ]xxRtr  is the trace of xxR  which is equal to the sum of all elements 
of the principle diagonal: 
 
 [ ] )}({)0( 2 nxELRLRtr xxxx ⋅=⋅=       (4.35) 
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As a result, the misadjustment  M  is given by 
 

 

)}({

)}({

)}({lim

2
min

2
min

min

min
2

nxEL

nxEL

keE
M k

⋅⋅µ=

ε
⋅µε

=

ε

ε−
= ∞→

        (4.36) 

 

which is proportional to the step size, filter length and signal power. 
 

Remarks: 
 

1.There is a tradeoff between fast convergence rate and small mean 
square error or misadjustment. When µ increases, both the convergence 
rate and M  increase; if µ decreases, both the convergence rate and M  
decrease. 
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2.The bound for  is  µ

   
max

1
0

λ
<µ<           (4.37) 

 

In practice, the signal power of  can generally be estimated more 
easily than the eigenvalue of 

)(nx
xxR . We also note that 

 

 [ ] )}({ 2

1
max nxELRtr xx

L

i
i ⋅==∑ λ≤λ

=
     (4.38) 

 

A more restrictive bound for µ  which is much easier to apply thus is 

1  
)}({ 2 nxEL ⋅

              (4.39) 0 <µ<

 

Moreover, instead of a fixed value of µ, we can make it time-varying as 
)(nµ .  A design idea of a good )(nµ  is 

 toinitially, valuelarge


=µ

econvergencuponentmisadjustmsmallensuretofinally, valuesmall
rateeconvergencinitalfastensure

)(n
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LMS Variants 
 

1. Normalized LMS (NLMS) algorithm 
 

 the product vector )()( nXne  is modified with respect to the squared 
Euclidean norm of the tap-input vector )(nX : 

 

                       )()(
)()(

2
)()1( nXne

nXnXc
nWnW

T ⋅+

µ
+=+       (4.40) 

 

where  is a small positive constant to avoid division by zero. c
 

 can also be considered as an LMS algorithm with a time-varying step 
size: 

 

 ( )
)()( nXnXc

n
T ⋅+

µ
=µ          (4.41) 

 

 substituting , it can be shown that the NLMS algorithm converges if 
5.00

0=c
<µ<   selection of step size in the NLMS is much easier than 

that of LMS algorithm 
⇒
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2. Sign algorithms 
 
 pilot LMS or signed error or signed algorithm: 

 
 )()](sgn[2)()1( nXnenWnW µ+=+          (4.42) 
 
 clipped LMS or signed regressor: 

 
 )](sgn[)(2)()1( nXnenWnW µ+=+          (4.43) 
 
 zero-forcing LMS or sign-sign: 

 
 )](sgn[)](sgn[2)()1( nXnenWnW µ+=+          (4.44) 
 
 their computational complexity is simpler than the LMS algorithm but 
they are relatively difficult to analyze 
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3. Leaky LMS algorithm 
 

 the LMS update is modified by the presence of a constant leakage factor 
γ : 

 
 )()(2)()1( nXnenWnW µ+⋅γ=+          (4.45) 

 
where 10 <γ< . 
 
 operates when xxR  has zero eigenvalues. 

 
4. Least mean fourth algorithm 
 

 instead of minimizing ,  is minimized based on LMS 
approach: 

)}({ 2 neE )}({ 4 neE

 

 )()(4)()1( 3 nXnenWnW µ+=+          (4.46) 
 

 can outperform LMS algorithm in non-Gaussian signal and noise 
conditions 
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Application Examples 
 

Example 4.2 
 

1. Linear Prediction 
 

Suppose a signal  is a second-order autoregressive (AR) process that 
satisfies the following difference equation: 

)(nx

 

)()2(81.0)1(558.1)( nvnxnxnx +−−−=  
 

where )(nv  is a white noise process such that 
 



 =σ

=+=
otherwise,0

0,)}()({)(
2 mmnvnvEmR v

vv  

 
We want to use a two-coefficient LMS filter to predict  by )(nx
 

)2()()1()()()()(ˆ 21
2

1
−+−=∑ −=

=
nxnwnxnwinxnwnx

i
i  

 
55



Upon convergence, we desire 
 

558.1)}({ 1 →nwE  
and 

81.0)}({ 2 −→nwE  

z -1

w (n)1

z -1x(n)

