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ABSTRACT In this review, we describe historical and recent developments towards tackling a century-
long challenge in teletraffic theory, namely the evaluation of blocking probability in overflow systems with
mutual overflow. Such systems have many applications in a variety of telecommunications and service
systems, including wireless communications, cloud computing, intensive care, and emergency services,
and various methods have been developed over the past century to address this challenge. In particular,
the recent development of the Information Exchange Surrogate Approximation (IESA) (Wong et al.,
Sep. 2013; Chan and Wong, 2018) provides significantly increased accuracy and robustness compared to
previous approximation methods of its kind while also providing high computational efficiency not available
via simulation or exact analysis. To the best of our knowledge, IESA is the first analytical method to combine
high levels of accuracy, robustness, and computational efficiency when evaluating blocking probability in
overflow systems with mutual overflow, and thus forms a major breakthrough in this century-long effort.

INDEX TERMS Teletraffic theory, blocking probability, loss systems, mutual overflow.

I. INTRODUCTION
Overflow loss systems (OLSs) are an important class of
stochastic models which arise in a wide variety of teletraffic
and service systems applications, including wireless commu-
nications, cloud computing, intensive care, and emergency
services. OLSs are defined by a set of request types (each
with a given arrival process), a set of server groups (each of
which serves some subset of the request types in the system),
and an overflow policy for directing arriving requests from
one server group to another until an available server is found,
upon which the arriving request is assigned to that server.
Alternatively, if all possible server groups are fully occupied
at the time of the request’s arrival, the arriving request is
blocked and cleared from the system. The probability of a
request being blocked and cleared, known as the blocking
probability, is a key performance metric of OLSs.
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Resource planning, resource allocation, and optimal
resource usage in OLSs often require accurate and effi-
cient methods for blocking probability evaluation. In many
practical cases, such OLSs are not amenable to scalable
blocking probability calculation as they exhibit significant
state dependencies, making the state space of the system
too large for exact analysis and exacerbating the problem
of finding scalable and robust approximations. This prob-
lem is especially important in resource optimization, where
rapid yet accurate blocking probability evaluation of a large
number of candidate system configurations is key to an
efficient optimization algorithm. Meanwhile, conventional
estimation methods are ‘‘either time-consuming (like the
discrete event simulation) or not accurate enough (like the
Erlang fixed point approximation’’ [1] (these two meth-
ods are described in Sections II-B and II-D of this paper,
respectively).

In this paper, we review various techniques for blocking
probability evaluation in OLSs. The scope of this review
includes the following:
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FIGURE 1. Simplified depiction of a grading from classical telephony.
Note that the offered traffic to the grading does not need to be equally
distributed among the outlets, creating blocking probability evaluation
challenges as described by Lotze [26].

1) We describe historical developments towards tackling a
century-long challenge in teletraffic theory, namely the
evaluation of blocking probability in overflow systems
withmutual overflow.Mutual overflow [2], [3], [4], [5],
[6] refers to a situation where congestion in a specific
server group causes overflow to the other server groups,
which in turn become congested and yield overflow
back to the original server group. This creates spe-
cific challenges toward the evaluation of such OLSs,
as explained in Section I-B.

2) We compare a variety of methods that have been devel-
oped over the past century to address this challenge
(item 1) and explain why they did not successfully
tackle this challenge in terms of accuracy and compu-
tational efficiency.

3) We describe a recent method, which was developed
after a century of effort on this challenge since
Gray’s original design [7] for a grading system. The
method is called the ‘‘Information Exchange Surrogate
Approximation’’ (IESA) [8] and provides significantly
increased accuracy and robustness compared to pre-
vious approximation methods of its kind while also
providing high computational efficiency not available
via simulation or exact analysis. To the best of our
knowledge, IESA is the first analytical method to com-
bine high levels of accuracy, robustness, and computa-
tional efficiency when evaluating blocking probability
in overflow systems with mutual overflow, and thus
forms a major breakthrough in this century-long effort.

4) We explain how and why IESA works, introduce its
evolution process, and describe its future development
trend.

A. FROM ‘‘OLD’’ TELEPHONY TO WIRELESS AND
BEYOND: A CENTURY OF TELETRAFFIC THEORY
The problem of accurate blocking probability evaluation in
OLSs stretches back over a century. An important early exam-
ple of OLSs is that of electromechanical telephone switches
from the late 19th and early 20th centuries, with Gray receiv-
ing the first patent for a ‘‘grading system’’ in 1911 [7]. Gen-
erally speaking, a grading system [26] is a configuration of
inlets and outlets in a telephone switching system where each

inlet is only connected to some of the outlets. An example
grading system is shown in Fig. 1.

Nearly sixty years after Gray’s patent, Lotze [26] listed
a number of grading-related problems that remained open,
including the development of ‘‘improved approximate meth-
ods for loss calculation, if unbalanced traffic is offered.’’
However, over a century sinceGray’s original design, and half
a century since Lotze’s survey paper, this problem remains
unresolved, while its importance has grown due to new
applications throughout the field of telecommunications and
beyond. For example:

• To deliver ultra-reliable low-latency communication
(URLLC), e.g. for an autonomous vehicle network,
vehicles must use multiple nearby base stations to over-
come frequent physical blockages [27]. An overflow
policy captures the base-station preference order of vehi-
cles in each location. Due to the low-latency require-
ment, the network is modeled as a loss network rather
than one with delays.

