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Abstract

The generalized Engset model can be applied to evaluate the blocking probability at
an optical cross connect (OXC) of bufferless optical burst switching (OBS) system. For
tractability, previous studies assumed that burst transmission time (on-time) and time
intervals between bursts provided by the same input channel (off-time) are exponen-
tially distributed. Here we aim to study the sensitivity of blocking probability to the
shape of these distributions. Extensive numerical results demonstrate that the blocking
probability is not very sensitive to on- and off-time distributions in general. We observe
certain new effects that higher variance of on- and off-time distributions may lead to
better performance.

Keywords: Blocking probability, optical burst switching (OBS), generalized Engset
formula, traffic model, sensitivity.

1. Introduction

Optical burst switching (OBS) [1, 2] is a switching technology proposed for wavelength
division multiplexing (WDM) networks. It intends to combine the benefits of optical
circuit switching (OCS) and optical packet switching (OPS). In OBS network, traffic is
carried by bursts, which consist of IP packets.

There are various versions of OBS, including OBS/JET [3] and OBS/JIT [4], where
bursts contending for a group of wavelength channels at each optical cross connect (OXC)
may not use a large number of input channels to justify Poisson arrivals. Thus, an OXC
cannot be simply regarded as an M/M/k/k queuing system. Moreover, the Engset model
is inaccurate for loss based OBS system [5, 6]. Instead, the generalized Engset model [7]
could be applied.

Although the model in [5, 8] and [9] gives exact blocking probability solutions at an
OXC when, for each input wavelength, on- and off-times are exponentially distributed,
it does not provide exact solutions for other distributions. For the Engset model, block-
ing is insensitive to the shape of these distributions. However, the generalized Engset
model does not possess such a property. This raises the importance to investigate errors
introduced by assuming exponential distribution to evaluate blocking probabilities for
other distributions. In this letter, we evaluate such errors when on- and off-time distri-
butions are deterministic, exponential, hypo-exponential, hyper-exponential, Pareto and
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truncated Gaussian (to avoid negative values). We observe that blocking probability
is generally not very sensitive to the shape of distributions but traffic whose on- and
off-time distributions have higher variance may have lower blocking probability.

2. Methodology

2.1. Modeling of OBS OXC

As in [5], we focus on a set of output wavelength channels in an output cable of
an OXC. Suppose there are F optical fibers in this cable, each of which carries W
wavelengths. Without wavelength conversion, an arriving burst on a given wavelength
must use the same wavelength at the output, so only F wavelength channels are available.
With wavelength conversion, all FW output channels are available for an arriving burst.
These available wavelength channels are considered as K servers. We use the term
sources for the relevant input channels in each case. Without wavelength conversion, the
sources are the input channels that have the same wavelength as the F output channels.
With wavelength conversion, the sources are all the relevant input channels that provide
bursts to the FW output channels. The number of sources is denoted by M . Each source
transmits bursts as an on/off process, with mean on- and off-time equal to 1/µ and 1/λ,
respectively.

If there is no output channel available for an arriving burst, the burst is dumped, in
which case, it still occupies (“freezes”) the input channel for the entire burst duration.
We classify the sources to be free, busy and frozen. A source in its off-time is free and
otherwise either busy, when its burst is being transmitted through an output channel, or
frozen, when its burst is being dumped.

2.2. Markovian models

Cases where on- and off-times follow exponential, hyper-exponential or hypo-exponential
distributions lead themselves to exact Markov chain analyses. Dimensions of these mod-
els are listed in Table 1.

Consider a hyper-exponentially distributed random variable with the following prob-
ability density

f(t) = p1fµ1(t) + p2fµ2(t) (p1 + p2 = 1)

where fµ1(t) and fµ2(t) are probability densities of exponential distribution with param-
eters µ1 and µ2, respectively. That is, with probability pi, the hyper-exponential random
variable is governed by exponential distribution with parameter µi (i = 1, 2). According-
ly, for hyper-exponentially distributed on-time and exponentially distributed off-time, we
consider each busy or frozen source has two possible states. Sources transmitting bursts
of exponentially distributed lengths with parameter µ1 and µ2 are said to be in states 1
and 2, respectively.