+
d(n)

x(n)

e(n)
+

-

w (n)2

+
+

+
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The error function or prediction error  is given by 

2
)(ne

)2()()1()()(

)()()()(

21

1

−−−−=

∑ −−=
=

nxnwnxnwnx

inxnwndne
i

i  

 

Thus the LMS algorithm for this problem is 
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and 
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2
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2

2

22
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∂
∂

⋅
µ

−=+

nxnenw
nw
ne

nwnw
 

 

The computational requirement for each sampling interval is 
 

 multiplications  :  5 
 addition/subtraction :  4 
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Two values of , 0.02 and 0.004, are investigated: µ

 
Convergence characteristics for the LMS predictor with 02.0=µ  
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Convergence characteristics for the LMS predictor with 004.0=µ  
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Observations: 
 
1.When 02.0=µ , we had a fast convergence rate (the parameters 

converged to the desired values in approximately 200 iterations) but 
large fluctuation existed in )(nw  and )(nw . 1 2

 

2.When 004.0=µ , small fluctuation in  and  but the filter 
coefficients did not converge to the desired values of 1.558 and -0.81 
respectively after the 300th iteration. 

)(1 nw )(2 nw

 

3.The learning behaviours of  and  agreed with those of 
)

)(1 nw )(2 nw
}({ 1 nwE  and )}({ 2 nwE .  Notice that )}({ 1 nwE  and )}({ 2 nwE  can be 

derived by taking expectation on the LMS algorithm. 
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Example 4.3 
 
2. System Identification 
 
Given the input signal  and output signal , we can estimate the 
impulse response of the system or plant using the LMS algorithm. 

)(nx )(nd

 

Suppose the transfer function of the plant is ∑
=

−2

0i

i
i zh  which is a causal FIR 

unknown system, then  can be represented as )(nd
 

∑ −=
=

2

0
)()(

i
i inxhnd  
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Assuming that the order the transfer function is unknown and we use a 2- 
coefficient LMS filter to model the system function as follows, 

Plant

Σ h z
i=0

2

i
-i

Σ w z
i=0

1

i
-i

Σ

x(n) d(n)

y(n)

e(n)
+

-

 
The error function is computed as 

)1()()()()(

)()()()()()(

10

1

0

−−−=

∑ −−=−=
=

nxnwnxnwnd

inxnwndnyndne
i

i  

 
62



Thus the LMS algorithm for this problem is 
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The learning behaviours of the filter weights  and  can be 
obtained by taking expectation on the LMS algorithm. To simplify the 
analysis, we assume that )(nx  is a stationary white noise process such 
that 

)(0 nw )(1 nw



 =σ

=+=
otherwise,0

0,)}()({)(
2 mmnxnxEmR x
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Assume the filter weights are independent of  and apply expectation 
on the first updating rule gives 

)(nx

 

( ){ }

( ){ }

2
0

2
0

1
2

0

21
2

0

10210

1

0

2

0

00

)}({

)}()1({)}({)}({)}({

)}()2({)}()1({)}({

)()1()()()()2()1()(

)()()()(

)()()(
)}()({

)}({)}1({

xx

i
i

i
i

nwEh

nxnxEnwEnxEnwE

nxnxEhnxnxEhnxEh

nxnxnwnxnwnxhnxhnxhE

nxinxnwinxhE

nxnyndE
nxneE

nwEnwE

σµ−σµ=

−µ−µ

−−µ+−µ+µ=

−−−−+−+µ=














 ∑ −−∑ −µ=

−µ=
µ=

−+

==

 

 

 
64



2
0

2
00

2
0

2
00

2
0

2
00

2
0

2
00

)1)}(0({)}1({

)1)}(2({)}1({

)1)}(1({)}({

)1)}(({)}1({

xx

xx

xx

xx

hwEwE

hnwEnwE

hnwEnwE

hnwEnwE

σµ+µσ−=⇒

σµ+µσ−−=−⇒

σµ+µσ−−=⇒

σµ+µσ−=+⇒

LLLLLLLLLLLLLLLLLLLL

 

