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Abstract—The generalized Engset model can be applied to
evaluate the blocking probability at an optical cross connect
(OXC) of bufferless optical burst switching (OBS) system. For
tractability, previous studies assumed that burst transmission
time (on-time) and time intervals between bursts provided by the
same input channel (off-time) are exponentially distributed. Here
we aim to study the sensitivity of blocking probability to the shape
of these distributions. Extensive numerical results demonstrate
that the blocking probability is not very sensitive to on- and off-
time distributions in general. We observe that higher variance of
on- and off-time distributions may lead to better performance.

Index Terms—Blocking probability, optical burst switching
(OBS), generalized Engset formula, traffic model, sensitivity.

I. INTRODUCTION

Optical burst switching (OBS) [1], [2] is a switching tech-
nology proposed for wavelength division multiplexing (WDM)
networks. It intends to combine the benefits of optical circuit
switching (OCS) and optical packet switching (OPS).

There are various versions of OBS, including OBS/JET
[3] and OBS/JIT [4], where bursts contending for a group
of wavelength channels at each optical cross connect (OXC)
may not use a large number of input channels to justify
Poisson arrivals. Thus, an OXC cannot be simply regarded
as an M/M/k/k queuing system. Moreover, the Engset model
is inaccurate for loss based OBS system [5], [6]. Instead, the
generalized Engset model [7] could be applied.

Although the model in [5], [8] and [9] gives exact block-
ing probability solutions at an OXC when, for each input
wavelength, on- and off-times are exponentially distributed,
it does not provide exact solutions for other distributions. For
the Engset model, blocking is insensitive to the shape of these
distributions. However, the generalized Engset model does not
possess such a property. This raises the importance to investi-
gate errors introduced by assuming exponential distribution to
evaluate blocking probabilities for other distributions. In this
letter, we evaluate such errors when on- and off-time distribu-
tions are deterministic, exponential, hypo-exponential, hyper-
exponential, Pareto and truncated Gaussian (to avoid negative
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values). We observe that blocking probability is generally not
very sensitive to the shape of distributions but traffic whose
on- and off-time distributions have higher variance may have
lower blocking probability.

II. METHODOLOGY

A. Modeling of OBS OXC

As in [5], we focus on a set of output wavelength channels
in an output cable of an OXC. Suppose there are F optical
fibers in this cable, each of which carries W wavelengths.
Without wavelength conversion, an arriving burst on a given
wavelength must use the same wavelength at the output, so
only F wavelength channels are available. With wavelength
conversion, all FW output channels are available for an arriv-
ing burst. These available wavelength channels are considered
as K servers. We use the term sources for the relevant input
channels in each case. Without wavelength conversion, the
sources are the input channels that have the same wavelength
as the F output channels. With wavelength conversion, the
sources are all the relevant input channels that provide bursts
to the FW output channels. The number of sources is denoted
by M. Each source transmits bursts as an on/off process, with
mean on- and off-time equal to 1/µ and 1/λ, respectively.

If there is no output channel available for an arriving burst,
the burst is dumped, in which case, it still occupies (“freezes”)
the input channel for the entire burst duration. We classify
the sources to be free, busy and frozen. A source in its off-
time is free and otherwise either busy, when its burst is being
transmitted through an output channel, or frozen, when its
burst is being dumped.

B. Markovian models

Cases where on- and off-times follow exponential, hyper-
exponential or hypo-exponential distributions lead themselves
to exact Markov chain analyses. Dimensions of these models
are listed in Table I. For brevity, we do not provide steady state
equations here for all cases. Instead, we only present the case
with hyper-exponentially distributed on-time and exponentially
distributed off-time. See the extended version of this letter [10]
for the steady state equations of all the Markovian models.

Consider a hyper-exponentially distributed random variable
with the following probability density

f (t) = p1 fµ1(t)+ p2 fµ2(t) (p1 + p2 = 1)

where fµ1(t) and fµ2(t) are probability densities of expo-
nential distribution with parameters µ1 and µ2, respectively.
Accordingly, for hyper-exponentially distributed on-time and



TABLE I
MARKOVIAN MODELS

On-time Distribution Off-time Distribution Dimensions
Exponential Exponential 2
Hyper-exponential Exponential 4
Hypo-exponential Exponential 4
Exponential Hyper-exponential 3
Exponential Hypo-exponential 3
Hyper-exponential Hyper-exponential 5
Hypo-exponential Hypo-exponential 5

TABLE II
NON-MARKOVIAN MODELS

On-time Distribution Off-time Distribution
Deterministic Exponential
Pareto Exponential
Truncated Gaussian Exponential
Exponential Deterministic
Exponential Pareto
Exponential Truncated Gaussian
Deterministic Deterministic
Pareto Pareto
Truncated Gaussian Truncated Gaussian

exponentially distributed off-time, we consider each busy or
frozen source has two possible states. Sources transmitting
bursts of exponentially distributed lengths with parameter µ1
and µ2 are said to be in states 1 and 2, respectively. Let
πi, j,k,l be the steady state probability that there are i and
j busy sources in states 1 and 2, respectively, and k and l
frozen sources in states 1 and 2, respectively (0 ≤ i+ j ≤ K;
0 ≤ k+ l ≤ M −K; i, j,k, l ≥ 0). For a free source, the rates
to become busy or frozen in states 1 and 2 are pλ and
(1− p)λ, respectively. Then we have the following steady state
equations. For i+ j < K,