• OLS models were applied to the bed management of
intensive care networks in [12], [13], and [14], where
some patients may be referred to any intensive care unit
in a group. Other examples of OLS models in healthcare
settings include [28], [29], [30], [31], and [32].

• OLS models can be used to model resource allocation
in cloud services. For example, in ‘‘serverless’’ com-
puting [15], servers are assigned on-the-fly to small,
individual tasks.

• OLS models were used in [21], [22], [23], [24], and
[25] to model the performance of emergency vehicular
networks, where requests are served by the closest depot
with an available vehicle.

Table 1 shows the correspondence between various concepts
in the abstract OLS model and their counterparts in the above
real-world applications.

B. HIERARCHICAL VERSUS NON-HIERARCHICAL OLSs
There are two classes of OLS models, as illustrated in Fig. 2:
hierarchical and non-hierarchical. In hierarchical models, the
server groups of the OLS are stratified into several tiers. New
requests first attempt to access server groups from the lowest
tier. If they are rejected from a given tier, they overflow and
attempt to access server groups from a higher tier. Therefore,
the traffic dependencies in hierarchical OLSs are bottom-up
unidirectional: congestion in lower tiers can cause congestion
in higher tiers, but not vice versa. For such systems, moment
matching approaches (e.g. [33], [34], [35], [36], [37]) are
available based on the assumption that the offered traffic
to each tier can be treated independently, by matching the
moments (i.e., mean, variance, and possibly skewness) of
each layer’s input traffic to that of the overflow traffic from
the previous (lower) tier.

A more difficult and important challenge is the accu-
rate and scalable evaluation of blocking probabilities in
non-hierarchical OLSs (NH-OLSs) in which the overflow
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TABLE 1. Correspondence between the abstract OLS model and real-world applications.

FIGURE 2. Graphical depiction of a hierarchical OLS and a
non-hierarchical OLS. Each set of arrows of the same color represents an
overflow sequence of server groups that requests offered to the OLS may
take.

traffic from each server group may directly or indirectly
affect the offered load to any other server group. In general,
load dependencies in NH-OLSs are much stronger than in

hierarchical OLS, and the independence assumption is more
likely to lead to significant errors.

Due to this redistribution of overflow traffic throughout
the OLS, resulting in more optimal resource sharing, non-
hierarchical OLSs with mutual overflow in general perform
better than hierarchical OLSs in terms of blocking probabil-
ity; for example, in telephone networks, this phenomenonwas
associated with the transition of intercity telephony networks
from a tree topology (with some additional trunk groups) to a
mesh topology [38], [39], [40], [41], [42], [43]. In fact, with
regard to the grading systems fromwhich our current problem
originates, Erlang [44] states that where each call may attempt
up to k outlets, the ideal grading is one where each request
attempts one out of all the possible permutations of k outlets
from the set of all outlets, with equal probability (note that
such an arrangement may not be possible in practice). This
arrangement has the added benefit that all states with the same
number of busy outlets are statistically equivalent, making
Erlang’s ideal grading (EIG) one of the few NH-OLSs with
mutual overflow for which a scalable exact solution exists for
blocking probability evaluation. The formula for the blocking
probability of an EIG is known as Erlang’s interconnection
formula (EIF).

On the other hand, NH-OLSs in real-world applications
generally deviate quite far from EIG, due to heterogeneous
loading, server group availabilities, and/or server group sizes.
Therefore, they do not possess simple exact solutions such
as EIF for evaluation of their blocking probabilities. The
difficulty in obtaining accurate and scalable approximations
for such systems, as illustrated by Lotze’s stated problem [26]
remaining open over a century since the introduction of the
grading, can be explained by the mutual traffic dependen-
cies between server groups caused by mutual overflow. This
prevents the existence of an exact product-form solution,
in which the state probability distribution of a system (i.e., the
full OLS) is the product of the state probability distributions
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of its sub-components (i.e., the server groups). Without a
product-form solution, blocking probability evaluation in
NH-OLSs suffers from the ‘‘curse of dimensionality’’: the
number of possible states of an NH-OLS increases expo-
nentially with the number of server groups in the system.
Therefore, exact analysis of the state space of an NH-OLS
is not a scalable method of blocking probability evaluation.

In 2013 [8], a novel methodology called the Information
Exchange Surrogate Approximation (IESA) was invented,
forming a major breakthrough towards an accurate, robust,
and computational efficient method for blocking probability
evaluation in NH-OLSs with mutual overflow. Numerical
results [8], [45], [46] using IESA demonstrate increased accu-
racy and robustness compared to all other existing approxi-
mationmethodswhen applied to such systems.More recently,
a hybrid approach [47] was introduced combining IESA with
neural networks, yielding a more accurate and robust approx-
imation than either approach alone.

C. ORGANIZATION
The remainder of this paper is as organized as follows.
In Section II, we briefly describe historical methods for
blocking probability evaluation in NH-OLS, and explain why
none of them achieve the full trifecta of accuracy, robustness,
and computational efficiency. In Section III, we describe
the development of the IESA methodology [8], [45] and its
underlying principles; in particular, Section III-C, provides a
numerical example to demonstrate the performance of IESA,
Section III-E describes how IESA has been applied to vari-
ous applications, while Section III-F describes several exten-
sions to the original IESA algorithm (as described in [8]).
Section IV highlights potential directions for the future devel-
opment of IESA. Finally, some concluding remarks are given
in Section V.