Multiplying the second equation by  on both sides, the third 
equation by 22 , etc., and summing all the resultant equations, we 
have 
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Hence  
00 )}({lim hnwE

n
=

∞→
 

provided that 

2
22 2

01111|1|
x

xx
σ

<µ<⇒<µσ−<−⇒<µσ−  

Similarly, we can show that the expected value of )}({ 1 nwE  is 
 

1
2

111 )1)()}0({()}({ hhwEnwE n
x +µσ−−=  

provided that  

2
22 2

01111|1|
x

xx
σ

<µ<⇒<µσ−<−⇒<µσ−  

 
It is worthy to note that the choice of the initial filter weights )}0({ 0wE  and 

)}0({ 1wE  do not affect the convergence of the LMS algorithm because the 
performance surface is unimodal. 
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Discussion: 
 
Since the LMS filter consists of two weights but the actual transfer function 
comprises three coefficients. The plant cannot be exactly modeled in this 
case. This refers to under-modeling. If we use a 3-weight LMS filter with 

transfer function 
2

, then the plant can be modeled exactly. If we use 

more than 3 coefficients in the LMS filter, we still estimate the transfer 
function accurately. However, in this case, the misadjustment will be 
increased with the filter length used. 

∑
=

−

0i

i
i zw

 
Notice that we can also use the Wiener filter to find the impulse response 
of the plant if the signal statistics, )0(xxR , )1(xxR , )0(dxR  and )1(−dxR  are 
available. However, we do not have )0(dxR  and 1( )−dxR  although 

)0(xxR = 2  and xσ )1(xxR =0 are known. Therefore, the LMS adaptive filter can 
be considered as an adaptive realization of the Wiener filter and it is used 
when the signal statistics are not (completely) known. 
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Example 4.4 
3. Interference Cancellation 

)(krGiven a received signal  which consist of a source signal )(ks  and a 
sinusoidal interference with known frequency. The task is to extract )(ks  
from )(kr . Notice that the amplitude and phase of the sinusoid is unknown. 
A well-known application is to remove 50/60 Hz power line interference in 
the recording of the electrocardiogram (ECG). 

Source Signal + Sinusoidal Interference

r(k)=s(k) + Acos(ω k + φ)0

Reference Signal

sin(ω k)0

90  Phase-Shift0
cos(ω k)0

b0

b1

Σ
e(k)

+

-

-
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The interference cancellation system consists of a  phase-shifter and a 
two-weight adaptive filter. By properly adjusting the weights, the reference 
waveform can be changed in magnitude and phase in any way to model 
the interfering sinusoid. The filtered output is of the form 

090

 
)cos()()sin()()()( 0100 kkbkkbkrke ω−ω−=  

 
The LMS algorithm is 
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Taking the expected value of )(0 kb , we have 
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Following the derivation in Example 4.3, provided that 40 <µ< , the 
learning curve of )}({ 0 kbE  can be obtained as 

( )
k

AbEAkbE 





 µ

−⋅φ++φ−=
2

1)sin()}0({)sin()}({ 00  

 
Similarly, )}({ 1 kbE  is calculated as 
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When ∞→k , we have 
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The filtered output is then approximated as 
 

)(
)cos()cos()sin()sin()()( 00

ks
kAkAkrke

=
ωφ−ωφ+≈

 
 

which means that )(ks  can be recovered accurately upon convergence. 
 

Suppose 0)}0({)}0({ 10 == bEbE , 02.0=µ  and we want to find the number 
of iterations required for )}({ 1 kbE  to reach 90% of its steady state value. 
Let the required number of iterations be 0k  and it can be calculated from 

k
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Hence 300 iterations are required. 
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If we use Wiener filter with filter weights  and , the mean square error 
function can be computed as 

0b 1b

 

( )
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)}({)cos()sin(
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The Wiener coefficients are found by differentiating  with respect 
to b  and b  and then set the resultant expression to zeros. We have 

)}({ 2 keE
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Example 4.5 
 
4. Time Delay Estimation 
 
Estimation of the time delay between two measured signals is a problem 
which occurs in a diverse range of applications including radar, sonar, 
geophysics and biomedical signal analysis. A simple model for the 
received signals is 
 

)()()(
)()()(

12

11

knDkskr
knkskr
+−α=

+=
 

 

where )(ks  is the signal of interest while )(1 kn  and )(2 kn  are additive 
noises. The α is the attenuation and D is the time delay to be determined. 
In general, D is not an integral multiple of the sampling period. 
 