[(M− i− j− k− l)λ+(i+ k)µ1 +( j+ l)µ2]πi, j,k,l

= (M− i+1− j− k− l)pλπi−1, j,k,l

+(M− i− j+1− k− l)(1− p)λπi, j−1,k,l

+(i+1)µ1πi+1, j,k,l +( j+1)µ2πi, j+1,k,l

+(k+1)µ1πi, j,k+1,l +(l +1)µ2πi, j,k,l+1. (1)

For i+ j = K,

[(M−K − k− l)λ+(i+ k)µ1 +( j+ l)µ2]πi, j,k,l

= (M−K +1− k− l)pλ(πi−1, j,k,l +πi, j,k−1,l)

+ (M−K +1− k− l)(1− p)λ(πi, j−1,k,l +πi, j,k,l−1)

+ (k+1)µ1πi, j,k+1,l +(l +1)µ2πi, j,k,l+1. (2)

Then we have the normalization equation:
K

∑
i=0

K−i

∑
j=0

M−K

∑
k=0

M−K−k

∑
l=0

πi, j,k,l = 1.

The offered load is given by

To =
K

∑
i=0

K−i

∑
j=0

M−K

∑
k=0

M−K−k

∑
l=0

(M− i− j−k− l)λ(
p
µ1

+
1− p

µ2
)πi, j,k,l .

The carried load is given by

Tc =
K

∑
i=0

K−i

∑
j=0

M−K

∑
k=0

M−K−k

∑
l=0

(iµ1 + jµ2)(
p
µ1

+
1− p

µ2
)πi, j,k,l .

The blocking probability is obtained by

B =
To −Tc

To
.

Although the computation time can be reduced by using
matrix methods [11], for certain large size problems we rely
on Markov chain simulations.

C. Non-Markovian models

When distributions of on- or off-time are deterministic,
Pareto and truncated Gaussian, listed in Table II, the blocking
probabilities are obtained by discrete event simulations.

III. NUMERICAL RESULTS

Aiming to investigate the errors introduced by assuming
exponential on- and off-time distributions when evaluating
blocking probabilities for the other distributions, we present
here normalized histograms that estimate the error distribution-
s. The depicted histograms are based on about 40,000 cases of
calculations and simulations over a wide range of parameters.

−0.005 0 0.005
0

1000

2000

3000
Deterministic

−0.005 0 0.005
0

2000

4000

6000
Hypo−exponential

−0.005 0 0.005
0

2000

4000
Hyper−exponential

−0.005 0 0.005
0

1000

2000

3000
Pareto

−0.005 0 0.005
0

2000

4000
Truncated Gaussian

−0.005 0 0.005
0

2000

4000
All

No
rm

al
ize

d 
Fr

eq
ue

nc
y 

Blocking Probability Error

Fig. 1. Normalized histograms of blocking probability errors for cases with
various on-time distributions and exponential off-time distribution.

In Fig. 1-3, µ is fixed at 0.1; λ is randomly chosen between
0.01 and 10; M is selected based on a discrete uniform
distribution among 3,4, . . .30 and then K is selected uniformly
among 1,2, . . .M − 1. In Fig. 1, we present error distribu-
tion histograms for cases where off-times follow exponential
distribution and on-times follow the other distributions. In
Fig. 2, we present error histograms for cases where on-times
follow exponential distribution and off-times follow the other
distributions. In Fig. 3, we present error histograms for cases
where both on- and off-times follow the other distributions.
They all demonstrate that the blocking probability is generally
not very sensitive to the shape of on- and off-time distributions.
However, it is more sensitive to the shape of off-time distribu-
tions compared with on-time distributions. As discussed below,
there are cases that give larger blocking probability errors.

From the above figures we observe that when on- or off-
time is deterministic, blocking probability is usually higher.
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Fig. 2. Normalized histograms of blocking probability errors for cases with
various off-time distributions and exponential on-time distribution.
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Fig. 3. Normalized histograms of blocking probability errors for cases with
various on- and off-time distributions.

To explain this effect consider an example with two sources
and one server. Assume that for each of the sources on-time
and off-time are deterministic where the on-time is ∆ + ε
and the off-time is ∆− ε for arbitrarily small ε. In this case,
all the bursts will collide, so arriving bursts will be dumped
with probability of 0.5, which is the highest possible blocking
probability in a system of two identical sources and one server
with the same mean on- and off-time. If we increase the
variance of the off-time, the occurrences of longer off-time
in one source allow bursts from the other source to access the
server without collision, reducing the blocking probability. We
have observed similar results in cases with larger values of M
and K (see the extended version of this letter [10]).

Fig. 4 depicts blocking probability estimations for cases
involving exponential on-time distribution and other off-time
distributions. Blocking probability of the case where off-times
follow exponential distribution was obtained by solving the
steady state equations. The others were obtained by sim-
ulations. The 95% confidence intervals based on Student-t

distribution are smaller than plotted points and therefore not
shown. Their radii are kept below 10−4. We observe that lower
variance of the off-time distribution causes certain increase in
blocking probability, so clearly, the insensitivity of the Engset
model does not apply to the present case. Nevertheless, the
variations in the blocking probability are small.
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Fig. 4. Blocking probability vs. variance of off-time distribution with
exponential on-time distribution for M = 100, K = 75, λ = 0.1, µ = 0.05.

IV. CONCLUSION

We have studied the sensitivity of blocking probability of
bursts to the shape of on- and off-time distributions at an
OBS OXC. Based on the tests studied, blocking probability is
generally not very sensitive to the shape of the distributions of
both on- and off-time, which justifies the use of the exponential
distributions. Moreover, we have observed and explained the
interesting phenomenon that lower variance may lead to higher
blocking probability.
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