II. EXISTING METHODOLOGIES FOR BLOCKING
PROBABILITY EVALUATION IN NH-OLSs
In this section, we describe several different existing method-
ologies for blocking probability evaluation in NH-OLSs.
These are summarized in Table 2.

A. EXACT SOLUTION
For NH-OLSs possessing the Markov property, meaning that
the next state of the system depends only on the current state
(and not on previous states or elapsed time), the exact prob-
ability of each state can be evaluated by solving a system of
linear equations, from which the request blocking probability
can be obtained. However, as mentioned in the introduction,
this is not a viable method for most NH-OLSs due to the curse
of dimensionality, where the system state space is exponential
with respect to the system size (i.e. number of server groups).

B. SIMULATION-BASED METHODOLOGY
There are two main branches of simulation methodology
for the performance evaluation of discrete-state stochastic
systems such as OLSs: discrete-event simulation (DES) [51],

[52], [53] and Markov-chain simulation (MCS) [54]. In DES,
a sorted list of pending events is maintained. In each iteration
of the simulation loop, the DES algorithm advances the sim-
ulation clock to the time of the next pending event, removes
that event from the list, and processes the event, possibly
updating the system state and/or generating new events to be
added to the event list. DES was a major motivator behind the
development of object-oriented programming; in particular,
the programming language SIMULA, released in the 1960s
by the Norwegian Computing Centre, was designed specif-
ically with DES in mind [55]. Modern software libraries
for DES include SimPy, salabim [56], JaamSim [57], and
simmer [58].

In contrast, in MCS, it is assumed that the system can be
modeled as a Markov process, with state transition probabili-
ties that depend only on the current state (and not on previous
states or elapsed time). Simulation is conducted by random
sampling of the possible next states of the system at every
step, and no simulation clock is required. The simplicity of
MCS means that it can easily be performed manually for
small-scale systems, for example using a roulette wheel or
dice.

MCS is generally more computationally efficient than
DES, as it does not require a sorted event list. However, MCS
can still require a significant amount of computation time.
Therefore, computationally-efficient approximate analytical
methods have also been developed for the evaluation ofOLSs.
One well-known methodology for these analytical methods
is called decomposition, which we describe in Section II-D.
Numerical results in [45] show that such methodology gener-
ally performs several orders of magnitude faster than simula-
tion.

C. ERLANG’S INTERCONNECTION FORMULA AND
EXTENSIONS
EIF works by computing the probability that, given a certain
number � of busy servers in the system, a new arrival lim-
ited to k random attempts will encounter busy servers in all
k attempts and therefore be blocked from the system. For
Erlang’s Ideal Grading (EIG) and a given value of �, this
probability is equal for all arrivals:

Pk,�,G =


(
�
k

)(G
k

) , k ≤ � ≤ G

0 0 ≤ � < k,

(1)

where G is the total number of server groups. Defining πn to
be the probability of a state with n busy servers and A to be
the offered load to the EIG (in Erlangs), we obtain the detailed
balance equations [59]

πnA
(
1 − Pk,n,G

)
= πn+1(n+ 1) (2)

G∑
n=0

πn = 1, (3)

from which the blocking probability πG of the EIG can be
easily found. To explain (2), note that for each state n, the
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TABLE 2. Summary of methods for evaluating blocking probability in NH-OLSs.

probability flow from state n to state n + 1 is the prob-
ability πn, times the offered load A, times the probabil-
ity that each incoming request in state n is accepted, i.e.,(
1 − Pk,n,G

)
. Conversely, the probability flow from state

n + 1 to state n is the probability πn+1, times n + 1 (i.e.,
the number of busy servers in state n + 1). Detailed bal-
ance dictates that the probability flow between each pair
of states in the system must be equal [59], from which
(2) emerges. For additional detail on the derivation of EIF,
see [60, §6.2.2].

Longley [61] found explicit alternative formulas for Pk,n,G
for certain non-ideal small systems, as well as approxima-
tions for some larger cases. Lotze [26] summarizes some
other extensions to EIF, including modified terms based on a
geometric series, a related approximation method for an EIG
offered Engset traffic (a counterpart to Poisson traffic where
the arrival rate is proportionally reduced when individuals
enter the system), and the consideration of gradings with
delays.

Stasiak [62] proposed an approximation method extend-
ing EIF to the case with multichannel traffic streams,
where each request type may have its own service rate and
seize multiple servers from the same group simultaneously.
In [20] and [63], EIF-derived approximations were applied
to blocking probability evaluation of video-on-demand sys-
tems; in particular, [63] considered the case where different
videos have different availabilities. The technique was further
extended in [64], [65] to support BPP (Binomial-Poisson-
Pascal) arrival traffic. Additional applications of the tech-
nique include a cellular network model in [66] and an optical
network node in [67].

On the other hand, since the methods in this subsection
all assume that the probability that a new arrival is blocked
depends solely on the current number of busy servers in the
system, they are not accurate for systems with heterogeneous
loads. As mentioned in Section I-B, NH-OLSs in real-world
applications generally deviate quite far from EIG and thus
their blocking probabilities cannot be estimated accurately
using EIF.