Suppose the sampling period is 1 second and )(ks  is bandlimited between 
-0.5 Hz and 0.5 Hz (- π  rad/s and π  rad/s). We can derive the system 
which can produce a delay of D as follows. 

 
74



Taking the Fourier transform of )()( DksksD −=  yields 
 

)()(ˆ ω⋅=ω ω− SeS Dj  
 
This means that a system of transfer function Dje ω−  can generate a delay 
of D  for )(ks . Using the inverse DTFT formula of (I.9), the impulse 
response of Djω−  is calculated as e
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As a result, )( Dks −  can be represented as 
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for sufficiently large P .  
 

This means that we can use a non-casual FIR filter to model the time 
delay and it has the form: 

i
i

P

Pi
zwzW −

−=
∑=)(  

It can be shown that )(sinc Diwi −⋅β→  for PPPi ,,1, L+−−=  using the 
minimum mean square error approach. The time delay can be estimated 
from }{ iw  using the following interpolation: 
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The LMS algorithm for the time delay estimation problem is thus 
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The time delay estimate at time k  is: 
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Exponentially Weighted Recursive Least-Squares 
 
A. Optimization Criterion 

To minimize the weighted sum of squares ∑ λ=
=

−n

l

ln lenJ
0

2 )()(  for each time 

 where n λ is a weighting factor such that 10 ≤λ< . 
 

When 1=λ , the optimization criterion is identical to that of least squaring 
filtering and this value of λ should not be used in a changing environment 
because all squared errors (current value and past values) have the same 
weighting factor of 1. 
 

To smooth out the effect of the old samples, λ should be chosen less than 
1 for operating in nonstationary conditions. 
 
B. Derivation 
 

Assume FIR filter for simplicity. Following the derivation of the least 
squares filter, we differentiate )(nJ  with respect to the filter weight vector 
at time n, i.e., )(nW , and then set the L  resultant equations to zero.  
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By so doing, we have 
 

  )()()( nGnWnR =⋅         (4.47) 
where 

Tn
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ln lXldnG
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TLlxLlxlxlxlX )]1()2()1()([)( +−+−−= L  
 

Notice that )(nR  and )(nG  can be computed recursively from 
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−     (4.49) 
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Using the well-known matrix inversion lemma: 
 
If  
  TCCBA ⋅+=         (4.50)  
 
where A and B  are NN ×  matrix and C  is a vector of length N , then 
 
                                111111 )1( −−−−−− +−= BCCBCCBBA TT            (4.51) 
 
Thus 1)( −nR  can be written as 
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The filter weight  )(nW  is calculated as 
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As a result, the exponentially weighted recursive least squares (RLS) 
algorithm is summarized as follows, 
 

1. Initialize )0(W  and 1)0( −R  
 

2. For L,2,1=n , compute 
 
 )1()()()( −−= nWnXndne T        (4.53) 
 

 
)()1()(

1)(
1 nXnRnX

n
T −−+λ

=α       (4.54) 

 
                               )()1()()()1()( 1 nXnRnennWnW −−α+−=       (4.55) 
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= nRnXnXnRnnRnR T     (4.56) 
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Remarks: 
 

1.When 1=λ , the algorithm reduces to the standard RLS algorithm that 

minimizes 
n

. ∑
=l

le
0

2 )(
 

2.For nonstationary data, 9995.095.0 <λ<  has been suggested. 
 

3.Simple choices of )0(W  and 1)0( −R  are 0  and I2σ , respectively, where 
2  is a small positive constant. σ

 
C. Comparison with the LMS algorithm 
 
1. Computational Complexity 
 
RLS is more computationally expensive than the LMS. Assume there are 
L  filter taps, LMS requires ( 14 +L ) additions and ( 34 +L ) multiplications 
per update while the exponentially weighted RLS needs a total of 
( 13 2 −+ LL ) additions/subtractions and ( LL 44 2 + ) multiplications/divisions. 
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2. Rate of Convergence 
 

RLS provides a faster convergence speed than the LMS because  
 

 RLS is an approximation of the Newton method while LMS is an 
approximation of the steepest descent method. 

