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Abstract—The Information Exchange Surrogate Approximation
(IESA) is a powerful tool for estimating the blocking probability
of non-hierarchical overflow loss systems (NH-OLSs), but can
exhibit significant approximation errors in some cases. This letter
proposes a new method of evaluating the blocking probability
of generic NH-OLSs by combining machine learning with IESA.
Specifically, we modify IESA by using neural networks (NN)
to tune a newly introduced parameter in the IESA algorithm.
Extensive numerical results for a simple NH-OLS show that
our new hybrid method, which we call IESA+NN, is more
accurate and robust than both base IESA and direct NN-
based approximation of NH-OLS blocking probability, while
remaining much more computationally efficient than computer
simulation. Furthermore, due to the generic nature of our
technique, IESA+NN is also easily extensible to more specialized
stochastic models for communications and service systems, where
base IESA has previously been applied.

Index Terms—Teletraffic, neural networks, overflow loss systems

I. INTRODUCTION

MANY communications and service systems, such as
cellular networks [1], [2], content distribution net-

works [3], and healthcare systems [4], [5] can be modeled as
non-hierarchical overflow loss systems (NH-OLSs), in which
servers are divided into groups, each request requires one
server, and each server group serves some subset of the request
types in the system. An incoming request overflows from one
server group to the next until a suitable server is found, or is
blocked and cleared from the system immediately if no such
server is available; the probability of this is called the blocking
probability and is a main performance metric of NH-OLSs.

A common feature in many NH-OLSs is mutual overflow [6],
where congestion at one server group causes overflow to other
server groups, which in turn become congested and yield
overflow back to the original server group. While generally
providing better performance than systems without mutual
overflow [7], [8], such systems are difficult to analyze due to
the curse of dimensionality: the state space of the system is
exponential in the number of server groups, and no product-
form solution exists for the steady-state probabilities [9].
Although the blocking probability of NH-OLSs with mutual
overflow can be evaluated using simulation, this can be quite
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computationally expensive and infeasible for solving optimiza-
tion problems where a large number of system configurations
must be evaluated and compared, e.g. adaptive systems where
such optimizations may occur at frequent intervals.

A major approximation approach for evaluating blocking
probability in NH-OLSs with mutual overflow is to decompose
the system into independent server groups [10], [11]; the well-
known Erlang Fixed-Point Approximation (EFPA) [12] is an
example of this. In [13], an improved decomposition method,
the Information Exchange Surrogate Approximation (IESA),
was proposed, which transforms the NH-OLS using a fictitious
surrogate model before applying decomposition. However, as
demonstrated in this letter, significant approximation errors
remain in many cases.

Another method for evaluating blocking probability in NH-
OLSs is using neural networks (NNs), thus offloading the
computational effort to the training phase and allowing fast
evaluation of the blocking probability once a trained NN is
obtained. As an example, variants of the Extreme Learning
Machine (ELM) algorithm were used in [14], [15] to train
a neural network for the evaluation of blocking probability
in optical networks. However, as demonstrated in this letter,
direct estimation of blocking probability using NNs (hereafter
called “direct NN”) is not robust, especially when attempting
to extrapolate outside the range of the training set.

In this letter, we propose a new blocking probability
evaluation method for NH-OLSs with mutual overflow by
introducing a new tuning parameter to IESA, using an NN to
estimate the tuning parameter rather than directly estimating
the blocking probability of the NH-OLS. Extensive numerical
results demonstrate that our newly proposed method, which
we call IESA+NN, is more accurate and robust than IESA
or direct NN alone. Furthermore, since IESA+NN differs
from IESA only in the introduction of a tuning parameter,
it can therefore be applied to a wide range of scenarios where
IESA has already been applied, e.g. emergency healthcare [5]
and cellular networks [2], and to NH-OLSs with non-Poisson
arrival traffic [16] or processor-sharing queues [17]. Finally,
since computing the output of a trained NN is quite efficient,
the amortized computational complexity of IESA+NN (i.e.
excluding the one-time cost of generating training samples and
building the NN) is low; in fact, base IESA, IESA+NN, and
direct NN all have polynomial complexity in the number of
server groups and/or the number of NN hidden nodes.

