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Estimation Theory and Applications

Application Areas
1. Radar
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Radar system transmits an electromagnetic pulse s(n). It is reflected by

an aircraft, causing an echo r(n) to be received after T, seconds:
r(n)=as(n—1tgy)+ w(n)

where the range R of the aircraft is related to the time delay by

T =2R/c



Transmit pulse

Time
Time

To




2. Mobile Communications

The position of the mobile terminal can be estimated using the time-of-
arrival measurements received at the base stations.



. Speech Processing

Recognition of human speech by a machine is a difficult task because
our voice changes from time to time.

Given a human voice, the estimation problem is to determine the
speech as close as possible.

. Image Processing

Estimation of the position and orientation of an object from a camera
image is useful when using a robot to pick it up, e.g., bomb-disposal

. Biomedical Engineering

Estimation the heart rate of a fetus and the difficulty is that the
measurements are corrupted by the mother’s heart beat as well.

. Seismology

Estimation of the underground distance of an oil deposit based on
sound reflection due to the different densities of oil and rock layers.



Differences from Detection
1. Radar
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Radar processing
system

Transmit/
receive
antenna

Radar system transmits an electromagnetic pulse s(»). After some time,
it receives a signal r(n). The detection problem is to decide whether »(n)
IS

echo from an object or it is not an echo



Transmit pulse

Time

Time

Received waveform - no aircraft

']I t E [ ] Time




2. Communications

In wired or wireless communications, we need to know the information
sent from the transmitter to the receiver.

e.g., for binary phase shift keying (BPSK) signals, it consists of only two
symbols, “0” or “1”. The detection problem is to decide whether it is “0” or

“1 ”.
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3. Speech Processing

Given a human speech signal, the detection problem is decide what is the
spoken word from a set of predefined words, e.g., “0”, “17,..., “9”
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Time (sec)

Waveform of “0”

Another example is voice authentication: given a voice and it is indicated
that the voice is from George Bush, we need to decide it's Bush or not.
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4. Image Processing

Fingerprint authentication: given a fingerprint image and his owner says
he is “A”, we need to verify if it is true or not

RN

Other biometric examples include face authentication, iris authentication,
etc.
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5. Biomedical Engineering
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e.g., given some X-ray slides, the detection problem is to determine if she
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has breast cancer or not

6. Seismology

To detect if there is oil or there is no oil at a region
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What is Estimation?

Extract or estimate some parameters from the observed signals, e.g.,
» Use a voltmeter to measure a DC signal
x[n]=A4+w[n], n=01---,N—-1

Given x[n], we need to find the DC value, 4

= the parameter is the observed signal
» Estimate the amplitude, frequency and phase of a sinusoid in noise

x[n] = acos(wn + ¢) + wn], n=0,1,---,N—-1
Given x[n], we need to find o, ® and ¢

= the parameters are not directly observed in the received signal
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» Estimate the value of resistance R from a set of voltage and current
readings:

Vinl=Vaetwatl21+wilnl,  I[n] =L eqyq 7] +wr[n], n=0,1,---,N -1

Given N pairs of (V[n],I[n]), we need to estimate the resistance R,
ideally, R=V/1

= the parameter is not directly observed in the received signals

» Estimate the position of the mobile terminal using time-of-arrival
measurements:

\/(xs _xn)z _(ys _yn)z
C

rln] = +w|n], n=0,1,---,N-1

Given r[n], we need to find the mobile position (x,,y,) where c is the
signal propagation speed and (x,,y,) represent the known position of
the nth base station

= the parameters are not directly observed in the received signals
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Types of Parameter Estimation

= | inear or non-linear

Linear: DC value, amplitude of the sine wave
Non-linear: Frequency of the sine wave, mobile position

» Single parameter or multiple parameters

Single: DC value; scalar
Multiple: Amplitude, frequency and phase of sinusoid; vector

= Constrained or unconstrained

Constrained:  Use other available information & knowledge, e.g., from
the N pairs of (V[n],I[n]), we draw a line which best fits
the data points and the estimate of the resistance is
given by the slope of the line. We can add a constraint
that the line should cross the origin (0,0)

Unconstrained: No further information & knowledge is available
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= Parameter is unknown deterministic or random

Unknown deterministic:

Random :

constant but unknown (classical)

DC value is an unknown constant

random variable with prior knowledge of
PDF (Bayesian)

If we have prior knowledge that the DC value
IS bounded by — 4, and A4, with a particular

PDF = better estimate

» Parameter is stationary or changing

Stationary :

Changing :

Unknown deterministic for whole observation
period, time-of-arrivals of a static source

Unknown deterministic at different time
instants, time-of-arrivals of a moving source
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Performance Measures for Classical Parameter Estimation

Accuracy:

» |s the estimator biased or unbiased?
e.g., x[n]= A+ wn], n=0,1---,N—-1
where w[n] is a zero-mean random noise with variance c%‘,

Proposed estimators:

Ay = x[0]
. 1 N-1
Ay = Y; ’EO x[n]
. 1 N-l
Az = Vo1 ’EO x[n]

N-1
Ay :J{/ T x[n] = N/x[0]-x[1]---x[N —1]
n=0
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Biased : E{A} # A
Unbiased : E{A} =4
Asymptotically unbiased : E{4}= A4 only if N > o

Taking the expected values for 4;, 4, and 45, we have

E{4;} = E{x[0]} = E{A} + Ew[0]} =4+ 0= 4

. | N-1 1 N-1 1 N-1
E{Az}zE{N > x[n]}zE{ > A}+E{N > w[n]}

N p=0 n=0
1 N-1 1 N-1 1 1 N-1
— > A+— > Ewn]}=—-N-A+— > 0=4
NnO Nn:O N Nn_O
E{g3}:L.A: l - A

N -1 1-1/N
Q. State the biasedness of 4;, 4, and 4;.
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For A, it is difficult to analyze the biasedness. However, for win] = 0:

N/X[0]- x[1]---X[N 1] =Na- 4 4A=N4a" = 4
» What is the value of the mean square error or variance?