1−
 

 the pre-multiplication of )(nR  in the RLS algorithm makes the resultant 
eigenvalue spread becomes unity. 

 

Improvement of LMS algorithm with the use of Orthogonal Transform 

 
 

A. Motivation 
 

When the input signal is white, the eigenvalue spread has a minimum 
value of 1. In this case, the LMS algorithm can provide optimum rate of 
convergence.  
 
However, many practical signals are nonwhite, how can we improve the 
rate of convergence using the LMS algorithm? 
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B. Idea 
 

To transform the input  to another signal )(nx )(nv  so that the modified 
eigenvalue spread is 1. Two steps are involved: 
 

1. Transform  to )(nx )(nv  using an NN ×  orthogonal transform T  so that  
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where 
)()( nXTnV ⋅=  

 
T

NN nvnvnvnvnV )]()()()([)( 121 −= L  
 

TNnxNnxnxnxnX )]1()2()1()([)( +−+−−= L  
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{ }T

xx nXnXER )()(=  
 

{ }T
vv nVnVER )()(=  

 
2. Modify the eigenvalues of vvR  so that the resultant matrix has identical 

eigenvalues: 
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Block diagram of the transform domain adaptive filter 
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C. Algorithm 
 

The modified LMS algorithm is given by 
 

)()(2)()1( 2 nVnenWnW −Λµ+=+  
where 
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)()()( nyndne −=  

 
)()()()()( nXTnWnVnWny TT ⋅⋅==  
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Writing in scalar form, we have 
 

Ni
nvne

nwnw
i

i
ii ,,2,1,

)()(2
)()1(

2
L=

σ

µ
+=+  

 
Since  is the power of  and it is not known a priori and should be 
estimated. A common estimation procedure for 2  is 

2
iσ )(nvi

)}({ nvE i
 

222 |)(|)1()( nvnn iii +−ασ=σ  
where 

10 <α<  
 
In practice, α should be chosen close to 1, say, 9.0=α . 
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Using a 2-coefficient adaptive filter as an example:  
 

 
 

A 2-D error surface without transform 
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Error surface with discrete cosine transform (DCT) 
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Error surface with transform and power normalization 
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Remarks: 
 

1. The lengths of the principle axes of the hyperellipses are proportional 
to the eigenvalues of R . 

 

2. Without power normalization, no convergence rate improvement of 
using transform can be achieved. 

 

3. The best choice for T  should be Karhunen-Loeve (KL) transform which 
is signal dependent. This transform can make vvR  to a diagonal matrix 
but the signal statistics are required for its computation. 

 

4. Considerations in choosing a transform: 
 fast algorithm exists? 
 complex or real transform? 
 elements of the transform are all power of 2? 

 

5. Examples of orthogonal transforms are discrete sine transform (DST), 
discrete Fourier transform (DFT), discrete cosine transform (DCT), 
Walsh-Hadamard transform (WHT), discrete Hartley transform (DHT) 
and power-of-2 (PO2) transform. 
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Improvement of LMS algorithm using Newton's method 

 
Since the eigenvalue spread of Newton based approach is 1, we can 
combine the LMS algorithm and Newton's method to form the 
"LMS/Newton" algorithm as follows, 

)()()(

)(
)(

2
)()1(

1

2
1

nXneRnW

nW
neRnWnW

xx

xx

−

−

µ+=

∂
∂µ

−=+
 

Remarks: 
 

1. The computational complexity of the LMS/Newton algorithm is smaller 
than the RLS algorithm but greater than the LMS algorithm. 

 

2. When xxR  is not available, it can be estimated as follows, 
 

1,,1,0),()()1,(ˆ),(ˆ −=⋅++−α= LlnxlnxnlRnlR xxxx L  
 
where  represents the estimate of ),(ˆ nlRxx )(lRxx  at time  and n 10 <α<  
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Possible Research Directions for Adaptive Signal Processing 
 

1. Adaptive modeling of non-linear systems 
 

For example, second-order Volterra system is a simple non-linear system.  
The output )(ny  is related to the input )(nx  by 
 

)()(),()()()( 21
1

0

1

0
21

)2(1

0

)1(

1 2

jnxjnxjjwjnxjwny
L

j

L

j

L

j
−∑ ∑ −∑ +−=

−

=

−

=

−

=
 

 

Another related research direction is to analyze non-linear adaptive filters, 
for example, neural networks, which are generally more difficult to analyze 
its performance.  

