
1

FPT 2007.

Takashi Yoshikawa
Corporate Research & Development Center, Toshiba Corporation

A Dynamically Reconfigurable
Architecture for Stream Processing

FPT 2007 2

Agenda
1. Motivation
2. The Architecture
3. Code Development Environment
4. Evaluation
5. Conclusion

2

FPT 2007 3

Motivation
• Dynamically reconfigurable architectures are widely

noticed in the field of computation-hungry applications
– Developing a new dedicated hardware pays only if big sell volume is

expected
• Programmability is crucial

– Processor requires much power and area for high performance and it
may not be a good solution for these applications

• So current dynamically reconfigurable architectures
are good enough for these applications?
– The answer is No!
– One of the reasons: they are so general purpose that the power and

area consumption is still not comparable to a dedicated hardware

FPT 2007 4

Motivation (Cont’d)
• What we notice: most of the computation-hungry

applications utilize stream processing
• Our solution: a dynamically reconfigurable architecture

optimized for stream processing
– Ommiting redundant wires and registers for improving power and

area consumption
– Applying fine grain dynamic reconfiguration for better performance

with small hardware resource

• The result
– Small area, low power and high performance architecture especially

suitable for stream processing

3

FPT 2007 5

The Architecture (Entire Block Diagram)

Host
Processor

I/O Buffer
(Data RAM)

Formatter0Write
Control

Host
I/F

System
Memory

Inter-Unit Buffer (Data Registers)

Dynamically Reconfigurable Units
(Indenepndently Controlled)

Code Buffer
(Code RAM)

Formatter1AUX0AUX1

Optimized for
Stream Processing

SIMD Units

code
data

Data Write
w/ Transposition

Our Architecture

FPT 2007 6

The Architecture (Formatter)

data A

C
fgM

em

data B

Shuffle

16-bit ALU x 8
PE

Xbar In

validID

PE

PE w/o Shuffle

Xbar In

Xbar Out

Cfg Controller
CodeMem

Simple Hardware
•Pipeline registers only
•No intra-PE data transfer
•PE:4 cfgs, Xbar: 16cfgs
•ALU, shift & absolute ops
only

PE

PE

Xbar In: Formatter0 only
XBar Out: Formatter1 only

128 128

Suitable for batterfly operations

19

64

4

FPT 2007 7

The Architecture (Formatter – Cont’d)
• No conditional reconfiguration

– Reconfiguration is statically
scheduled

• Pipeline-style reconfiguration
– Cfg ID from Cfg Controller goes

through PE pipeline cycle by cycle
– Each PE alters its configuration

when it receives a new ID

• Ideal for stream processing
– Enables 2 or more stream

processing at the same time

PE

PE

PE

PE

PE

Cfg Controller
ID=0

ID=0

ID=0

ID=0

ID=0

PE
ID=1

PE
ID=1

PE
ID=1

PE

ID=1

PE
ID=2

ID=1

ID=2

PE

PE

Processing0

Processing1

Processing2

FPT 2007 8

The Architecture (AUX and WriteCtrl)
• AUX

– SIMD-style reconfiguration
– 1 PE only
– Bypass data path available

between AUXs
– 32bit ops, multiply, clip,

compare and select ops
– Up to 32 cfgs

• WriteCtrl
– Write data to I/O Buffer
– Support data transposition
– Support byte enable
– Xbar: 16 cfgs, BE: 32cfgs

Cfg
Mem

Cfg Controller

SIMD ALU
(32bit x 8)

Data In

PE

data valid

Data Out

Cfg Controller

Code Memory

8x8 16bit
Xbar

Data In

PE

data valid

Data Out

Config Mem

BE

BE Out

Code Memory

AUX

WriteCtrl

16

24

16

5

FPT 2007 9

The Architecture (System level behavior)
• Also simple and optimized for stream processing

I/O Buffer
(Data RAM)

Formatter0Write
Control

Inter-Unit Buffer (Data Registers)

Formatter1AUX0AUX1

Data always go into
Formatter0 and out

from WriteCtrl

•Each unit can write any
register but read only 4
registers
•No write arbitration
•Timing of reconfiguration
can be controlled with
valid bit (described later)

•Reconfigurable
data path available
among these units
•A unit might be
used twice or more
before data are
written to I/O Buffer

FPT 2007 10

The Architecture (Sync of reconfiguration)