D. DECOMPOSITION-BASED METHODOLOGY
To our best knowledge, decomposition-based methodology
is so far the only scalable analytical solution for general
NH-OLSs. Such methodology approximates the performance
of NH-OLSs by treating each server group in an NH-OLS
as an independent, full-availability queue (i.e. each request
may attempt all servers in that queue). The most famous
decomposition-based approach is the Erlang Fixed-Point
Approximation (EFPA) [48], in which the offered traffic
to each server group, including overflow traffic from other
groups, is treated as if it were Poisson. The combination of
the above independence and Poisson simplifying assump-
tions means that EFPA can be implemented simply through
repeated applications of the classic Erlang B formula, and is
thus quite computationally efficient.

Specifically, in EFPA, the probability of each server being
fully occupied (i.e., each server is busy) is a function of the
offered load to that server group; however, due to mutual
overflow, circular dependencies exist between the offered
loads to the server groups in the NH-OLS. Nevertheless,
Brouwer’s fixed-point theorem [68] can be used to show that a
solution to the related blocking-probability equations always
exists. These equations, and the overall blocking probability
of the NH-OLS, can be evaluated using sequential fixed-point
iteration [69], [70].

Variations of EFPA have been developed for sequential
routing, random routing, and least-busy-first routing; for
example, [71] applied EFPA to least-busy-first routing in a
wired telecommunications network, while [17] applied the
same in the context of a video-on-demand service. In [72],
a decomposition-based approximation was derived for a
special case of an OLS with delays (however, an alterna-
tive method is proposed in its place). In [19], EFPA was
extended to the case of processor-sharing queues, in the con-
text of a video-on-demand system.Multi-rate traffic, in which
requests may request multiple servers in a group simultane-
ously, is considered in [73].

However, the fixed-point equations of EFPA can lead
to multiple solutions in some cases [48], [74], [75].
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Furthermore, for many types of OLSs (both hierarchical1 [37]
and non-hierarchical [8], [50]), EFPA’s simplifying assump-
tions can cause it to underestimate blocking probability by
several orders of magnitude. For hierarchical OLS, errors
caused by the Poisson assumption can be reduced by taking
higher moments of the overflow traffic into account (e.g. [33],
[34], [35], [36], [37], [76]); however, for NH-OLSs, the
independence assumption forms the dominant source of
error [50]. Therefore, for NH-OLSs with Poisson arrivals,
the addition of moment matching alone yields only marginal
improvement over EFPA. In Section III, we describe a
novel approach using the decomposition-based methodology
for NH-OLSs called the Information Exchange Surrogate
Approximation (IESA) [8], [45] that addresses the errors
caused by EFPA’s independence assumption. This greatly
improves the accuracy and robustness of the new framework
over EFPA, while still remaining computationally efficient.

An EFPA-based decomposition method was deployed
in [30] for estimating rejection probabilities in a perinatal net-
work. To improve accuracy, some subnetworks (representing
multiple wards in the same hospital) were evaluated together,
rather than assuming independence between all wards. Nev-
ertheless, it was noted that some calculated probabilities ‘‘are
not very close to the observed values’’.

Other decomposition-based approximation methods for
overflow loss networks include slice methods [77], [78],
[79] and a contour method [78]. These methods are based
on approximating the probability density of the number of
occupied channels on each link, rather than simply the prob-
ability that the link is fully occupied, and are generally
more accurate than EFPA when applied to network applica-
tions. Finally, [80], [81] directly consider dependency effects
between links in a circuit-switched network. However, these
approaches are specific to networks with multi-link paths and
do not apply to the generic NH-OLS model described in this
paper.

1) EXTENSIONS TO EFPA FOR SYSTEMS WITH DELAYS
Overflow loss systems have been used in the literature to
approximate the behavior of systems with delays, such as call
centers, with some success [82]. One model for call centers is
that of [83], in which an EFPA-like approximation method is
proposed. An extension to this method [84] allows each call
to wait for service at its last-choice server group; this is used
to approximate the performance of the case where delayed
calls wait in a common buffer.

2) EXTENSIONS TO EFPA FOR CELLULAR AND WIRELESS
NETWORKS
Two unique properties among cellular and wireless networks
that are not present in the simple overflow loss model are
that of locality and handover. Locality means that a request

1Although fixed-point iteration is not required for hierarchical OLSs, we
retain the name EFPA for consistency with NH-OLS nomenclature. Other
names include ‘‘exponential decomposition’’ (ED), e.g. [37].

originating from a particular cell may only obtain a channel
from that cell and its immediate neighbors. Handover means
that a request may move to a new cell mid-service. These
requests must then be assigned a new channel in a similar
manner to that of a new request.

EFPA was applied to a cellular network model with han-
dover in [85]. In this model, handovers and call completion
are modeled as competing processes, both with exponentially
distributed holding times. Additionally, channel reservation
is also modeled, in which the last few free channels at each
base station are reserved for handover calls, thus reducing the
call dropping probability (at the cost of increased blocking
of fresh calls). EFPA was applied to a multi-layer cellular
network in [86], with extensions to take the variance of
overflow traffic into account. In this multi-layer model, there
aremultiple overlapping layers of differently-sized cells (pos-
sibly representing different radio frequencies and/or wireless
protocols), and calls that cannot be served by a given layer
may overflow to the next layer in the hierarchy. A similar
model is considered in [87] where one of the layers does
not form a connected graph, i.e., some group of cells are
completely isolated from others.