They correspond to the fluctuation of the estimate in the second order:
MSE = E{(4 - A)*} (5.1)
var = E{(A - E{4)*} (5.2)

| If the estimator is unbiased, then MSE = var
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In general,

MSE = E{(A—- A)*} = E{(A- E{4} + E{A} — >
= E{(A- EUAD"} + E(ELA - )"} + 2E{(A- EUDEA - ) o
= var+ (E{A} — A)? + 2(E{A} — E{A))(E{A} — A)

= var+ (bias)2

E{(4 — A} = E{(x[0]- 4)°} = E{(A+w[0]- A)*} = E{w’[0]} = o3,

_ 2 _ )
E{(flz — A)z} = E{;Nzlx[n] — Aj } — ;E{NZIWZ[H]} _Sw

a2 gl 1N _2_(/1)2 o2
E{(s A)}—Eﬁng%ﬂﬂ Aj}— e Rt
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An optimum estimator should give estimates which are

= Unbiased
= Minimum variance (MSE as well)

Q. How do we know the estimator has the minimum variance?

Cramer-Rao Lower Bound (CRLB)

Performance bound in terms of minimum achievable variance provided by
any unbiased estimators

Use for classical parameter estimation
Require knowledge of the noise PDF and the PDF must have closed form

More easier to determine than other variance bounds
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Let the parameters to be estimated be 0
0, in Gaussian noise is stated as follows

where

- EX

- E-

CRLB(6,) =

92 1n p(x;0)]

007

0% In p(x;0)

1) =

- £

00,00,

0% In p(x;0) >

00 500,

'

- E4

- EJ

k

[30)];,

0° In p(x;0)

00,00,

(82 In p(x; 9)\

003
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p(x;0) represents PDF  of x=[x[0],x[1],--,x{N —1]]' and
parameterized by the unknown parameter vector 0

Note that
= I(0) is known as Fisher information matrix
= [J];; is the (i,i) element of J

1 2

e.g., J =|: :|3[J]2,2 =3

a2mpum%
00 ;00,

0% In p(x;0)
00,00 ;

s X s = [

\ J
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Review of Gaussian (Normal) Distribution

The Gaussian PDF for a scalar random variable x is defined as

P =——— eXp(—Z(x—u)zj (56)

2o 20
We can write x ~ N(u,0)
The Gaussian PDF for a random vector x of size N is defined as

1
(271:)N/2 detl/Z

p(x) = eXp(—l(x -m' - (x- u)) (5.7)
(9 2

We can write x ~ N(n,C)
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The covariance matrix C has the form of

C=E{(x—p) (x-p'}

E{(x[0]- )2} o E{(]0] = o) ([N = 1] py_1)} |
E{0]-po)([1]-py)} '

| E{({0]—po)(X[N —1]—py_1)} - E{xN-1]-py_D*} |
(5.8)

where
X = [[0], 2[1], -, x{N ~ 171"

m=E{X =[Ro, 1,y 11
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If x is a zero-mean white vector and all vector elements have variance 02

s 0 0
T 0 62 : o)
C=E{x-p-x-p) ;=] 0 |7° Ly
0 0 o]

The Gaussian PDF for the random vector x can be simplified as

_ 1 | N—-1 2 59
P(X)—(zngz)N/zeXP —?’on [1] (5.9)

with the use of
C-l = 6_2 . IN
det(C) = (c*)V =V
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Example 5.1

Determine the PDF of

x[0] = A4+ w[0]

and
x[n]=A4+w[n], n=01---,N—1

where {w(n)} is a white Gaussian process with known variance cs%v and 4
IS a constant

pI0T: )= —— exp[—ﬂ(x[O]—A)zj

2noy, 20,

1 1 N-1
p(x;A) = > N2 eXp[— 2 (xn]=4) J

(2noy, ZGWn 0
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Example 5.2

Find the CRLB for estimating 4 based on single measurement:

x[0] = 4+ w[0]

pd0]: A) = —— exp[—lu[] A)zj

2no, 265,
= In( p(x[0] :—ln(«/2nc5 )——(x[O )
Oln(p(x[0];4)) 1 1. (x0]-4)
= Yy = 202 2(x[0]-4)-—1 G%V

az In(p(x[0];4)) _ 1

0A4° G%V
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As a result,

: {az 1n<p<x[01;A>>}:_ 1

0A4° G%V

1(4)=1(4)=—
GW
= J(4) =62
— CRLB(4) =2,
This means the best we can do is to achieve estimator variance = &2, or

2

var(A4) > G

where 4 is any unbiased estimator for estimating 4
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We also observe that a simple unbiased estimator
Ay = x[0]
achieves the CRLB:

E{(4 — 4)*} = E{(x[0]- A)*} = E{(4+ w[0]— 4)*} = E{w*[0]} = o,

w

Example 5.3

Find the CRLB for estimating 4 based on N measurements:

x[n]=A+w[n], n=01---,N—1
p(x;A4) = 1 exp —LNZ_I (x[n]— A)°
2nol)N/? 262, n=0

30



pxid)=— e LY (o] )
(27‘CGW)N/2 ZG%Vn =0
= In(p(x; ) = ~In(@ro2)V ) LS (afn] - 4
2(5 n=0
z (x[n]- 4)
din(p(xid)
o s A 1. ,Eo(x["] 1=t

—

2
W
O’ In(p(x;4)) _ N

2 2

_ {821n(p(x A))} N

0A? G%‘,
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As a result,

1(4) = I(4) =~
cjW
2

CFVV
= J(A) N
62

— CRLB(4) = 2
N

This means the best we can do is to achieve estimator variance = G%V /N
or

2
~ O
var(4) > %

(A4) Iy

where 4 is any unbiased estimator for estimating 4

32



We also observe that a simple unbiased estimator

Ay = x[0]
does not achieve the CRLB

E{(4; - )%} = E{(x[0]- 4)°} = E{(A+w[0]- 4)*} = E{w’[0]} = o,
On the other hand, the sample mean estimator
. N-1
Ay = Zo x[n]
achieve the CRLB }
A | N-1 211 (N1 52
E{(4y - )} = E{| — 4| =2 E 21,70 = Ow
N B e R

— sample mean is the optimum estimator for white Gaussian noise
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Example 5.4

Find the CRLB for 4 and c%v given {x[n]}:

x[n]=A+w[n], n=01---N-1
PO = expl — Y (I | 0=[402)
2no2)N/? 262, n=0
2 \N/2 1 N1 2
= In(p(x;0)) = -In((2ncy,) " 7)) ——5 X (x[n]-4)
ZGwn 0
MmNy - LS (- 4y
2 2 2Gwn 0
-1
Z (x[n]—A4)

N 81n(p(xae)) _ _%.2.]\%—:1 ()C[I’l]—A)—l _ n=0

04 265, n=0 G%V
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2 :
|, O%n(pxio)__ N
04 G,
2 :
_ g0 ln(pgx,ﬂ)) _ ﬁz
04 G

N-1

N-1
Pin(poy o F oD

—

&A@Ga Gi Gi

_n=0 _
1 0
w

g {az In(p(x:0))

N-1
2. (Ewln]})
04dc?, }:

o)
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N-1
In( p(x; (%)))——Eln(ZTc)—Eln(G )—L Y (x[n]- A4)*
2 2 2GWn 0
oln(p(x;0 N ] N
N (p(2 ) _ N C TR A)?
0G 7, 265, 20, n=0
8% In(p(x:0 N ] N-1
N (pz( : ) _ Y (i )2
o(cy,) 26,, ©,, n=0
0° In(p(x;0 N 1 ., N
= £ (192(2 ) - i~ 6 Now=—_4
o(cy,) 26, ©,, 26,
20
10)=| °"
0 -
i 20, |
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J0)=1"0)= N
0

52
= CRLB(A) = Ow
N
— the CRLBs for unknown and known noise power are identical

Q. The CRLB is not affected by knowledge of noise power. Why?

: 2
Q. Can you suggest a method to estimate c;, ”
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Example 5.5

Find the CRLB for phase of a sinusoid in white Gaussian noise:
x[n]= Acos(wgn + §) +wln], n=01,---,N-1
where 4 and o, are assumed known

The PDF is

1 1 N
p(X;0) = 2ny V2 eXp(— 202 nZO (x[n]— A cos(wgn +9)) j

= In(p(x;9)) =— ln((2nG%V)N/2) — ZL NZI (x[n]—Acos(wgn + (I)))
G,, n=0
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olIn(p(x;0)) _ e Nil 2(x[n]— Acos(wgn + ¢)) - —A - —sin(wyn + ¢)
o 2(5%‘, n=

AN
.2
=R

x[n]sin(wpn + ¢) — g sin(2mgn + 2(1))}

e Nz_ [x[n]cos(wgn + ¢) — AcosRmgn + 2¢)]

G
2 . -
E 0" In(p(x;9)) 4 NZI [ A cos(wgn + ¢) - cos(wgn + ¢) — AcosRwgn + 2¢)]
0> 62, n=0

AN,

== [cos (ogn + ¢) — cos(2mgn + 2(|))]
G,, n=0
A*NZITT ]

2

= {— +—cos(2ogn + 20) — cos(2mgn + 2(|))}
G,, n=0 2 2

39



. {az In(p(x;9))
0¢*

4% N-1

As a result,
2
CRLB(¢) = NA2
267,
If N >>1,
then

1
N

}_

N-1

n=

4% N

A2N1

022

NA?
— +

_|_

26%‘, n=0

4% N-1

ZG%V

>.cos(2mgn +20¢)
ZGW n=0

5 > cos

ZGwn 0

|-

cos(Zogn +2¢) =0

0

202

CRLB($) ~ “°W

40

NA?