Let πi,j,k,l be the steady state probability that there are i and j busy sources in
states 1 and 2, respectively, and k and l frozen sources in states 1 and 2, respectively
(0 ≤ i+ j ≤ K; 0 ≤ k+ l ≤ M −K; i, j, k, l ≥ 0). For a free source, the rates to become
busy or frozen in states 1 and 2 are pλ and (1 − p)λ, respectively. The state transition
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Table 1: Markovian models
On-time Distribution Off-time Distribution Dimensions
Exponential Exponential 2
Hyper-exponential Exponential 4
Hypo-exponential Exponential 4
Exponential Hyper-exponential 3
Exponential Hypo-exponential 3
Hyper-exponential Hyper-exponential 5
Hypo-exponential Hypo-exponential 5

Table 2: Non-markovian models
On-time Distribution Off-time Distribution
Deterministic Exponential
Pareto Exponential
Truncated Gaussian Exponential
Exponential Deterministic
Exponential Pareto
Exponential Truncated Gaussian
Deterministic Deterministic
Pareto Pareto
Truncated Gaussian Truncated Gaussian

diagram is depicted below.
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r04 =

{
0 i+ j < K

(M − i− j − k − l)(1− p)λ i+ j = K

r05 = iµ1

r06 = lµ2

r07 = jµ1

r08 = kµ2

r10 =

{
(i+ 1)µ1 i+ j < K

0 i+ j = K

r20 = (k + 1)µ1

r30 =

{
(j + 1)µ2 i+ j < K

0 i+ j = K

r40 = (l + 1)µ2

r50 = (M − i− j − k − l + 1)pλ

r60 =

{
0 i+ j < K

(M − i− j − k − l + 1)(1− p)λ i+ j = K

r70 = (M − i− j − k − l + 1)(1− p)λ

r80 =

{
0 i+ j < K

(M − i− j − k − l + 1)pλ i+ j = K

Then we have the following steady state equations.
For i+ j < K,

[(M − i− j − k − l)λ+ (i+ k)µ1 + (j + l)µ2]πi,j,k,l

= (M − i+ 1− j − k − l)pλπi−1,j,k,l

+(M − i− j + 1− k − l)(1− p)λπi,j−1,k,l

+(i+ 1)µ1πi+1,j,k,l + (j + 1)µ2πi,j+1,k,l

+(k + 1)µ1πi,j,k+1,l + (l + 1)µ2πi,j,k,l+1. (1)

For i+ j = K,

[(M −K − k − l)λ+ (i+ k)µ1 + (j + l)µ2]πi,j,k,l

= (M −K + 1− k − l)pλ(πi−1,j,k,l + πi,j,k−1,l)

+ (M −K + 1− k − l)(1− p)λ(πi,j−1,k,l + πi,j,k,l−1)

+ (k + 1)µ1πi,j,k+1,l + (l + 1)µ2πi,j,k,l+1. (2)

For brevity, in (1) and (2), πi,j,k,l values out of the range (0 ≤ i + j ≤ K; 0 ≤ k + l ≤
M −K; i, j, k, l ≥ 0) take the value zero. Then we have the normalization equation:

K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

πi,j,k,l = 1.

The offered load is given by

To =
K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

(M − i− j − k − l)λ(
p

µ1
+

1− p

µ2
)πi,j,k,l.
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The carried load is given by

Tc =
K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

(iµ1 + jµ2)(
p

µ1
+

1− p

µ2
)πi,j,k,l.

The blocking probability is obtained by

B =
To − Tc

To
.

For hyper-exponentially distributed off-time and exponentially distributed on-time,
we consider each free source has two possible states. Sources whose off-time is exponen-
tially distributed with parameter λ1 and λ2 are said to be in states 1 and 2, respectively.

Let πi,j,k be the steady state probability that there are i free sources in state 1, j
busy sources, and k frozen sources (0 ≤ i ≤ M ; 0 ≤ j ≤ K; 0 ≤ k ≤ M −max(K, i+ j)).
Therefore, the number of free sources in state 2 is M − i − j − k. For a busy or frozen
source, the rates to become a free source in states 1 and 2 are pµ and (1−p)µ, respectively.
The state transition diagram is depicted below.
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r20 = (M − i− j − k + 1)λ2

r30 =

{
(j + 1)pµ j < K

0 j = K

r40 = (i+ 1)λ1

r50 =

{
(i+ 1)λ1 j < K

0 j = K

r60 = (k + 1)(1− p)µ

r70 =

{
0 j < K

(M − i− j − k + 1)λ2 j = K

r80 = (k + 1)pµ
Then we have the following steady state equations:
For j = 0, 1, 2, ..., K − 1,