II. SYSTEM MODEL

As in [16], we consider an NH-OLS model with G server
groups each containing N identical servers. Requests to the
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system arrive according to a Poisson process with an intensity
of aGN Erlangs, require the service of any server in the
system, and may attempt up to k server groups in the system at
random. The service times of the requests are independent and
exponentially distributed with unit mean. Note that although
simple formulas for the N = 1 case have been known for
a full century [18], no scalable exact formula exists for the
blocking probability in the general case, as no product form
solution exists for the state probability distribution [9].

III. INFORMATION EXCHANGE SURROGATE
APPROXIMATION

A simple and classic method for overcoming the “curse
of dimensionality” in overflow loss systems and networks
is to apply two major simplifying assumptions. First, state
dependencies between server groups are ignored, decomposing
the system into a set of independent server groups [10]. Second,
the offered traffic to each server group, including overflow
traffic from other server groups, is often treated as if it were
Poisson [12]. However, these two simplifying assumptions can
lead to very large approximation errors in many cases when
mutual overflow is present, and completely fail to capture the
effect of G, the number of server groups in the NH-OLS, on
the blocking probability [13], [16].

Therefore, in this letter, we will use an alternative method
called the Information Exchange Surrogate Approximation
(IESA) [13], [16] to estimate NH-OLS blocking probability.
IESA is a decomposition-based approximation, meaning that
it treats each server group as independent of the other
groups. To compensate for approximation errors caused by
this decomposition, IESA applies decomposition not to the
NH-OLS model directly, but to a fictitious surrogate model,
hereafter referred to as the IESA model.

In the IESA model, each request carries two attributes: ∆, the
set of previously attempted server groups, and Ω, an estimate of
the number of fully occupied server groups in the system. The
Ω attribute is used for information exchange of the congestion
level in the NH-OLS: in addition to increasing by one for
each overflow, an incoming request to a server group will
exchange its Ω attribute with that of the highest-Ω request in
service if higher than that of the incoming request. Additionally,
an overflowing (∆,Ω)-request will, with probability πn,Ω,
abandon the NH-OLS immediately without attempting any
additional server groups, where

πΩ,n =

0, Ω < k
( Ω
k−n)

( G
k−n)

, k ≤ Ω ≤ G.
(1)

Note that πΩ,n = 1 if k = n or Ω = G.
A full description of IESA for the current NH-OLS model

can be found in [16]. A summary is as follows:

aj,n =


λ, n = j = 0

0, n = 0, j 6= 0

wj,n (1− πj,n) , otherwise,
(2)

ãj,n =
∑j
i=n ai,n, Aj =

∑j
n=0 ãj,n,

bj = E (Aj , N) (3)
wj,n = aj−1,nbj−1 + ãj−2,n−1 (bj−1 − bj−2) (4)

TABLE I
NOTATION FOR IESA

Symbol Definition
λ Offered load to each server group composed of fresh requests
aj,n Offered load to each server group composed of requests with

|∆| = n and Ω = j
ãj,n Offered load to each server group composed of requests with

|∆| = n| and Ω = n, n+ 1, . . . , j
wj,n Overflow from each server group composed of requests with

|∆| = n and Ω = j
Aj Offered load to each server group composed of requests with

Ω ≤ j
bj Per-server-group blocking probability of requests at level j of

the IESA hierarchy, i.e. only considering requests with Ω ≤ j

P̂IESA = 1−
∑k
n=1

∑G
j=n wj,nPj,n

λ
= 1− AG−1 (1− bG−1)

λ
,

(5)
with notation defined as in Table I, where (3) denotes the
Erlang B formula [18]. The above equations define a recursive
algorithm for IESA in Ω = 0 . . . G and n = 0 . . . k. Finally,
when referring to the application of IESA to a specific set of
NH-OLS parameters xi, we will use the notation P̂IESA (xi)
to refer to the blocking probability of that particular NH-OLS.

IV. DIRECT NN APPROACH

Apart from simulation and the IESA approximation described
in the preceding section, we can estimate the blocking probabil-
ity of NH-OLSs using machine learning. In what we call here
as the direct NN approach, we use a single-layer feedforward
network (SLFN) architecture which we train using the random-
search-enhanced error-minimized extreme learning machine
(EEM-ELM) algorithm described in [15], [19]. Note that [20],
[21] demonstrated that ELM algorithms, including EEM-ELM,
have universal approximation ability, despite the random input
weights and biases of the hidden nodes. As only the output
weights of the SLFN need to be trained, ELM algorithms such
as EEM-ELM do not require backpropagation [22], leading
to a much more computationally efficient training algorithm
with fewer hyperparameters (which are the parameters of the
EEM-ELM algorithm itself rather than of the NH-OLS to be
evaluated) than many other machine learning algorithms. For
an overview on ELM algorithms, see [23].