The IESA approximation described in Section III has also
been extended for cellular and wireless networks. Details
are given in Sections III-E2 and III-F2. Numerical results
(e.g., [46]) show that IESA for cellular networks (IESA-CN)
is generally much more accurate than EFPA, especially in
cellular networkswith low (below 10−3) rejection rates where
EFPA can underestimate the true rejection rate by multiple
orders of magnitude.

3) THE HYPERCUBE MODEL AND RELATED
APPROXIMATIONS
The hypercube model was introduced by Larson [21], [88]
to model emergency vehicle dispatches. Requests from each
geographic region have a fixed preference of servers (police
cars, ambulances, or otherwise), and the objective is to com-
pute per-region and per-server statistics, e.g. the mean travel
distance and the proportion of requests served by the most-
favored server. The model is named for the fact that each
server has two states, creating a state space that forms a
{0, 1}N hypercube, where N denotes the number of servers.

Larson also proposed an approximation method for his
hypercube model [22], which uses decomposition like EFPA,
but adds correction factors to counter the effect of the inde-
pendence assumption. These factors are based on considering
a single, simple N -server full-availability queue and com-
puting the ratio between the computed blocking probabilities
as evaluated using the basic Erlang B formula [89] and by
assuming full independence among all servers in the queue.

However, these correction factors assume a full-
availability system, meaning that each request may attempt
every server in the system. Furthermore, the correction factors
also assume that the offered traffic is balanced among all
the geographic regions, and Larson [22] noted a decrease in
accuracy when this was not the case.
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Larson’s approximation was extended in [90], to handle
different mean service times for each region-server pair.
A further extension [25] replaces each server with a multi-
server group, providing a new set of correction factors. This
contrasts with an earlier method [23] which allows for pref-
erence ties between servers but continues to treat each server
separately and uses the original correction factors from [22].
However, both methods still assume full accessibility.

Finally, an approximation based on the hypercube model
for limited-availability systems was proposed in [24]; how-
ever, this approximation only applies to servers arranged in a
ring topology, with requests limited to the nearest two servers
in the ring.

4) PRODUCT-FORM UPPER BOUNDS
Van Dijk et al. [91], [92] note that OLSs with call packing,
where in-progress requests in an overflow network are imme-
diately rerouted to the most-preferred available server group
when it becomes available, form a good surrogate for estimat-
ing the blocking probability of the equivalent OLSs without
call packing. The enforcement of call packing leads to a
system where the blocking probability can be expressed in
product form, i.e. as the product of the blocking probabil-
ity of the individual server groups. Van Dijk and Erik van
der Sluis [91] proved for a simple system with two server
groups, where calls offered to Group 1 may overflow to
Group 2 but not vice-versa, call packing leads to an upper
bound of the blocking probability when the service rate is
unchanged by overflow, thus depending only on the call type.
Van Dijk and Schilstra [92] state that the upper bound is also
expected to hold if overflow decreases the service rate. How-
ever, they show numerically that the bound does not hold if
overflow increases the service rate (although this case rarely
appears in real-world systems). Furthermore, Van Dijk and
Schilstra [92] state that the study of more complex overflow
structures, for example with ‘‘parallel’’ (non-hierarchical)
overflow, remains a ‘‘challenging point’’.

E. NEURAL-NETWORK-BASED METHODOLOGY
Neural networks (NN) have been proposed as a method of
blocking probability evaluation in overflow loss networks,
particularly optical networks [93], [94], [95], [96], [97].
In particular, [95], [96], [97] showed that single-hidden-
layer feedforward networks are sufficient to provide accurate
blocking probability estimation in such networks. Futher-
more, the extreme learning machine (ELM) family of NN
algorithms used in [95], [96], and [97] does not rely on
backpropagation, unlike in conventional NN architectures,
and computationally efficient methods exist for incremental
addition of hidden nodes to the NN while updating the output
weights of existing hidden nodes. Other examples of using
NNs for blocking probability evaluation include [1], where
they are used to dynamically schedule resources for an elastic
optical network.

Nevertheless, there are some well-known drawbacks of
NN-based approaches. Among these, the most fundamental
problem is the lack of explainability of NN output (i.e., the
black box problem [98]), where there is no specific method
for determining or interpreting the rationale behind deci-
sions made by an NN. Furthermore, the NN output may be
very poor for input values outside the range of the training
set; in other words, NNs generally have poor extrapolation
capabilities. A potential approach to improve explainability
and/or extrapolation capability is the use of hybrid models,
where domain-specific knowledge (i.e., teletraffic theory in
the current use case) is incorporated into machine learning
algorithms as prior knowledge [99], [100]; this is explored
further in Section III-F2.

III. INFORMATION EXCHANGE SURROGATE
APPROXIMATION (IESA)
As summarized in Table 2, with the exception of IESA, all
methods considered in Section II for evaluating blocking
probability in NH-OLSs have drawbacks in terms of low
computational efficiency or low accuracy/robustness. In par-
ticular, exact analysis is not computationally scalable, simu-
lation requires a significant amount of computation time, EIF
is not accurate for unbalanced traffic [26], neural networks
are not accurate outside the range of the training set [49], and
EFPA is in general not accurate for NH-OLSs [8], [50].