>, cos(2mgn +2¢)

(2won + 20)

1 N-1
1—— > cosQogn +2¢)
N y=0
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Example 5.6

Find the CRLB for 4, oy and ¢ for

x[n]= Acos(wgn + ) +wn], n=01,---N—1, N >>1
1 1 N-1
p(x;0) = (2ncy V2 exp| — 202 nZO (x[n]— Acos(won +¢))° 0 =[4,09,9¢]

= In(p(x;0)) = - In((2nc2,) "V '?) - 2# NZI (x{n]— Acos(wgn + )’
G,, n=0
_ Oln(p(x;0)) _ 1 A

2. > (x[n]—Acos(wgn + §)) - —cos(wyn + )
0A n=0

203,
1 N-1 2
— > (x[n]cos(wgn + ) — Acos” (wgn + ¢))

G%‘, n=0
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0° In(p(x; 0 LA b3}
n(ng )) _ 5 Z COS ((Don + (I)) = _% Z |: 4+ 1 003(20)()11 + 2(1)):|
@A cSw n=0 GW n=0 2

N

2G%V

~y

20%

{52 In(p(x;0)| __ N
04>

Similarly,

2

| , N-1

7 0" In(p(x;0))( _ 4 > nsin(2ogn +2¢) = 0
0A4d0 262, n=0

- 0% In(p(x;0)) i
0AOP

N-1
>, sin(2ogn+2¢) =0
ZGWn 0

42



) 2 N-1 S
gl o) 4Nt (1—1608(2000”““24’)) Lre
8600 Gwn 0 2 2 26”’” 0
) . 2 N-1 2N
i 0 In(p(x;0)) __A_2 Z nsin (®0”+¢)"’_A—2 Z .

) . 2 N-1 i
v 0 ln(pEX,O)) :_A_2 > sin (®0n+¢)~_%
o G,y n=0 2
N 0 0
2
2 N1 2 N-1
w0~"1o v A,
GW 2 n=0 2 n=0
AZN-1 g2
0 —-Xn
| 2 nZO 2 B




After matrix inversion, we have

2
2
CRLB(A) ~ “oW
N
2
CRLB(w)) = 12 S SNR:A—z
SNR- N(N? —1) 267
CRLB(¢) ~ 22N 1)
SNR- N(N +1)
Note that
2
CRLB($) ~ 20N-) 4 1 267

SNR-N(N +1) SNR-N SNR-N  NA

= In general, the CRLB increases as the number of parameters to be
estimated increases
— CRLB decreases as the number of samples increases
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Parameter Transformation in CRLB

Find the CRLB for a = g(0) where g() is a function

e.g., x[n]=A4A+wn], n=01---,N—-1

What is the CRLB for 427

The CRLB for parameter transformation of a = g(0) is given by

(ag@)jz
00

;. {82 In(p(x; e))}

CRLB(a) = (5.10)

002

For nonlinear function, “=" is replaced by “~” and it is true only for large N
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Example 5.7

Find the CRLB for the power of the DC value, i.e., A%

x[n]=A+wn], n=01---,N—-1

o= g(d) =4
2
jwzmj(wj _a42
0A 0A
From Example 5.3, we have

{52 In( p(x; A))} N
_E _
04°

s
As a result,

2 2 2

44

CRLB(42) ~ 442 .%2w -2 Ow N >>1
N N

46



Example 5.8

Find the CRLB for o =¢; +¢,4 from
x[n]=A+wn], n=01---,N—1

o = g(A) = (] +62A
2
L2 _ (ﬁg(/l)j 2

o4 )
As a result,
CRLB(a) = ¢ - CRLB(4) = ¢3 G]\%[V
_ 3oy,

N
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Maximum Likelihood Estimation

Parameter estimation is achieved via maximizing the likelihood function
Optimum realizable approach and can give performance close to CRLB
Use for classical parameter estimation

Require knowledge of the noise PDF and the PDF must have closed form
Generally computationally demanding

Let p(x;0) be the PDF of the observed vector x parameterized by the
parameter vector 0. The maximum likelihood (ML) estimate is

0 = arg max p(x;0) (5.11)
0

48



e.d., given p(x=xy;0) where x; is the observed data, as below

| p(x0;6)

62 61

Q. What is the most possible value of 6?

49



Example 5.9

Given
x[n]= A+ wn], n=0,1,---,N—-1

where A4 is an unknown constant and w{n] is a white Gaussian noise with
known variance va. Find the ML estimate of 4.

1 N-1
5 2
ZGW n=0

1
PXA)= N2 exp[_
(2noy,

(x[n]_ij

Since argmax p(x;0) = argmax{In(p(x;0))}, taking log for p(x;4) gives
0 0

In(p(x: ) = ~In(2m02) D)=L -4
o,, n=0

50



Differentiate with respect to 4 yields

N-1
— A
OInpes ) _ 1 N s

04 2(5%‘/ n=0 ¢

2
w

A =argmax{In(p(x; 4)} is determined from
A

N-1 ~
>, (x[n]—4) N—] 1 N-1
n=0 5 =0= (x[n]—fl)=03121=ﬁ 2. x[n]
o n=0 n=0

Note that

* ML estimate is identical to the sample mean
= Attain CRLB

Q. How about if 62, is unknown?
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Example 5.10

Find the ML estimate for phase of a sinusoid in white Gaussian noise:
x[n]= Acos(wgn + ¢) +wn], n=01,---,N—-1
where 4 and o, are assumed known

The PDF is

1 1 N
p(X;0) = 2ny V2 eXp(— 202 nZO (x[n]— A cos(wgn +9)) j

= In(p(x;9)) =— ln((2nG%V)N/2) — ZL NZI (x[n]—Acos(wgn + (I)))
G,, n=0
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It is obvious that the maximum of p(x;¢) or In(p(x;¢)) corresponds to the
minimum of