[(M − i− j − k)λ2 + iλ1 + (j + k)µ]πi,j,k

= (M − i− j + 1− k)λ2πi,j−1,k

+(i+ 1)λ1πi+1,j−1,k + (j + 1)(1− p)µπi,j+1,k

+(k + 1)(1− p)µπi,j,k+1 + (j + 1)pµπi−1,j+1,k

+(k + 1)pµπi−1,j,k+1. (3)

For j = K,

[(M −K − i− k)λ2 + iλ1 + (K + k)µ]πi,K,k

= (i+ 1)λ1πi+1,K−1,k + (i+ 1)λ1πi+1,K,k−1

+(M −K − i− k + 1)λ2(πi,K−1,k + πi,K,k−1)

+(k + 1)(1− p)µπi,K,k+1 + (k + 1)pµπi−1,K,k+1. (4)

For brevity, in (3) and (4) πi,j,k values out of the range 0 ≤ i ≤ M , 0 ≤ j ≤ min(K,M−i)
and 0 ≤ k ≤ M−max(K, i+j) take the value zero. Then we also have the normalization
equation:

M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

πi,j,k = 1.

The offered load is given by

To =
M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

iλ1 + (M − i− j − k)λ2

µ
πi,j,k.

The carried load is given by

Tc =
M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

jπi,j,k.

The blocking probability is obtained by

B =
To − Tc

To
.
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Next consider the case with hyper-exponentially distributed on- and off-time. We
consider each busy or frozen source have two states. Sources transmitting bursts of
exponentially distributed lengths with parameter µ1 and µ2 are said to be in states 1
and 2, respectively. We can also consider each free sources into two states. Sources whose
off-time is exponentially distributed with parameter λ1 and λ2 are said to be in states 3
and 4, respectively.

Let πi,j,k,l,m be the steady state probability that there are i free sources in state 3,
and j and k busy sources in states 1 and 2, respectively, and l and m frozen sources in
states 1 and 2, respectively (0 ≤ i ≤ M ; 0 ≤ j + k ≤ min(K,M − i); 0 ≤ l + m ≤
M −max(K, i + j + k); i, j, k, l,m ≥ 0). Each free source turns to be a busy or frozen
source in state 1 with probability p and in state 2 with probability (1− p). Each busy or
frozen source turns to be a free source in state 1 with probability q and in state 2 with
probability (1− q). The state transition diagram is depicted below.
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r01 = m(1− q)µ1