In particular, the high computational efficiency but low
accuracy/robustness of EFPA is due to its independence
assumption, which ignores state and traffic dependencies
between server groups when decomposition is applied.
The purpose of IESA [8], [45] is thus to develop a
decomposition-based approximation like EFPA that can pre-
serve such dependencies under decomposition. To address
errors caused by EFPA’s independence assumption when
applied to NH-OLSs, IESA applies decomposition to a (fic-
titious) surrogate of the original system to be evaluated. The
surrogate system contains special rules regarding the over-
flow of requests between server groups such that dependen-
cies between the server groups are preserved under decompo-
sition, whereas decomposition of the original system destroys
these dependencies.

A. CALL ATTRIBUTES
To introduce IESA, we first define a set of three call attributes
assigned to each request in the IESA surrogate model:

• an identity attribute 1, containing general information
about the request such as traffic source and arrival time;

• a history attribute, containing a list of server groups
previously attempted by the request; and

• a congestion estimate �, containing the estimated num-
ber of busy (fully occupied) server groups in the system.

All fresh requests to the system start with an empty history
attribute and a congestion estimate of zero. All requests over-
flowing from a fully occupied server group add that server
group to their history attribute and increment their congestion
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FIGURE 3. Illustration of the information exchange mechanism in the fictitious IESA surrogate model. In this example, each
server group contains three servers and can therefore handle up to three simultaneous requests.

estimate by one. Congestion estimates can also be altered via
information exchange, which we shall describe in the next
subsection.

B. CONCEPTUAL DESCRIPTION AND UNDERPINNING
RATIONALE
The IESA surrogate model contains an information exchange
mechanism based on the following rules:

• A request arriving at a server group with at least one
available server is served at that group and no informa-
tion exchange occurs.

• For a request arriving at a fully occupied server group,
find the most ‘‘senior’’ request in service at that server
group, defined as the request with the highest congestion
estimate (ties broken arbitrarily). The incoming request
exchanges congestion estimates with this senior request
if and only if it has a lower congestion estimate than the
senior request.

An example of the information exchange mechanism in oper-
ation is shown in Fig. 3. Note that the information exchange
mechanism is only used by the (fictitious) surrogate system to
estimate the blocking probability for IESA and is not actually
applied to the real system.

In addition to an information exchange mechanism, the
IESA surrogate model has an early abandonment mecha-
nism, in which a request may leave the system as a blocked
request without attempting all server groups available to it.
The probability of early abandonment increases with respect
to the length of the request’s history attribute and the value of
its congestion estimate, and also depends on the total number
of server groups available to the request and the total number
of server groups in the NH-OLS. For the case where all
requests may attempt the same number of server groups, two
equations have been proposed [8], [13]:

Pn,k,�,G =


(
�−n
k−n

)(G−n
k−n

) , n ≤ k ≤ G

0 0 ≤ n < k,

(4)

P+

n,k,�,G =


(

�
k−n

)( G
k−n

) , n ≤ k ≤ G

0 0 ≤ n < k,

(5)

where n is the number of attempted server groups so far, i.e.
|1|, k is the maximum number of server groups each request
is allowed to attempt, � is the congestion estimate, and G
is the total number of server groups in the system. Due to
the nature of the information exchange mechanism, we have
� ≥ k .

Note the similarities of (4) and (5) to (1). This is because
assuming that the probability of selecting k−n fully occupied
server groups depends only on � and G naturally yields
an EIG-like scenario where heterogeneities in the NH-OLS
are ignored. (However, unlike EIF, these heterogeneities are
captured elsewhere in the IESA algorithm.) Additionally,
(5) results in higher blocking probability estimates than (4)
except when k = G.
The early abandonment mechanism is thus designed such

that requests most likely to abandon the system early are
also the requests most likely to be blocked anyway in the
original NH-OLS, where no early abandonment mechanism
is applied, such that the blocking probability of the IESA
surrogatemodel is close to (but generally slightly higher than)
that of the original NH-OLS.

Note that while the information exchange and early aban-
donment mechanisms of IESA were designed to address
errors caused by its independence assumption, they also
address errors caused by the Poisson assumption. This is
because the probability of early abandonment increases with
respect to the congestion estimate and the number of previ-
ously attempted server groups. Therefore, the left-over non-
removed traffic has a higher portion of fresh traffic, which
is Poisson and independent, and hence becomes closer to
Poisson and independent overall. This leads to less error when
decomposition is applied to the IESA surrogate model (rela-
tive to direct decomposition of the original ‘‘true’’ model in
EFPA), as the decomposition methodology assumes Poisson
and independent input to each server group. This gives an
intuition of why IESA generally produces a good estimate of
blocking probability for the original NH-OLS under evalua-
tion; this is depicted in Fig. 4. Thus the success of IESA lies
in the ability to remove ‘‘unwanted’’ (non-Poisson and highly
dependent) traffic flows from the system in such a way that
(1) the total blocked and removed traffic in the surrogate sys-
tem is similar to the volume of blocked traffic in the original
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FIGURE 4. Conceptual illustration of blocking probability approximation
in NH-OLSs based on the IESA framework (adapted from [45], [50]).

system, and (2) the non-removed traffic is easier to evaluate
than in the original system. A more detailed explanation of
this ability is given in [50, §3.1–3.2] for a predecessor to
IESA, which works under the same two principles.