1
2
w

N-1 7 N-1 7
>, (x[n]—Acos(wgn +¢))= or > (x[n]—Acos(wgn +))

207, n=0 n=0

Differentiating with respect to ¢ and then set the result to zero:
N-1
Y. 2(x[n]— Acos(wgn + 9)) - —A-—sin(®gn + ¢)
n=0

_ N-1[ A
=A4 Y | x[n]sin(wyn + ) — 5 sin(2ogn + 2(1))} =0

n=0L
N-1 R AN-1 A
— >, x[n]sin(wgn+¢)=— 2> sm(2ogn+20)
n=0 2 y=0

The ML estimate for ¢ is determined from the root of the above equation

Q. Any ideas to solve the nonlinear equation?
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Approximate ML (AML) solution may exist and it depends on the structure
of the ML expression. For example, there exists an AML solution for ¢

N-1 AN-1
Z x[n ]51n(o)0n+(|))—— > sm(2a)0n+2(|))
n= 2 -0
INZI i D=2 L5 sinogm+ 20~ 2.0=0,  N>>1
= — 2 x[n]sin(wgn + ) =—-— sin(2oon +20)~ —-0=0, >>
NnO[](O (I))an:O 0 ,

The AML solution is obtained from
N-1

> x[n]51n((00n+(|)) 0

n=0
N-1 N-1

= D, x[n]sm(coon)cos((l))+ > x[n]cos((o()n)sm((l)) 0
n=0 n=0

. N-1 .~ N-1
= cos(9)- >, x[n]sin(wgn) =—sin(¢)- > x[n]cos(wyn)
n=0 n=0
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b= tan_l[ ZnN:_Ol x[n]sin(wgn) J

ZnN:_Ol x[n]cos(wgn)

In fact, the AML solution is reasonable:

b= —tan”! >N (Acos(won + ¢) + win])sin(wgn)
ZnN:_Ol (A cos(wgn + ¢) +w[n])cos(wgn)

_ N4 sin(p) + V-1 win]sin(wgn)
~—tan | NAz , N >>1
o cos(9) + X V-1 win]cos(wgn)
sin() — 2 ZN__OI win]sm(wyn)
= tan ™ NA "™

cos(¢) + Z\fA Z,]qu_ol win]cos(mwyn)
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For parameter transformation, if there is a one-to-one relationship
between o = g(0) and 0, the ML estimate for o is simply:

& = g(0) (5.12)

Example 5.11

Given N samples of a white Gaussian process w[n], n=0,1,---, N —1, with
unknown variance . Determine the power of w{n] in dB.

The power in dB is related to o> by
_ 2
P = IOIOglo(G )

which is a one-to-one relationship. To find the ML estimate for P, we first
find the ML estimate for *
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N-1
p(w;o?)=—— Nuexp(—1 > x2[n]

(2no 262 n=0
= n(pw:02)) = — Y nem) - M) - S K2
2 2 20 2 n=0
2

Differentiating the log-likelihood function w.r.t. to ¢~

oln(p(w;c%) N 1 N-I

06° 26% 26 10
Setting the resultant expression to zero
N 1 N-1 A 1 N-1
s=—5 2 X [n]=6"=— % x[n]
267 26" n=0 N n=0
As a result,
2 1 AT o
P=10log|y(67)=10logyo| — 2 x"[n]
N pn=0
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Example 5.12

Given
x[n]= A+ wn], n=0,1---N—-1

where A4 is an unknown constant and w{n] is a white Gaussian noise with
unknown variance o~. Find the ML estimates of 4 and &°.

p(x0)= exp(—lNzlu[n] A)] 0=14 o]
(27cc52)N/2 262 n=0
Oln(p(x0)) 1 NI
= 3 X Gl )

oln(p(x;0)) N 1
2 ot
0o 20° 20 n=0
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Solving the first equation:

Numerical Computation of ML Solution

When the ML solution is not of closed form, it can be computed by
= Grid search

= Numerical methods: Newton-Raphson, Golden section, bisection, etc
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Example 5.13

From Example 5.10, the ML solution of ¢ is determined from

N-1 . R AN-1 A
>, x[n]sin(wgn+¢)=— > sm(2ogn+20)
n=0 2 1=0

Suggest methods to find ¢

Approach 1: Grid search

Let
N-1 . AN-1
g(@)= X inlsin(on+¢)=7 X sin(2ogn+29)
n=0 n=

It is obvious that

N

¢ = root of g(d)
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The idea of grid search is simple:

= Search for all possible values of ¢ or a given range of ¢ to find root
* Values are discrete = tradeoff between resolution & computation

e.g., Range for ¢: any values in [0,27)
Discrete points : 1000 = resolution is 27/1000

MATLAB source code:

N=100;
n=[0:N-1];
w = 0.2*pi;
A = sqrt(2);
p = 0.3"pi;
np = 0.1;
q = sqrt(np).*randn(1,N);
x = A.*cos(w.*n+p)+q;
for j=1:1000
pe = j/1000*2*pi;
s1 =sin(w.*n+pe);
s2 =sin(2.*w.*n+2.*pe);
a(j) = x*s1'-A/2*sum(s2);
end
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pe =[1:1000]/1000;
plot(pe,g)

80

-80

Note: x-axis is ¢ /(2m)
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stem(pe,Q)
axis([0.14 0.16 -2 2])