r02 = n(1− q)µ2

r03 = mqµ1

r04 = nqµ2

r05 =

{
ipλ1 j + k < K

0 j + k = K

r06 =

{
i(1− p)λ1 i+ j < K

0 i+ j = K

r07 =

{
(M − i− j − k −m− n)pλ2 i+ j < K

0 i+ j = K

r08 =

{
(M − i− j − k −m− n)(1− p)λ2 i+ j < K

0 i+ j = K

r09 = j(1− q)µ1

r010 = k(1− q)µ2

r011 = jqµ1

r012 = kqµ2

r013 =

{
0 i+ j < K

ipλ1 i+ j = K

r014 =

{
0 i+ j < K

i(1− p)λ1 i+ j = K

r015 =

{
0 i+ j < K

(M − i− j − k − l −m)pλ2 i+ j = K

r016 =

{
0 i+ j < K

(M − i− j − k − l −m)(1− p)λ2 i+ j = K

r10 =

{
0 i+ j < K

(M − i− j − k − l −m+ 1)pλ2 i+ j = K

r20 =

{
0 i+ j < K
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{
0 i+ j < K

(i+ 1)pλ1 i+ j = K

r40 =

{
0 i+ j < K

(i+ 1)(1− p)λ1 i+ j = K

r50 =

{
(j + 1)qµ1 i+ j < K

0 i+ j = K

r60 =

{
(k + 1)qµ2 i+ j < K

0 i+ j = K

r70 =

{
(j + 1)(1− q)µ1 i+ j < K

0 i+ j = K
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r80 =

{
(k + 1)(1− q)µ2 i+ j < K

0 i+ j = K

r90 = (M − i− j − k − l −m+ 1)pλ2

r100 = (M − i− j − k − l −m+ 1)(1− p)λ2

r110 = (i+ 1)pλ1

r120 = (i+ 1)(1− p)λ1

r130 = (m+ 1)qµ1

r140 = (n+ 1)qµ2

r150 = (m+ 1)(1− q)µ1

r160 = (n+ 1)(1− q)µ2

We have the following steady state equations:
For j + k = 0, 1, 2, ..., K − 1,

[(M − i− j − k − l −m)λ2 + iλ1 + (j + l)µ1 + (k +m)µ2]πi,j,k,l,m

= (M − i− j + 1− k − l −m)pλ2πi,j−1,k,l,m

+(M − i− j − k + 1− l −m)(1− p)λ2πi,j,k−1,l,m

+(i+ 1)pλ1πi+1,j−1,k,l,m + (i+ 1)(1− p)λ1πi+1,j,k−1,l,m

+(j + 1)qµ1πi−1,j+1,k,l,m + (j + 1)(1− q)µ1πi,j+1,k,l,m

+(k + 1)qµ2πi−1,j,k+1,l,m + (k + 1)(1− q)µ2πi,j,k+1,l,m

+(l + 1)qµ1πi−1,j,k,l+1,m + (l + 1)(1− q)µ1πi,j,k,l+1,m

+(m+ 1)qµ2πi−1,j,k,l,m+1 + (m+ 1)(1− q)µ2πi,j,k,l,m+1. (5)

For j = K,

[(M − i−K − l −m)λ2 + iλ1 + (j + l)µ1 + (k +m)µ2]πi,j,k,l,m

= (M − i−K + 1− l −m)pλ2(πi,j−1,k,l,m + πi,j,k,l−1,m)

+(M − i−K + 1− l −m)(1− p)λ2(πi,j,k−1,l,m + πi,j,k,l,m−1)

+(i+ 1)pλ1(πi+1,j−1,k,l,m + πi+1,j,k,l−1,m)

+(i+ 1)(1− p)λ1(πi+1,j,k−1,l,m + πi+1,j,k,l,m−1)

+(l + 1)qµ1πi−1,j,k,l+1,m + (l + 1)(1− q)µ1πi,j,k,l+1,m

+(m+ 1)qµ2πi−1,j,k,l,m+1 + (m+ 1)(1− q)µ2πi,j,k,l,m+1. (6)

For brevity, in (5) and (6), πi,j,k,l,m values out of the range (0 ≤ i ≤ M ; 0 ≤ j + k ≤
min(K,M − i); 0 ≤ l+m ≤ M −max(K, i+ j + k); i, j, k, l,m ≥ 0) take the value zero.
Then we also have the normalization equation:

M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

πi,j,k,l,m = 1.

The offered load is given by

To =
M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

[iλ1 + (M − i− j − k − l)λ2](
p

µ1
+

1− p

µ2
)πi,j,k,l,m.
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The carried load is given by

Tc =
M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

(jµ1 + kµ2)(
p

µ1
+

1− p

µ2
)πi,j,k,l,m.

The blocking probability is obtained by

B =
To − Tc

To
.

The random variable X = X1 + X2 is called hypo-exponential random variable if
X1, X2 are two independent exponentially distributed random variable with parameter
µ1 and µ2, respectively. Accordingly, for hypo-exponentially distributed on-time and
exponentially distributed off-time, the transmission for each burst can be regarded as
two successive stages which are both exponentially distributed: stages 1 and 2 with
mean 1/µ1 and 1/µ2, respectively. One burst goes through the two stages to finish its
transmission. To be consistent with previous notations, each busy or frozen source is said
to be in states 1 and 2 when its burst is in stage 1 and 2 of the transmission, respectively.

Let πi,j,k,l be the steady state probability that there are i and j busy sources in
states 1 and 2, respectively, and k and l frozen sources in states 1 and 2, respectively
(0 ≤ i + j ≤ K; 0 ≤ k + l ≤ M − K; i, j, k, l ≥ 0). The state transition diagram is
depicted below.
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0 i+ j = K

r02 = jµ2

r03 =

{
0 i+ j < K
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r04 = iµ1

r05 = lµ2
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Then, We have the following steady state equations:
For i+ j = 0, 1, 2, ..., K − 1,

[(M − i− j − k − l)λ+ (i+ k)µ1 + (j + l)µ2]πi,j,k,l

= (M − i+ 1− j − k − l)λπi−1,j,k,l

+(i+ 1)µ1πi+1,j−1,k,l + (j + 1)µ2πi,j+1,k,l

+(k + 1)µ1πi,j,k+1,l−1 + (l + 1)µ2πi,j,k,l+1. (7)