To further highlight how the information exchange mecha-
nism in IESA reduces the complexity of the surrogate system,
making it easier to evaluate, note that the surrogate system can
be described using a hierarchical traffic model, based on the
congestion estimate. This is because, due to the information
exchange and early abandonment mechanisms, we are able to
transform the original non-hierarchical traffic structure (con-
taining mutual traffic dependencies) to a hierarchical traffic
structure (containing one-way traffic dependencies only) with
a finite number of levels, where each level corresponds to one
congestion estimate level. The elegance of such a structure
is that, due to one-way traffic dependence, the volume of
requests to each server group at each congestion estimate
level is equal to that as if all requests with a higher con-
gestion estimate were barred from the system [45]. As a
result, in IESA, we can calculate the traffic from the bottom-
most level first and then move up one level at one time
until we reach the highest level, as in a traditional hierar-
chical OLS. Therefore, we can finish the calculation in a
fixed, finite number of iterations, unlike EFPA, for which
fixed-point iteration is generally required and the rate of
convergence is not guaranteed. More specifically, since the
levels of the IESA hierarchy are linked to the congestion
estimate, and a higher congestion estimate is linked to both
higher system congestion and traffic dependencies, the IESA
surrogate model preserves this congestion and dependency
information under decomposition (as it is encoded into the
traffic hierarchy itself), while this information is completely
destroyed under direct decomposition of the original model
(as in EFPA).

FIGURE 5. Patient rejection probability for a system of intensive care
units with respect to the total patient arrival rate.

C. NUMERICAL EXAMPLE — INTENSIVE CARE
To demonstrate the impact of EFPA’s approximation error in
a practical setting and the improvement of IESA over EFPA,
consider a system of fifteen intensive care units (ICUs) with
fifteen beds each. Patients may be referred to any ICU in the
system, forming a fully-connected NH-OLS. The rejection
probability of patients due to lack of capacity can therefore be
computed exactly using the Erlang B formula. Fig. 5 shows
the rejection probability of the ICU systemwith respect to the
total arrival rate of patients to the system, assuming a mean
length of stay of fifteen days, as evaluated using the Erlang B
formula, EFPA, and IESA. Note that EFPA shows negligible
(less than 10−6) patient rejection even as the actual rejection
probability approaches one percent, whereas IESA provides
a much more accurate estimate of the actual rejection prob-
ability, with up to six orders of magnitude of improvement
over EFPA. Furthermore, a bed allocation level considered
by EFPA to meet a quality of service with a one-percent
rejection probability of patients will in fact see roughly four
times as many patient rejections (with potentially fatal conse-
quences), while IESA can basically meet the target quality of
service.

D. THEORETICAL RESULTS
A number of theoretical results regarding IESA are given
in [45] for an NH-OLS model using random routing (mean-
ing that requests attempt server groups available to them
in random order). Provided that the arrival process of fresh
requests to each server group is an independent Poisson
process:

• IESA (and its extensions in Section III-F) is asymptot-
ically exact as the number of server groups increases
to infinity, while the number of server groups available
to each request remains fixed. Alternatively, the arrival
process of fresh requests to each server group can be an
independent non-Poisson process, as long as the node
model representing each decoupled server group exactly
models the arrival process of fresh requests to each
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server group and the service time distribution of the
requests is modeled exactly. Note that this result is very
general and holds even when the offered load of fresh
requests to each server group, the number of servers in
each group, and/or the number of server groups each
request is allowed to attempt is heterogeneous. As far as
we know, this is the first result on asymptotic exactness
for NH-OLSs (note that Kelly’s asymptotic exactness
result for EFPA [48] is for a network with fixed routing,
i.e., without overflow).

• For the case that the arrival process of fresh requests to
each server group is an independent Poisson process, all
server groups are accessible to all requests, and each
server group has only one server, the IESA blocking
probability estimate is always between the true blocking
probability and the EFPA estimate, i.e. IESA is always at
least as good as EFPA in terms of accuracy. Furthermore,
under critical loading (mean arrival rate equal to the
server capacity), the approximation error of IESA is
bounded (in terms of the ratio between the true blocking
probability and the IESA estimate) while the approxi-
mation error of EFPA is unbounded. These results were
proved by showing equivalence of IESA in this special
case to an earlier surrogate-based approximation [50],
for which these theorems were proved in [101].

In particular, the first result above demonstrates that the
asymptotic behavior of our IESA surrogate model is consis-
tent with the asymptotic behavior of the original NH-OLS in
this regime. These results thus provide some further level of
justification for the design of our IESA surrogate model.

E. PRACTICAL APPLICATIONS
As shown in Table 1, the IESA can evaluate the performance
of many real word applications, which can be modeled as
NH-OLSs. Here we provide three examples.

1) IESA FOR AN INTENSIVE CARE NETWORK MODEL
In [13], IESA was applied to a cluster of intensive care
units (ICUs). Due to the nature of intensive care patients,
only certain types of patients may be referred to more than
one ICU; therefore, the network contains a mix of both
overflow-capable and local-only traffic. It was found that
while IESA provides a good estimate of the rejection rate
of overflow-capable patients, EFPA is more accurate when
estimating the rejection rate of local-only patients.

However, the ICU cluster model in [13] is limited
to patients with either single-ICU or all-ICU availability.
A challenge for the future will be to apply IESA to sys-
tems with more complicated mixes of server availability. For
example, in content delivery networks (another application
of NH-OLSs) the number of replications of some content is
closely related to the demand for that content. As demand for
different content can vary greatly, so too can the number of
file replications, i.e. the server availability for each type of
request.