Compared to the original ELM algorithm [22], EEM-ELM
has two main differences. First, in EEM-ELM, hidden nodes
added to the NN incrementally in an iterative process. Second,
EEM-ELM generates multiple candidate groups of hidden nodes
in each iteration and only adds to the NN the group with the
largest resulting reduction of the estimation error. This has
been shown to reduce the number of hidden nodes required for
a given estimation error threshold [15], [19]. EEM-ELM thus
has four hyperparameters: L0, the initial number of hidden
nodes in the NN, Lmax, the final number of hidden nodes,
j, the number of candidate groups of new hidden nodes to
consider in each iteration, and δL, the number of hidden nodes
in each candidate group. We also define NT as the number of
samples in the training set, xi = (logGi, log ki, logNi, ai) as
the input vector of the ith training sample (with Gi, ki, Ni,
and ai defined as in Section II), and

oi = logP (xi) (6)
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as the target output of the ith training sample (where P (xi) is
the simulated blocking probability of the NH-OLS correspond-
ing to the ith training sample). As in [15], we use a sigmoid ac-
tivation function for the hidden nodes. The output of the trained
NN is denoted ô (x) =

∑
` β`/ [1 + exp (−wT

`x + a`)] where
w`, a`, and β` are the input weight vector, activation bias, and
output weight for the `th hidden node, respectively. The error
function to be minimized is therefore ε =

∑
i (oi − ô (xi))

2,
summing over all training inputs i. Finally, the estimated
blocking probability for any given NH-OLS with parameters
x is P̂NN (x) = exp (ô (x)) . For a full description of the
EEM-ELM algorithm, see [15], [19].

V. IESA+NN

Although more accurate than previous decomposition-based
methods, numerical results [13], [16] have revealed areas where
IESA still exhibits significant approximation error. To obtain the
high approximation capability of NN, while retaining IESA’s
ability to capture part of the underlying structure of the NH-
OLS, in this letter we propose a new approximation method
which we call IESA+NN. To obtain IESA+NN, we add a tuning
parameter to IESA, which we set using a NN trained with the
EEM-ELM algorithm. Specifically, we change (1) and (2) to

πΩ,n,τ =

0, τΩ < k

min

{
( τΩ
k−n)

( G
k−n)

, 1

}
, otherwise

(7)

and

aj,n =


λ, n = j = 0

0, n = 0, j 6= 0

wj,n (1− πj,n,τ ) , otherwise,

respectively, and replace P̂IESA (xi) in (5) with PIESA+NN (τ,xi).
The value of τ such that PIESA+NN (τ,xi) = P (xi) is
denoted as τ∗ (xi), and can easily be found via bisection
as PIESA+NN (τ,xi) is non-decreasing in τ . Since bisection is
of low computational complexity (linear in the number of
significant digits), the NN training costs of both approaches
are similar. Note that PIESA+NN (1,xi) = P̂IESA (xi).

As in the direct NN approach, the NN input is the collection
of NH-OLS parameters, i.e. xi = (logGi, log ki, logNi, ai).
However, (6) is changed to oi = log τ∗ (xi). Finally, the
estimated blocking probability for any given NH-OLS with
parameters x is P̂IESA+NN (x) = PIESA+NN (τ̂ (x) ,x) ,where
ô (x) is the NN output and τ̂ (x) = exp (ô (x)) is the estimated
tuning parameter to be substituted into (7).