For i+ j = K,

[(M −K − k − l)λ+ (i+ k)µ1 + (j + l)µ2]πi,j,k,l

= (M −K + 1− k − l)λ(πi−1,j,k,l + πi,j,k−1,l)

+ (i+ 1)µ1πi+1,j−1,k,l + (k + 1)µ1πi,j,k+1,l−1

+ (l + 1)µ2πi,j,k,l+1. (8)

For brevity, in (7) and (8) πi,j,k,l values out of the range 0 ≤ i+ j ≤ K and 0 ≤ k + l ≤
M −K take the value zero.
Then we have the normalization equation:

K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

πi,j,k,l = 1.

The offered load is given by

To =

K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

(M − i− j − k − l)λ(
1

µ1
+

1

µ2
)πi,j,k,l.
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The carried load is given by

Tc =

K∑
i=0

K−i∑
j=0

M−K∑
k=0

M−K−k∑
l=0

(jµ2)(
1

µ1
+

1

µ2
)πi,j,k,l.

The blocking probability is obtained by

B =
To − Tc

To
.

For hypo-exponentially distributed off-time and exponentially distributed on-time,
one free source goes through two stages, of which the durations are both exponentially
distributed, to become a busy or frozen source: stages 1 and 2 with parameter λ1 and
λ2, respectively. To be consistent with above notations, each free source is said to be in
states 1 and 2 when it is in stages 1 and 2 of its off-time, respectively.

Let πi,j,k be the steady state probability that there are i free sources in stage 2, j
busy sources, and k frozen sources (0 ≤ i ≤ M ; 0 ≤ j ≤ min(K,M − i); 0 ≤ k ≤
M −max(K, i+ j)). The state transition diagram is depicted below.
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r02 =

{
0 j < K

iλ2 j = K

r03 = jµ
r04 = (M − i− j − k)λ1

r05 = kµ
We have the following steady state equations:
For j = 0, 1, 2, ..., K − 1,

[(M − i− j − k)λ1 + iλ2 + (j + k)µ]πi,j,k

= (M − i+ 1− j − k)λ1πi−1,j,k

+(i+ 1)λ2πi+1,j−1,k + (j + 1)µπi,j+1,k

+(k + 1)µπi,j,k+1. (9)

For j = K,

[(M −K − i− k)λ1 + iλ2 + (K + k)µ]πi,K,k

= (M −K + 1− k − l)λ1πi−1,K,k

+ (i+ 1)λ2(πi+1,K−1,k + πi+1,K,k−1)

+ (k + 1)µπi,K,k+1. (10)

For brevity, in (9) and (10) πi,j,k values out of the range 0 ≤ i ≤ M , 0 ≤ j ≤
min(K,M − i) and 0 ≤ k ≤ M −max(K, i+ j) take the value zero.
Then we also have the normalization equation:

M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

πi,j,k = 1.

The offered load is given by

To =

M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

iλ2

µ
πi,j,k.

The carried load is given by

Tc =

M∑
i=0

min(K,M−i)∑
j=0

M−max(K,i+j)∑
k=0

jπi,j,k.

The blocking probability is obtained by

B =
To − Tc

To
.

Finally, we consider the case with hypo-exponentially distributed on- and off-time.
Both the arrival process and the service for each burst can be regarded as two states
which are exponentially distributed. Busy or frozen sources whose bursts are in stages 1
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and 2 of the transmission are said to be in states 1 and 2, respectively. Free sources in
stages 1 and 2 of the off-time are said to be in states 3 and 4, respectively.

Let πi,j,k,l,m be the steady state probability that there are i free sources in state 4, j
and k busy sources in states 1 and 2, respectively, and l and m frozen sources in states
1 and 2, respectively (0 ≤ i ≤ M ; 0 ≤ j + k ≤ K; 0 ≤ l +m ≤ M −max(K, i+ j + k);
i, j, k, l,m ≥ 0). The state transition diagram is depicted below.
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We have the following steady state equations:
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For j + k = 0, 1, 2, ..., K − 1,