18k i

1 ?T
lg

Ak

-1.81 &

2 1 1 1 1 1
014 0142 0144 0146 0148 015 0152 0154 0156 0158 0.6

2(0.152-21) =-0.2324, g(0.153-21)=0.2168
= ¢ =0.153-21=0.3067 (+£0.001x)
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For a smaller resolution, say 200 discrete points:

clear pe;
clear s1;
clear s2;
clear g;
for j=1:200
pe = j/200*2*pi;
s1 =sin(w.*n+pe);
s2 =sin(2.*w.*n+2.*pe);
a(j) = x*s1'-A/2*sum(s2);
end
pe = [1:200]/200;
plot(pe,g)

_BD | | | | | | 1 | |
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stem(pe,g)
axis([0.14 0.16 -2 2)) 2

151
1L

05+
ok

a5+
Ak

-1.AF

_2 | | | | | | | | |
014 0142 0144 0146 0148 015 0152 0154 0186 01558 016

2(0.150-2m) =-11306. g(0.155-27) = 11150
= ¢=0.155-21=0.3107 (+0.0057)

— Accuracy increases as number of grids increases
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Approach 2: Newton/Raphson iterative procedure
With initial guess ¢, the root of g(¢) can be determined from

2 _A g($k) _ g(&k) 513
Pt =9~ e ) g'(dp) 519)
do d=0
N-1 AN-1
2(9) = ;O x[n]sin(wgn + ¢) — E ;O sin(2mgn + 2¢)
N-1 AN-1
g'(0)= > x[n]cos(wgn +¢)— 5 >, cosQogn +2¢)-2
n=0 n=0
N-1 N-1
= > x[n]cos(mgn+¢)—A > cos(Logn +2¢)
n=0 n=0

with

<
O
I
o
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p1=0;

for k=1:10 0.25
s1 =sin(w.*n+p1); B
s2 =sin(2.*w.*n+2.*p1);
c1 =cos(w.*n+p1);
c2 =cos(2.*w.* n+2.*p1);
g = x*s1'-A/2*sum(s2); 015k S - S~ S S ~ S o S S
g1 = x*c1'-A*sum(c2);
p1=p1-9/g91;
p1_vector(k) = p1; 0.1} .

end

stem(p1_vector/(2*pi))

02+ .

0.05 - .

Newton/Raphson method converges at ~ 3rd iteration
¢ =0.1525-21=0.305m

Q. Can you comment on the grid search & Newton/Raphson method?
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ML Estimation for General Linear Model

The general linear data model is given by

x=HO+w (5.14)
where

x is the observed vector of size N

w IS Gaussian noise vector with known covariance matrix C
H is known matrix of size N x p

0 is parameter vector of size p

Based on (5.7), the PDF of x parameterized by 0 is

1

30) =
p(x;0) 20V 2 det!'2(C)

exp(— % (x — HO)T .c. (x — HB)) (5.15)
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Since C is not a function of 0, the ML solution is equivalent to

0 =arg mein{J(O)} where J(0)=(x-HO0)! -C!-(x-H0)

Differentiating J(0) with respect to 8 and then set the result to zero:

2H! .ctl.x+2H! ¢l HO=0
—H .cl.x="H”.cl. H-6

As a result, the ML solution for linear model is

6=H c'H) -H'Cx (5.16)
For white noise:

0=H' 3 -D'H) H (% D'x=H'H) -H x (5.17)
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Example 5.14

Given N pair of (x, y) where x is error-free but y is subject to error:
vln]l=m-x|n]+c+w|n] ,n=0,1,--- N—-1

where w is white Gaussian noise vector with known covariance matrix C

Find the ML estimates for m and ¢

vln]l=m- x[n]+c+ w[n]

m

= y|n]=[x|n] 1]-{ i|+ win]=[x[n] 1]1-0+w[n], O=[m C]T

C

y[0]=[x{0] 1]-0+w[0]
yi=[>1] 1]-0+wl]

V[N —1]=[x[N =1] 1]-0 + w[N —1]
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Writing in matrix form:

where

0] 1
go| 1
XN -1] 1]

Applying (5.16) gives

o

0— {m} —m’c 'yt ulcly
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Example 5.15

Find the ML estimates of 4, oy and ¢ for

x[n]= Acos(wgn + ¢) +wln], n=0,1,---,N—1, N >>1

where w{n] is a white Gaussian noise with variance c%‘,

Recall from Example 5.6:

N-1
p(x:0) = (mj I exp[—%l2 L (o)~ Acos(ogn + ¢))2}, 0 =[4,00,0]

The ML solution for 6 can be found by minimizing

N-1
J(A4,00,0)= 3 (x[n]— Acos(wgn +))*
n=0
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This can be achieved by using a 3-D grid search or Netwon/Raphson
method but it is computationally complex

Another simpler solution is as follows

N-1 5
J(4,p,0)= 2. (x[n]—Acos(wgn+d))
n=0

=S (afn]- Acos(®) cos(wqn) + Asin(@)sin(wqn))’
n=0

Since 4 and ¢ are not quadratic in J(4,0(,9), the first step is to use
parameter transformation:

2 2
A =
o = Acos() \/al T

oy =—Asin(d) ~ o= tanl(_az]

O
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Let
c=[1 cos(wg):--cos(mwy(N — 1))]T

s=[0 sin(wg)---sin(owg(N 1))
We have

J(0,009,00) = (X— oy — aps)” (X —aye—ays)

= (x-Ha)! (x-Ho), = {0‘1

}, H=[e s]

(%%

Applying (5.17) gives

a=MHH)-H x
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Substituting back to J(aq,0,,®q):
J(09) = (x-Ha)! (x-H&)