 

2. New optimization criterion for Non-Gaussian signals/noises 
 

For example, LMF algorithm minimizes .  )}({ 4 neE
 

In fact, a class of steepest descend algorithms can be generalized by the 
least-mean-p (LMP) norm. The cost function to be minimized is given by 
 

})({ pkeEJ =  
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Some remarks: 
 

 When =1, it becomes least-mean-deviation (LMD), when =2, it is 
least-mean-square (LMS) and if p=4, it becomes the least-mean-fourth 
(LMF). 

p p

 

 The LMS is optimum for Gaussian noises and it may not be true for 
noises of other probability density functions (PDFs). For example, if the 
noise is impulsive such as a α-stable process with 21 <α≤ , LMD 
performs better than LMS; if the noise is of uniform distribution or if it is a 
sinusoidal signal, then LMF outperforms LMS. Therefore, the optimum p  
depends on the signal/noise models. 

 

 The parameter  can be any real number but it will be difficult to 
analyze, particularly for non-integer p . 

p

 

 Combination of different norms can be used to achieve better 
performance. 

 

 Some suggests mixed norm criterion, e.g.  )}({)}({ 42 neEbneEa ⋅+⋅
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 Median operation can be employed in the LMP algorithm for operating in 
the presence of impulsive noise. For example, the median LMS belongs 
to the family of order-statistics-least-mean-square (OSLMS) adaptive 
filter algorithms. 

 

3. Adaptive algorithms with fast convergence rate and small 
computation 

 

For example, design of optimal step size in LMS algorithms 
 

4. Adaptive IIR filters 
 

Adaptive IIR filters have 2 advantages over adaptive FIR filters: 
 It generalizes FIR filter and it can model IIR system more accurately 
 Less filter coefficients are generally required   

 

However, development of adaptive IIR filters are generally more difficult 
than the FIR filters because 

 The performance surface is multimodal  the algorithm may lock at an 
undesired local minimum 

⇒

 It may lead to biased solution 
 It can be unstable 
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5. Unsupervised adaptive signal processing (blind signal processing) 
 

What we have discussed previously refers to supervised adaptive signal 
processing where there is always a desired signal or reference signal or 
training signal.  
 

In some applications, such signals are not available. Two important 
application areas of unsupervised adaptive signal processing are: 
 

 Blind source separation 
 e.g. speaker identification in the noisy environment of a cocktail party 
 e.g. separation of signals overlapped in time and frequency in wireless 
communications 

 

 Blind deconvolution  (= inverse of convolution) 
 e.g. restoration of a source signal after propagating through an 
unknown wireless channel 

 

6. New applications 
 

For example, echo cancellation for hand-free telephone systems and 
signal estimation in wireless channels using space-time processing. 
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Questions for Discussion 
 
1. The LMS algorithm is given by (4.23): 
 
                1,,1,0),()(2)()1( −=−µ+=+ Liinxnenwnw ii L   
 
 where 
 

)()()( nyndne −=  
 

)()()()()(
1

0
nXnWinxnwny TL

i
i =∑ −=

−

=
, 

 
Based on the idea of LMS algorithm, derive the adaptive algorithm that 
minimizes })({ neE . 

 

(Hint: )sgn(
||

v
v
v

=
∂

∂  where 1)sgn( =v  if  and 1>v 1)sgn( −=v  otherwise) 
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2. For adaptive IIR filtering, there are basically two approaches, namely, 
output-error and equation-error. Let the unknown IIR system be 
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Using minimizing mean square error as the performance criterion, the 
output-error scheme is a direct approach which minimizes )}({ 2 neE  
where 
 

)()()( nyndne −=  
 

with 
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However, as in Q.2 of Chapter 3, this approach has two problems, 
namely, stability and multimodal performance surface. 
 
On the other hand, the equation-error approach is always stable and has 
a unimodal surface. Its system block diagram is shown in the next page. 
 
Can you see the main problem of it and suggest a solution? 
 
(Hint: Assume )(kn  is white and examine )}({ 2 keE ) 
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Σ

Σ

H(z)

Unknown system

+

+
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−

s(k)
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d(k)

r(k)

e(k)

B(z) A(z)
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