[(M − i− j − k − l −m)λ1 + iλ2 + (j + l)µ1 + (k +m)µ2]πi,j,k,l,m

= (M − i+ 1− j − k − l −m)λ1πi−1,j,k,l,m

+(i+ 1)λ2πi+1,j−1,k,l,m + (j + 1)µ1πi,j+1,k−1,l,m

+(k + 1)µ2πi,j,k+1,l,m + (l + 1)µ1πi,j,k,l+1,m−1

+(m+ 1)µ2πi,j,k,l,m+1. (11)

For j + k = K,

[(M −K − k − l −m)λ1 + iλ2 + (j + l)µ1 + (k +m)µ2]πi,j,k,l,m

= (M −K + 1− k − l −m)λ1πi−1,j,k,l,m

+ (i+ 1)λ2(πi+1,j−1,k,l,m + πi,j,k,l−1,m)

+ (j + 1)µ1πi,j+1,k−1,l,m + (l + 1)µ1πi,j,k,l+1,m

+ (m+ 1)µ2πi,j,k,l,m+1. (12)

For brevity, in (11) and (12) πi,j,k,l,m values out of the range (0 ≤ i ≤ M ; 0 ≤ j+k ≤ K;
0 ≤ l +m ≤ M −max(K, i+ j + k); i, j, k, l,m ≥ 0) take the value zero.
Then we also have the normalization equation:

M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

πi,j,k,l,m = 1.

The offered load is given by

To =

M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

iλ2(
1

µ1
+

1

µ2
)πi,j,k,l,m.

The carried load is given by

Tc =

M∑
i=0

min(K,M−i)∑
j=0

min(K,M−i)−j∑
k=0

M−max(K,i+j+k)∑
l=0

M−max(K,i+j+k)−l∑
m=0

kµ2(
1

µ1
+

1

µ2
)πi,j,k,l,m.

The blocking probability is obtained by

B =
To − Tc

To
.

Although the computation time can be reduced by using matrix methods [10], for
certain large size problems we rely on Markov chain simulations.

Next we briefly discuss time complexity and space complexity of the method in
[10], which uses block LU decomposition, compared with the method which uses Gaus-
sian elimination to solve the steady state equations. For simplicity, we discuss the 2-
dimensional model where both on- and off-times are exponentially distributed. Block
LU decomposition requires 2/3(K + 1)2(K2/4 + (K + 1)(M −K + 1) floating point op-
erations for all the LU decompositions [10]. Gaussian elimination requires [(M ∗K)3 +
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3 ∗ (M ∗ K)2 + 2 ∗ (M ∗ K)]/3 floating point operations. For larger M and K, block
LU decomposition requires less computation time. However, space complexity of block
LU decomposition in this model is O(M ∗K ∗K)), while space complexity of Gaussian
elimination in this model is O((M − K) ∗ K). To solve the steady state equations for
larger M and K, time complexity is the main obstacle for Gaussian elimination and space
complexity is the main obstacle for block LU decomposition.

2.3. Non-Markovian models

When distributions of on- or off-time are deterministic, Pareto and truncated Gaus-
sian, listed in table 2, the blocking probabilities are obtained by discrete event simula-
tions.

3. Numerical Results

Aiming to investigate the errors introduced by assuming exponential on- and off-
time distributions when evaluating blocking probabilities for the other distributions, we
present here normalized histograms that estimate the error distributions. The depicted
histograms are based on about 40,000 cases of calculations and simulations over a wide
range of parameters.

In Fig. 1-3, µ is fixed at 0.1; λ is randomly chosen between 0.01 and 10; M is
selected based on a discrete uniform distribution among 3, 4, . . . 30 and then K is selected
uniformly among 1, 2, . . .M − 1. In Fig. 1, we present error distribution histograms
for cases where off-times follow exponential distribution and on-times follow the other
distributions. In Fig. 2, we present error histograms for cases where on-times follow
exponential distribution and off-times follow the other distributions. In Fig. 3, we present
error histograms for cases where both on- and off-times follow the other distributions.
They all demonstrate that the blocking probability is generally not very sensitive to the
shape of on- and off-time distributions. However, it is more sensitive to the shape of
off-time distributions compared with on-time distributions. As discussed below, there
are cases that give larger blocking probability errors.

From the above figures we observe that when on- or off-time is deterministic, blocking
probability is usually higher. To explain this effect consider an example with two sources
and one server. Assume that for each of the sources on-time and off-time are deterministic
where the on-time is ∆+ϵ and the off-time is ∆−ϵ for arbitrarily small ϵ. In this case, all
the bursts will collide, so arriving bursts will be dumped with probability of 0.5, which
is the highest possible blocking probability in a system of two identical sources and one
server with the same mean on- and off-time. If we increase the variance of the off-time,
the occurrences of longer off-time in one source allow bursts from the other source to
access the server without collision, reducing the blocking probability. We have observed
similar results in cases with larger values of M and K.