=x-H-H I 'H v x-H-|H' 1) 'H %)
:((I-H-(HTH)_IHT)-x)[((I-H-(HTH)_lHT)-x)
=x .a-H-H' B THHY qg-0-@'m) ") x
=x' -1-H-H'I)'H) x
ZXT-X-XT-H-(HTH)_IHT-X

Minimizing J(®q) Is identical to maximizing

x] ' H-H' 1)1 -x
or
® =argmax{xT-H-(HTH)_IHT-XJl

)

— 3-D search is reduced to a 1-D search
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After determining &, & can be obtained as well

For sufficiently large N:

- -1
T T T
XT-H-(HTH)_IHT-x:[ch sTx]- CTC CTS} -{CTX}

- -1
N/2 0 r
e ST |l
0 NJ/2 s x

2((nF )

7 [N=1 P
=— X x[n]exp(—jogn)
N n=0
[N ? | .
=M =argmaxy—| > x[n]exp(—jogn)| ¢ = periodogram maximum
) n=0

76



| east Squares Methods

Parameter estimation is achieved via minimizing a least squares (LS) cost
function

Generally not optimum but computationally simple
Use for classical parameter estimation
No knowledge of the noise PDF is required

Can be considered as a generalization of LS filtering

77



Variants of LS Methods
1. Standard LS

Consider the general linear data model:

x=HO+w
where

x is the observed vector of size N
w IS zero-mean noise vector with unknown covariance matrix
H is known matrix of size N x p

0 is parameter vector of size p

The LS solution is given by

A

0 =arg rrgn{(x - HB)T (x - HB)}: H'H)'H x (5.18)

which is equal to (5.17)
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— LS solution is optimum if covariance matrix of w is C = G%V -Tand w Is

Gaussian distributed
Define

e=x-HO
where
e=[e(0) e(l) --- e(N-1]"
(5.18) is equivalent to
. C(N-1
0 =argming > e“ (k)
0 k=0

which is similar to LS filtering

Q. Any differences between (5.19) and LS filtering?
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Example 5.16

Given
x[n]=A+w[n], n=01---,N—-1

where 4 is an unknown constant and w[n] is a zero-mean noise

Find the LS solution of 4

Using (5.19),
A (N )
A=argmini ¥ (x[n]- A4)
A (n=0
: ... NA .
Differentiating Y. (x[n]— 4)" with respect to 4 and set the result to O:
n=0

R N-1
A=— 3 x[n]
n=0



On the other hand, writing {x[»]} in matrix form:

x=HA+w
where o
1
1
H= .
_1_
Using (5.18),
7Y " A0]
. 1 x[1] 1 N-I
A= 1 - 1] . ni--1] . =N - Y x[n]
. : n=0
1 | x[N —1]]

Both (5.18) and (5.19) give the same answer and the LS solution is
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optimum if the noise is white Gaussian
Example 5.17

Consider the LS filtering problem again. Given

dln]= X" [n]-W +q[n], n=0,---,N-1
where

d[n] is desired response

X[n]=[x[n] x[n-1] ---x[n—L+1]]T IS the input signal vector
w=lwy w - w4l
g[n] IS zero-mean noise

is the unknown filter weight vector

Writing in matrix form:

d=H-W+q, W=w
Using (5.18):
W=mH"H)"H d
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where

)_(T(O) C x[0] 0 0O |
ao| Ao |
X' (N-1)] [AN-1] x[N-2] -+ XN-L]
with x[-1]=x[-2]=---=0
Note that
Ry = HTH
R, =H'd

where R,, is not the original version but not modified version of (3.6)
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Example 5.18

Find the LS estimate of 4 for

x[n]= Acos(wgn + ¢) +wn], n=0,1,---,N—1, N >>1

where oy and ¢ are known constants while w[#] is zero-mean noise

Using (5.19),

A . N_l 2
A=arg mjn{ Y (x[n]— Acos(won +¢)) }
n=0

N-1
Differentiate ¥ (x[n]— Acos(wgn + ¢))* with respect to 4 & set result to 0:

n=0
2NZ_:1 (x[n] — Acos(wgn + ))- —cos(wgn +§) =0
n=0
N-1 N-1 7
= 2 x[n]cos(wgn+¢)=A4 > cos”(wgn+ )
n=0 n=0
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The LS solution is then
N-1
>, x[n]cos(wgn + )
121 _ n=0
N-1 5
>, cos“(wgn+0)
n=0

2. Weighted LS

Use a general form of LS via a symmetric weighting matrix W

A

0 = arg Irgn{(x -H0) W(x- H0){= (HT WH) 'H Wx (5.20)

such that
w=w!

