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Overview 
 
 
 

Part 1:  Some UWB Antennas We’ve Worked On 
 
 
 
 

Part 2:  The Power Wave Theory of Antennas 
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Example of UWB Antenna:  IRA-3Q 

 

• Diameter:  18 in. (46 cm) 

• Radiates a Clean Impulse, with  
FWHM = 38 ps.  

• Frequency range 250 MHz – 
20 GHz. 

• Excellent impedance match 
across entire frequency range. 
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Data for the IRA-3Q 

 
 
    Gain           Impulse Response 

     

5 10 15 20
-10

-5

0

5

10

15

20

25

30

Frequency (GHz)

d
B

i

2 3 4 5 6 7
-1

0

1

2

3

4

5

6

Time (ns)

Im
p
u
ls

e
 r

e
s
p
o
n
s
e
 (

m
/n

s
)



 
Farr 

Fields, LC  

 5

 
 

Applications of IRAs 
 
 

• Broadband EMC/EMI or RCS testing with single antenna 

• Intentional EMI 

• Impulse Radar to locate weapons, tanks under trees, mines, or 
unexploded ordnance 

• Broadband communications or surveillance 
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Normalized Antenna Pattern  
IRA-3M 

 
       E-Plane          H-Plane 
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Radome on IRA 
 

IRA-3 
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Collapsible IRA 
 

• Compact, Lightweight, rapidly 
deployable design  

• Metallized nylon and resistive fabric  

• When collapsed:  Length=81 cm, 
Diam=10 cm 

• Suitable for broadband 
communications in field 

• Impulse response FWHM = 70 ps 

• Peak Gr = 23 dB at 4 GHz 

• Useful from 150 MHz to 8 GHz 
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CIRA-2 Data 
 
 

   Impulse Response      Gain 
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Para-IRA Concept 
 
 

• Parachute Delivered 

• Impulse Radiating 
Antenna 

• Goal is to Illuminate 100-
Meter Radius Area with a 
Wideband Pulse 

• Parachute Allows Rapid 
and Flexible Deployment 

  

Parachute

Parabolic Reflector
Conducting Mesh
Fabric

Terminating
Resistor

Unzipper
Balun

Battery

Feed Arms
Conductive
Ripstop
Nylon

Transmitter
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Phase I Antenna Mounted Onto Frame for Testing 
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Phase I Tow Test Results 
 

 
 

• Measure force on scale to correlate terminal velocity with weight 

• Descent Rate Results:  A 20 pound package falls at 58 kph 
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Folded Horn Antenna 
 

  
 

• Useful for medium bandwidth (3-5 GHz) at high power 

• Could be scaled X10 to reach 300-500 MHz, and mounted onto 
truck. 

• Nearly flat phase front in aperture 
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Feed Point Modifications in FH-1E 
 

• Add dielectric disk:  Simulates oil tank near feed, and shifts the 

dip in S11 to lower frequency 

 
 

• Add cone:  to maintain 50-Ω impedance 

 

( )2/cotln
2

hoZ θ
π

η
=

 

• We needed both! 
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Data on the Optimized Feed Horn, FH-1E  
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Time Domain Antenna Measurement System 
 

• With the PATAR® system one person can set up an antenna 
range, take and process data, then tear down and store the 
equipment all within 4 hours. 

• Equipment fits into a shed 

• No anechoic chamber needed due to time gating and 
temperature stability of scopes 

• Bandwidth of 900 MHz to 20 GHz for arbitrary antennas 

• For impulse antennas, bandwidth reaches as low as 200 MHz 

• Works as well for narrowband antennas as for UWB antennas 

• Introduces concept of “Personal Antenna Range” 
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Measurement Setup 

 
 

 

PSPL 4015D 
Step Generator 

Tektronix TDS 8300 
Series Digital Sampling 

Oscilloscope with  
80E04 Sampling Head 

and 2m Extender 

Remote 
Pulser 
Head 

Antenna  
Under Test 

Trigger Line 

Received 
Signal 

AZ–EL 
Positioner 

Computer 
Controller 

Transmit 
Antenna 

RS232 
Link 

Ethernet 
Link 
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 Custom Elevation / Azimuth Positioner 
 