In Table. 3-8, we present blocking probability errors over a wide range of M and
K. Cases in all the six tables have the same M/K. In Table. 3-5, λ/µ keeps the same,
therefore the normalized traffic (Mλ/(Kµ)) keeps the same. In Table. 6-8, in which
blocking probabilities of cases where both on- and off-times are exponentially distributed
have negligible differences, we present blocking probability errors of cases which have the
same mean on- and off-time with the other distributions.
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Figure 1: Normalized histograms of blocking probability errors for cases with various on-time distribu-
tions and exponential off-time distribution.
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Figure 2: Normalized histograms of blocking probability errors for cases with various off-time distribu-
tions and exponential on-time distribution.
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Figure 3: Normalized histograms of blocking probability errors for cases with various on- and off-time
distributions.
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The reason why we keep the normalized traffic the same is that by keeping the other
parameters except M and K the same, we can investigate how M and K affect the errors.
However, in practical, the number of sources and servers are designed to keep blocking
probability under a certain value. Therefore, we also provide cases with similar blocking
probabilities.

In Table. 3, 6, we present blocking probability errors for cases where off-times follow
exponential distribution and on-times follow the other distributions. In Table. 4, 7, we
present blocking probability errors for cases where on-times follow exponential distribu-
tion and off-times follow the other distributions. In Table. 5, 8, we present blocking
probability errors for cases where both on- and off-times follow the other distributions.
Note that we do not present the case where both on- and off-time are deterministic here
because the initial condition (time periods between the beginnings of on-times of differ-
ent sources) may affect the blocking probability. We also present the 95% confidence
intervals based on Student-t distribution for data obtained by simulations. We present
exact values without confidence intervals for data obtained by solving the steady state
equations.
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Table 3: Blocking probabilities for cases with various on-time distributions and exponential off-time
distribution.

M 5 50 500

K 4 40 400

λ 0.33333 0.33333 0.33333

µ 0.10000 0.10000 0.10000

Mλ
Kµ 4.12500 4.12500 4.12500

On-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 15516 5708 628

On-time distribution Variance Pother − Pexp (∗10−5)

Deterministic 0 416±3 784±5 99±5

Hypo-exponential 50 29 98±5 25±5

Hypo-exponential 68 16 54±9 9±7

Hyper-exponential 132 -9.8 -34±5 -5.6±4

Hyper-exponential 228 -33 -166±4 -20±4

Pareto 145 98±12 260±8 37±6

Pareto 476 88±9 207±8 26±7

Truncated Gaussian 36 68±3 211±6 41±5

Truncated Gaussian 100 57±4 177±5 33±4
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Table 4: Blocking probabilities for cases with various off-time distributions and exponential on-time
distribution.

M 5 50 500

K 4 40 400

λ 0.10000 0.10000 0.10000

µ 0.03000 0.03000 0.03000

Mλ
Kµ 4.12500 4.12500 4.12500

Off-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 15516 5708 628

Off-time distribution Variance Pother − Pexp (∗10−5)

Deterministic 0 1461±6 588±7 86±7

Hypo-exponential 50 678 307±9 48±5

Hypo-exponential 68 440 226±9 31±7

Hyper-exponential 132 -316 -111±4 -14±7

Hyper-exponential 228 -1320 -572±7 -86±5

Pareto 145 720±7 400±5 58±6

Pareto 476 490±9 345±7 50±8

Truncated Gaussian 36 1060±5 430±5 64±6

Truncated Gaussian 100 948±6 369±9 58±5
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Table 5: Blocking probabilities for cases with various on- and off-time distributions.

M 5 50 500

K 4 40 400

λ 0.10000 0.10000 0.10000

µ 0.03000 0.03000 0.03000

Mλ
Kµ 4.12500 4.12500 4.12500

On- and off-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 15516 5708 628

On- and off-time distribution Variance Pother − Pexp (∗10−5)

Hypo-exponential 50 825 453±6 74±5

Hypo-exponential 68 513 297±5 49±5

Hyper-exponential 132 -316 -139±7 -20±7

Hyper-exponential 228 -1320 -562±10 -86±7

Pareto 145 1169±5 867±7 114±6

Pareto 476 852±15 740±12 95±8

Truncated Gaussian 36 2095±2 1365±4 192±4

Truncated Gaussian 100 1549±3 962±6 142±4
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Table 6: Blocking probabilities for cases with various on-time distributions and exponential off-time
distribution.