VI. NUMERICAL RESULTS

Note that the neural networks in both direct NN and
IESA+NN share the same input parameters and differ only in
target output. For both direct NN and IESA+NN, a training
set was constructed as follows:

• G = 10, 12, 16, 20, 30, 50, 70, 100, 120, 150, 200, 300,
500, 700, 1000

• k = 4, 6, 8, 10, 12, 16, 20, 30, 50, 70, 100, 120, 150,
200, 300, 400, ..., 1000 such that k ≤ G

• N = 1, 2, 3, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100
• a = 0.3 to 1.0 in increments of 0.025

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

# of hidden nodes

m
ea

n
ab

s.
lo

g.
er

ro
r

EP̂ , direct NN

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

# of hidden nodes

Eτ̂ , IESA+NN

Fig. 1. Mean absolute log error of EEM-ELM as applied to the training set.
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Fig. 2. Simulated and estimated blocking probabilities with respect to G.

We also require P̂IESA > 10−7 due to inaccuracy of the
simulation result for low blocking probabilities, using the more
computationally efficient IESA result rather than the simulation
result for the filtering of the training set cases. The final size
of the training set is NT = 20, 637.

Then, for both direct NN and IESA+NN, the NNs were
trained using the EEM-ELM algorithm, with an initial size
of L0 = 50, δL = 2, J = 50, and Lmax = 500. Fig. 1
shows the mean absolute error of {o (xi)}NTi=1 for each NN,
i.e. E = (1/NT )

∑NT
i=1 |ô (xi)− o (xi)|. Note that this is

equivalent to the mean absolute logarithmic error (MALE)
of {P̂NN (xi)}NTi=1 and {τ̂ (xi)}NTi=1, respectively: EP̂ =

1
NT

∑NT
i=1

∣∣∣log10
P̂NN (xi)
P (xi)

∣∣∣ and Eτ̂ = 1
NT

∑NT
i=1

∣∣∣log10
τ̂(xi)
τ∗(xi)

∣∣∣.
It is demonstrated that the MALE decreases as the number of

hidden nodes increases. Note that EP̂ and Eτ̂ are not directly
comparable, and the aim of Fig. 1 is simply to demonstrate
that for both NNs, around 500 hidden nodes is sufficient.

In the following text, we compare the accuracy of base
IESA, direct NN, and IESA+NN relative to simulation results,
i.e. the values P̂IESA, P̂NN, and P̂IESA+NN relative to P , for a
variety of test cases. The simulation values P were obtained
using Markov-chain simulation with 108 arrivals per simulation
run. Similar results were obtained using Levenberg–Marquardt
backpropagation (LMBP); however, the results suggest slightly
better extrapolation ability of EEM-ELM compared to LMBP
when applying IESA+NN to cases outside the training set
range. We thus only show the EEM-ELM-based results here.

Fig. 2 shows the blocking probability of an NH-OLS as
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Fig. 3. Simulated and estimated blocking probabilities with respect to G
where both G and k increase in a fixed ratio.
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Fig. 4. Simulated and estimated blocking probabilities with respect to k.

G increases with k fixed. It was proved in [16] that base
IESA is asymptotically exact in such cases as G → ∞, i.e.
P̂IESA → P . This is supported by our numerical results, with the
rate of convergence dependent on k. In addition, IESA+NN also
appears to be asymptotically exact as G→∞, i.e. P̂IESA+NN →
P , whereas P̂NN quickly diverges from P for G > 1000, the
maximum value of G in the training dataset. This demonstrates
the poor extrapolation ability of direct NN compared to the
IESA+NN approach. Overall, the numerical results demonstrate
that IESA+NN is significantly more accurate and robust than
both direct NN and base IESA.

Fig. 3 shows the blocking probability of an NH-OLS as
both G and k increase in a fixed ratio. The results demonstrate
that IESA+NN is significantly more robust than both base
IESA and direct NN. In particular, direct NN performs poorly
in the k = G/2 case for small values of G and k; however,
direct NN also performs poorly in the bottom-left case even
for larger values of G and k, and is in fact less accurate than
base IESA for cases around G = k = 100. On the other hand,
in the bottom-right case, IESA+NN exhibits problems when
G and k are both very large, due to the larger uncertainty in
the simulation results and the low number of such cases in the
training set (only cases with a equal or close to 1 are admitted
due to the low blocking probability of the other cases).

Fig. 4 shows the blocking probability of an NH-OLS as
k increases with G fixed. The numerical results demonstrate
that while both IESA+NN and direct NN are more accurate
than base IESA as k increases, pure NN is not as robust as
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Fig. 5. Simulated and estimated blocking probabilities with respect to N .
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IESA+NN when both G and k are small, as shown in the left
side of Fig. 4.