Due to the presence of W, it is generally difficult to write the cost function
(x-HO) W(x-H0) in scalar form as in (5.19)

85



Rationale of using W : put larger weights on data with smaller errors

put smaller weights on data with larger errors
When W=C"! where C is covariance matrix of the noise vector:
o= 'c'm)'H c'x (5.21)
which is equal to the ML solution and is optimum for Gaussian noise

Example 5.19

Given two noisy measurements of A:

X1:A+Wl and X2:A+W2
where w; and w, are zero-mean uncorrelated noises with known
variances 012 and G%. Determine the optimum weighted LS solution
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Use

2 -1
0 02

Grouping x; and x, into matrix form:

MEHEEN

or
x=H-A+w

Using (5.21)

/ot 0

A= 'c'm o clx=|1 1] ,
0 1/(52
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/62 0 }

0 1/c3

1
1

I

1/0%
0

0
1/6%



As a result,

~ 1 1 x| X G% 012
A= 5+ Y R R I B R
o1 Oy o1 Oy G| +0» G| +0»

Note that

= |f G% > 012, a larger weight is placed on x; and vice versa

If 0% = 012, the solution is equal to the standard sample mean
» The solution will be more complicated if w; and w, are correlated

Exact values for 012 and c% are not necessary, only ratio is needed

Define A = 012 /cs%, we have

A 1 A
A=—°)C1+—'X2
[+ A 1+A
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3. Nonlinear LS

The LS cost function cannot be represented as a linear model as in
x=HO+w

In general, it is more complex to solve, e.g.,

The LS estimates for 4,0y and ¢ can be found by minimizing

N-1 9
Y. (x[n]— Acos(wgn + §))
n=0

whose solution is not straightforward as seen in Example 5.15

Grid search and numerical methods are used to find the minimum
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4. Constrained LS

The linear LS cost function is minimized subject to constraints:

A

where S is a set of equalities/inequalities in terms of 0

0 =arg min{(x - HO)T (x - Hﬂ)} subject to S
0

(5.22)

Generally it can be solved by linear/nonlinear programming, but simpler

solution exists for linear and quadratic constraint equations, e.g.,

Linear constraint equation:

Quadratic constraint equation:

Other types of constraints:

61+92 +93 =10
07 +03 +635 =100
61>92 >93 > 10

0, +63 +63 >100
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Consider the constraints S is
AO=Db

which contains r linear equations. The constrained LS problem for linear
model is

N

0 =arg min{(x - HO)T (x - HO)J‘ subjectto AO=b (5.23)
0

The technique of Lagrangian multipliers can solve (5.23) as follows

Define the Lagrangian

J.=(x-HO) (x-HO0)+ 1! (A0-b) (5.24)
where A is a r-length vector of Lagrangian multipliers

The procedure is first solve A then 0
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Expanding (5.24):
J.=x'x-20"H x+0’H'HO + 1.7 A0-1"D
Differentiate J. with respect to 0:

oJ,
00

—2H x+2H'HO+ AL

Set the result to zero:

2H ' x+2H'HO, + AT0 =0

=0, = (HTH)_IHTX-%(HTH)_IATK =(§-%(HTH)_1ATK
where 0 is the LS solution. Put 8. into A@ =b:
A, = AD -%A(HT H)y 'AlL=b> % =(AH'B) AT (A)-b)
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Put i back to 0,.:

0, =0-(H ) ' AT(AE H)AT)(A0-D)
Idea of constrained LS can be illustrated by finding minimum value of y:
Y=x2 —3x+2  subjectto x—y=1

10
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5. Total LS

Motivation: Noises at both x and HO:

x+wy=HO0+w, (5.25)
where w; and w, are zero-mean noise vectors

A typical example is LS filtering in the presence of both input noise and
output noise. The noisy input is

x(k)=s(k)+n;(k), n=0,1---,N—-1
and the noisy output is
r(k)=s(k)® h(k)+n,(k), n=0,1---,N-1

The parameters to be estimated are {#(k)} given x(k) and y(k)
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Another example is in frequency estimation using linear prediction:
For a single sinusoid s(k) = Acos(wk + ¢), it is true that

s(k)=2cos(w)s(k—1)—s(k—2)
s(k) is perfectly predicted by s(k—1) and s(k —1):
s(k)=aps(k—1)+ ays(k —2)
It is desirable to obtain ay =2cos(w) and a; =—1 in estimation process

In the presence of noise, the observed signal is

x(k)=s(k)+w(k), n=0,1---,N—-1

The linear prediction model is now
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x(N =1)=agx(N —2)+ax(N —3)

x(k)=apx(k=1)+ayx(k-2),
x(2) = apgx(1) + a;x(0)

x(3) = apx(2)+ a;x(1)

)
x(3)
= .
| x(N-1)_
s(1) s(0)

s(2)

s | [ w2
s(3) w(3)
S(N=-1)| [w(N-1)]

6. Mixed LS

S(N-2) s(N-2)]

s(1) {

n=01-,N~1

x(0)

x(1) {

x(1)
x(2)

| X(N-2) x(N-2)]

w(l) w(0)

} w(2) w(l)
T ; ;

W(N-2) w(N -

2)

A combination of LS, weighted LS, nonlinear LS, constrained LS and/or

total LS

Examples: weighted LS with constraints, total LS with constraints, etc.
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Questions for Discussion

1. Suppose you have N pairs of (x;,y;), i=12,---,N and you need to fit
them into the model of y =ax. Assuming that only {y;} contain zero-
mean noise, determine the least squares estimate for a.

(Hint: ithe relationship between x; and y; is
yi:axi+nia i:1929'”9N

where {n;} are the noise in {y;}.)
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2. Use least squares to estimate the line y =ax in Q.1 but now only {x;}
contain zero-mean noise.

3. In a radar system, the received signal is

r(n)=as(n—1tq) +w(n)
where the range R of an object is related to the time delay by

To =2R/c

Suppose we get an unbiased estimate of 1, say, 1, and its variance is

var(t,). Determine the corresponding range variance var(R), where R is
the estimate of R.

If var(?y) = (0.1ps)* and ¢ =3x10%ms™", what is the value of var(R)?
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