• Easy setup, teardown, stowage 

• Mast and legs removable 

• Easy leveling, aiming 

• Precision better than ±0.2 degrees in both 
azimuth and elevation 
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Source End of Range 

 
Includes Pulser, mounting Bracket, and  

TEM sensor on fixed tripod 
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Parameters Calculated 

    Impulse Response      Return Loss (S11) 

    
 Gain, Realized Gain     Antenna Pattern 
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Part 2:  The Power Wave Theory of Antennas 
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The Antenna Equation and the 
Generalized Antenna Scattering Matrix (GASM) 

Dominant Polarization on Boresight 
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� GASM completely specifies response of any antenna, including those 
with waveguide feeds.  
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Relationship to Currently Defined Quantities 
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Impedance Mismatch 
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New Definitions and Symbols 
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� Π, Σ, and Υ are Greek for P, S, and U, which are the commonly 
used symbols for power, power flux density, and radiation 
intensity.   
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Relationships between Power Expressions and  

Power Wave Expressions 
 

Power           Power Wave 
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� Power waves add phase to well-known power expressions. 
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Antenna Equation and GASM in the Time Domain 

 

• Antenna equation and GASM in the time domain 
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where “ ' ” indicates a time derivative and the “•* ” operator is a 

matrix-product convolution operator, defined as 
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Antenna Equation for Two Polarizations and Arbitrary Angles 
 

Frequency Domain 
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Time Domain 
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More Compact Frequency Domain Expression 























 Γ
=













inc

src

rad

rec

vhj

h

Σ

Π

πωΥ

Π
~

~

~
)2/(

~

~~
~

~ T

r

l
tr

r

r
  



 
Farr 

Fields, LC  

 28

Signal Flow Graphs 
 

Dominant polarization, on boresight 
 

 
radΥ

~

recΠ
~

srcΠ
~

incΣ
~

Γ
~

h
~ l

~
)2/(

~
vhs π 1 

1 

1 

1 

 
 

Both polarizations, arbitrary angles, vectorized 2-port version 
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Signal Flow Graphs (cont’d) 
 

Both polarizations, arbitrary angles, scalar 3-port version 
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Solve Arbitrary Source with Signal Flow Graph 
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Both polarizations, arbitrary angles 

src
src

rad
v

hs
Π

π

φθ
φθΥ

~

2

),(
~

~~
1

1
),(

~
r

r

ΓΓ−
=

 



 
Farr 

Fields, LC  

 31

Scattering from an Antenna with Arbitrary Load 
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Both polarizations, arbitrary angles 
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Array of N Antennas or N Modes in Multimoded Waveguides 
 

Need an h(t) for each array element or mode 
,  
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Dimensions are visualized as  
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Proving the Relationship between Transmission and 
Reception Terms 

 

• Relate power wave expressions to open/short circuit forms 
using circuit theory. 
 

• Treat two antennas in far field as reciprocal two-port network  
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Port 1 Port 2 Antenna 1 Antenna 2 

 
 

• Assume Antenna 2 is an electrically small electric dipole, 
whose open/short circuit characteristics are fully known. 
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Impulse Response Example  

IRA-3Q 
 
 

 
          Impulse Response                       Transfer Function 
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Review of Waveform Norms 
(For transient antenna patterns) 

 
Three necessary conditions of norms 
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Commonly used:  p–norms 
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Transient Antenna Pattern 
 

• Can consider single polarization or total magnitude 
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• Express transient patterns in terms of norms of time domain 
waveforms 
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• Normalization to boresight is optional  
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Radiation from or Coupling into a Complex System 

 
 

• Complex system looks like a poor antenna 
 

• Antenna parameters should be used  
o Same in TX and RX  
o Works in both frequency and time domains 
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Conclusion: 
Effects on Standards 

 
�  None of the terms in the Antenna Equation have been defined  
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�  Closest is scalar versions:   

  �  Impedance mismatch factor, 
2|

~
|1 Γ− , instead of Γ

~
 

  �  Realized gain, rG , instead of h
~

 

  �  RCS, σ , instead of l
~

 
 
�  We need to complexify the standards to get to the time domain! 
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