M 5 50 500

K 4 40 400

λ 0.07500 0.25900 0.40000

µ 0.10000 0.10000 0.10000

Mλ
Kµ 0.93750 3.32750 5.00000

On-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 2769 2767 2792

On-time distribution Variance Pother − Pexp (∗10−5)

Deterministic 0 38±4 345±6 432±7

Hypo-exponential 50 7 57±7 45±10

Hypo-exponential 68 3 27±10 36±9

Hyper-exponential 132 -3.3 -21±4 -18±7

Hyper-exponential 228 -7 -66±3 -63±6

Pareto 145 13±6 120±6 142±9

Pareto 476 2±4 99±7 121±9

Truncated Gaussian 36 17±5 127±3 97±5

Truncated Gaussian 100 16±3 110±4 79±6
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Table 7: Blocking probabilities for cases with various off-time distributions and exponential on-time
distribution.

M 5 50 500

K 4 40 400

λ 0.10000 0.10000 0.10000

µ 0.13333 0.03861 0.02500

Mλ
Kµ 0.93750 3.32750 5.00000

Off-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 2769 2767 2792

Off-time distribution Variance Pother − Pexp (∗10−5)

Deterministic 0 465±5 399±4 189±8

Hypo-exponential 50 260 215±10 105±11

Hypo-exponential 68 196 152±10 67±18

Hyper-exponential 132 -78 -75±5 -40±8

Hyper-exponential 228 -440 -382±5 -188±13

Pareto 145 392±4 276±6 130±14

Pareto 476 370±4 240±6 112±12

Truncated Gaussian 36 344±3 297±6 138±8

Truncated Gaussian 100 282±6 247±3 120±6
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Table 8: Blocking probabilities for cases with various on- and off-time distributions.

M 5 50 500

K 4 40 400

λ 0.10000 0.10000 0.10000

µ 0.13333 0.03861 0.02500

Mλ
Kµ 0.93750 3.32750 5.00000

On- and off-time distribution Variance Blocking probability (Pexp) (∗10−5)

Exponential 100 2769 2767 2792

On- and off-time distribution Variance Pother − Pexp (∗10−5)

Hypo-exponential 50 308 307±6 162±10

Hypo-exponential 68 221 205±7 108±9

Hyper-exponential 132 -78 -91±5 -59±7

Hyper-exponential 228 -440 -369±5 -206±6

Pareto 145 479±6 527±9 350±8

Pareto 476 448±9 442±7 303±9

Truncated Gaussian 36 428±4 758±5 583±5

Truncated Gaussian 100 346±4 550±3 400±6
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Figure 4: Blocking probability vs. variance of off-time distribution with exponential on-time distribution
for M = 100, K = 75, λ = 0.1, µ = 0.05.

From the tables we observe that the blocking probability errors of cases with larger
M and K are close to cases with smaller M and K. Therefore, the blocking probability
is generally not very sensitive to the shape of on- and off-time distributions when M
and K are larger. We also observe that blocking probability is higher when on- or off-
time is deterministic. This shows that lower variance may also lead to higher blocking
probability when M and K are larger.

Fig. 4 depicts blocking probability estimations for cases involving exponential on-time
distribution and other off-time distributions. Blocking probability of the case where off-
times follow exponential distribution was obtained by solving the steady state equations.
The others were obtained by simulations. The 95% confidence intervals based on Student-
t distribution are smaller than plotted points and therefore not shown. Their radii are
kept below 10−4. We observe that lower variance of the off-time distribution causes
certain increase in blocking probability, so clearly, the insensitivity of the Engset model
does not apply to the present case. Nevertheless, the variations in the blocking probability
are small.

4. Conclusion

We have studied the sensitivity of blocking probability of bursts to the shape of
on- and off-time distributions at an OBS OXC. Based on the tests studied, blocking
probability is generally not very sensitive to the shape of the distributions of both on-
and off-time, which justifies the use of the exponential distributions. Moreover, we have
observed and explained the interesting phenomenon that lower variance may lead to
higher blocking probability.
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