PE0 0
0

0
0

0

PE1
PE2
PE3
PE4

1 2 1 2 3 4
1 2 1 2 3 4

1 2 1 2 3 4
1 2 1 2 3 4

1 2 1 2 3 4

Form
atter0

5
5

5
5

5

ValidA
ValidB

PE0
PE1
PE2
PE3
PE4

0
0

0
0

0

Form
atter1

1
1

1
1

1

1 processing （latency=5）

cycle

NOP based timing
adjustment is also available

Valid-bit clear

Valid-bit set

Wait until both validA
and validB set to 1

6

FPT 2007 11

Code Development Environment

High level language description

Data dependence analysis

Data dependence graph

Unit Mapping

Configuration dependence graph Configuration list

Scheduling

Scheduling result

Backend Process

Executable code

＋ ＋

ー

>>&

Assign
cluster of

operations
to unit

Shown in the
next slide

•Schedule reconfiguration
•Load-balance AUX usage
•Assign register for each
inter-unit data transfer

under development
development complete

FPT 2007 12

Code Development Environment

F0 (0) F0 (1)

F1 (0) F1 (1) F1 (2)

F1 (3) A (0)

A (1)

A (5)

F1 (4)

A (2)

A (3)

A (4)

A (6)

F1 (5)

Configuration dependence graph

sub

Crossbar

sub sub sub sub sub sub sub

fwd fwd fwd fwd

fwd fwd fwd

fwd fwdfwd fwd fwd

fwd fwd fwd fwd

x8

x2 x2

x4

add add add

add add add

add add

add add add add
Formatter0
Formatter1
AUX

Configuration List
Dependence among mapped
operation (configuration) can be
derived from data dependence graph

List of all configurations shown in
the configuration dependence graph

7

FPT 2007 13

Evaluation (Gate count)

Memory Size [bit]Memory Area [gate]Logic Area [gate]Unit

252284

0

43524

32164 x 2

59102

85300

16224

0

2976 x 2

2080 x 2

3504 x 2

5584 x 2

32194InterunitBuffer

326691Total

6535WriteCtrl

62412 x 2Aux (one unit)

78350Formatter1

82115Formatter0

•Result of logic synthesis
•Logic Area includes the random logic and data register
•Memory Area includes Configuration memories & Cfg
Controller codes
•Memory Size doubled for double buffering
•Expected operation frequency: 300MHz

FPT 2007 14

Evaluation (Power Consumption)

0

20

40

60

80

100

120

n
o
O
I/
n
o
C
G

n
o
O
I/
n
C
G

O
I/
n
o
C
G

O
I/
C
G

n
o
O
I/
n
o
C
G

n
o
O
I/
n
C
G

O
I/
n
o
C
G

O
I/
C
G

n
o
O
I/
n
o
C
G

n
o
O
I/
n
C
G

O
I/
n
o
C
G

O
I/
C
G

n
o
O
I/
n
o
C
G

n
o
O
I/
n
C
G

O
I/
n
o
C
G

O
I/
C
G

M C Inter4x4Lum a Intra4x4 IQ /ID C T

P
o
w
e
r
[m

W
]

InterunitB uffer

W riteC trl

A ux1

A ux0

Form atter1

Form atter0

Due to
Multiply ops

Formatters are
most power

hungry

Due to many
idle ALUs

•Signal processing from H.264 decoder
•With Clock gating (CG) and Operand Isolation (OI), power
cosumption is less than 100mW

8

FPT 2007 15

Evaluation (Performance)

192/978/7102/696/2207/17182/192225IQ/IDCT

8/23/23/24/14/24/830Intra4x4

8/232/832/1020/330/530/864Inter4x4Luma

82/30/064/164/192/582/82102MC

Wr. Ctrl.AUX1AUX0Form.1Form.0I/O Buf.cycle

Peformance per signal processing

of I/O Buffer access
(read/write)

of configuration switches/
unique configurations

Achieves better performance by frequently switching configurations

Performance of H.264 decoder (baseline profile)

Up to 64 frame/sUp to 37 frame/sVGA (640x480)
Up to 125 frame/sUp to 76 frame/sCIF (352x288)
Up to 683 frame/sUp to 408 frame/sQCIF(176x144)

Double Cfg MemSingle Cfg Mem

By applying double buffering technique with doubled Cfg Mem,
performance increased by about 70%

FPT 2007 16

Conclusion
• A new dynamically reconfigurable architecture is

proposed
– Optimized for stream processing by eliminating redundant resources
– Unique pipeline-style reconfiguration increases resource usage, thus

increases performance
• Code development environment is partially complete

– Need to manually describe configurations and dependences among
them

– Automatic code development from High level description is the goal
• RTL design done and complete evaluation with H.264

decoder
– 580Kgates (double buffer), power consumption less than 100mW,

decode more than 60 VGA frame/s
– Evaluation with other application will be done after code development

environment finished