Fig. 5 shows the blocking probability of an NH-OLS with
respect to N . The results show that IESA+NN is much more
accurate than IESA or direct NN for large N , particularly
outside the training set range of N ≤ 100.

Fig. 6 shows the blocking probability of an NH-OLS with
respect to a. For the G = 20 case, direct NN and IESA+NN
are both quite accurate for low loads, but pure IESA becomes
less accurate as the offered load decreases. In the G = 2000
case, pure IESA and IESA+NN are both quite accurate for the
entire range of a shown, but direct NN is quite inaccurate for
high loads.

VII. NH-OLSS WITH NON-POISSON INPUTS AND
NON-EXPONENTIAL SERVICE TIMES

In this section, we expand our methodology to evaluate
the blocking probability of NH-OLSs with non-Poisson inputs
and non-exponential service times. Although IESA has been
extended in [16] to handle non-Poisson input traffic, it still
cannot model the effect of non-exponential service times. We
can use IESA+NN to resolve this issue, by applying the IESA
part of IESA+NN as if the service times were exponentially
distributed and relying on the NN part of IESA+NN to “correct”
for the simplifying assumptions used.

We consider a set of NH-OLS configurations similar to
that defined in Section II, but change the request service time
distribution to lognormal with mean 1.0 and standard deviation
σ. Note lognormal distributions occur frequently in human
behavior models, e.g. call center service times [24] and ICU
patient stays [25]. Additionally, each request must now attempt
a preferred server group before randomly attempting up to k−1
other groups, such that the arrival process of fresh requests
to each preferred server group forms an interrupted Poisson
process [26] with intensity Na and peakedness (variance-to-
mean ratio) z.

Our training set is constructed as follows:
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Fig. 7. Simulated and estimated blocking probabilities with respect to G, for
an NH-OLS with k = 12, N = 10, a = 0.9, and σ = 2.

• G = 10, 15, 20, 50, 100, 200, 500, 1000, 20000
• k = 4, 6, 10, 15, 20, 70, 100, 150, 200 such that k ≤ G
• N = 1, 2, 3, 5, 10, 20, 50, 100
• a = 0.3 to 1.0 in increments of 0.025
• z = 1.1, 1.25, 1.5, 2, 2.5, 3
• σ = 0.5, 1, 1.5, 2, 2.5, 3
• PIESA > 10−7 and P > 5× 10−7

where PIESA and P are the blocking probability of the NH-
OLS as evaluated using the extended IESA method (i.e. [16])
and simulation, respectively. However, for G = 20000, instead
of using simulation, which can be time-consuming and/or
inaccurate for large G, we use previously proven asymptotic
properties of IESA shown in [16] and assume P = PIESA.

Fig. 7 shows the blocking probability of the NH-OLS
with respect to G for different values of z. While the
results demonstrate that both direct NN and IESA+NN are
significantly more accurate than IESA alone, IESA+NN is the
only approximation of the three to maintain robustness across
the entire range of G shown, whereas direct NN is inaccurate
for G > 1000.

VIII. CONCLUDING REMARKS

In this letter, we considered a simple NH-OLS model
with mutual overflow and showed that even accounting for
symmetries, the number of distinct states is in general too
many for exact analysis, whereas simulation is computationally
expensive and existing approximation methods are not accurate
and robust enough. We proposed a new approximation method,
IESA+NN, based on introducing a control parameter into IESA
which we tune using a neural network. Extensive numerical
results demonstrate that IESA+NN is more accurate and robust
than both base IESA and the direct NN approach. Furthermore,
as noted in Section I, the amortized computational complexity
(i.e. excluding one-time cost of generating training samples
and building the NN) of IESA+NN is quite low and on par
with IESA and direct NN. IESA+NN therefore has potential
applications in self-adaptive systems where resource allocation,
routing and/or admission control are adjusted on a periodic
basis, whereas simulation would take too long for such purposes.
Additionally, since IESA+NN differs from IESA only in the
introduction of tuning parameter τ , it can be applied to a wide
range of scenarios where IESA has already been applied.

Finally, promising results were also obtained for the ap-
plication of IESA+NN to NH-OLSs with non-Poisson inputs
and non-exponential service times, although further research
is desirable to further increase accuracy and robustness.
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