2) IESA FOR CELLULAR NETWORKS (IESA-CN)
In [46] and [102], IESA was applied to a cellular network
model, in which requests offered to each cell may only be
served by the target cell (i.e., by that cell’s associated base
station) or one of its neighboring cells. Due to this local-
ity effect, the original IESA is not accurate for the cellular
network model. A modified version of IESA, namely IESA-
CN, improves the accuracy of IESA for cellular networks
by modifying the probability for which early abandonment
occurs after each request overflow from a fully occupied
cell. Curve-fitting was employed to optimize IESA-CN for
a wide range of cellular network configurations using only a
single parameter. Finally, IESA-CN was applied to cellular
networks with both irregular cell boundaries and loads and
shown to be accurate even in this case.

3) OPTICAL NETWORKS
An earlier version of IESA, called the Overflow Priority Clas-
sificationApproximation (OPCA) [50], has been successfully
applied to optical networks [103], [104], [105], [106]. This
includes bufferless optical networks with deflection routing,
inwhich optical bursts/packets are permitted to overflow to an
alternate trunk when all channels comprising the first-choice
trunk are busy [103]. The blocking probability of such net-
works depends on the network size, trunk size, the maximum
number of allowable deflections, and burst/packet length.
In [104], theoretical bounds on the accuracy of OPCA were
presented for optical burst-switching networks with deflec-
tion routing. It was also shown numerically that high accuracy
can be obtained using a small number of OPCA iterations.
In [105], OPCA was applied to circuit-switched optical net-
works with both long-lived and short-lived transmissions,
where long-lived transmissions have preemptive priority over
the short-lived ones. Finally, in [106], OPCA is extended to
apply to multi-service multi-rate optical networks in which
certain transmissions may occupy multiple bandwidth chan-
nels simultaneously on the same path. For the purpose of
network dimensioning, a hybrid method using the maximum
of EFPA and this new ‘‘service-based OPCA’’ was proposed.

F. FURTHER EXTENSIONS
In this subsection, we describe two extensions to IESA.

1) IESA WITH TWO-STREAM NODE MODEL (IESA-2S) FOR
NON-POISSON INPUT TRAFFIC [45]
It has been found that in NH-OLSs with random routing,
overflow traffic quickly converges to Poisson as the total
number of server groups grows [45]. However, consider a
modified system in which the first server group attempted
by each request is not random. This aligns with real-world
applications where requests will often have a preferred server
group, for example one based on physical proximity. In such
cases, it is important to capture the possible non-Poisson
nature of fresh request arrivals. This is implemented in IESA-
2S [45], which models fresh and overflow traffic to each
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server group (‘‘node’’) separately. IESA-2Swas found in [45]
to be more accurate than plain IESA for NH-OLSs with both
bursty and smooth fresh traffic. Note that smooth fresh traffic
is another of Lotze’s open challenges from [26].

Furthermore, if the node model of each server group cap-
tures the nature of the fresh requests to the NH-OLS exactly,
then IESA-2S is asymptotically exact as the total number
of server groups in the system, while the number of server
groups available to each request remains fixed [45]. This
extends a previous theoretical result [45] for IESA and EFPA
which only applies to systems with Poisson fresh traffic.

Finally, as a step towards addressing Lotze’s original prob-
lem regarding blocking probability evaluation in heteroge-
neous NH-OLSs, [45] also considers certain types of het-
erogeneities, including heterogeneous loading, server group
availabilities, and server group sizes. In all three cases, IESA-
2S was shown to be the most accurate decomposition-based
approximation among all considered by a significant margin.
Furthermore, the aforementioned asymptotic exactness result
for IESA-2S applies even in these heterogeneous cases.

2) IESA WITH NEURAL NETWORKS (IESA+NN)
As stated previously, the success of IESA lies in whether
the total blocked and removed traffic in the surrogate system
is similar to the volume of blocked traffic in the original
system. IESA+NN [47] further improves the accuracy and
robustness of IESA by modifying the probability for which
early abandonment occurs after each request overflow, as in
IESA-CN, even though there is no locality in the original
NH-OLS model. Additionally, while the tuning parameter in
IESA-CN was fitted using classical polynomial regression,
in IESA+NN, neural networks are used instead. A conceptual
diagram illustrating the connection between the NN and the
IESA algorithm in IESA+NN is shown in Fig. 6. Such hybrid
models, where domain-specific knowledge (i.e., teletraffic
theory in the current use case) is incorporated into machine
learning algorithms as prior knowledge, have been previ-
ously studied in various applications throughout science and
engineering [99], [100]. In such hybrid models, the neural
network compensates for inaccuracies in the prior model,
while the the prior model can control extrapolation in input
regions lacking training data, making the model more robust.
Additionally, the use of a prior model means that hybrid mod-
els can generally be trained using less data than conventional
NN models [99].

The result is a highly accurate, robust, and computation-
ally efficient (given a pre-trained neural network) algorithm,
including for NH-OLSs with non-Poisson fresh traffic and
non-exponential service times (as are assumed by the original
version of IESA). Moreover, IESA+NN was found to be
more robust than direct neural-network-based approximation
of NH-OLS blocking probability when applied to parameter
ranges outside of that covered by the training set, due to the
bounds set by the IESA portion of the approximation, which
is guided by the underlying teletraffic theory. Note that since
the neural network in IESA+NN tunes a parameter that is

FIGURE 6. Conceptual digram for IESA+NN.

FIGURE 7. 49-cell wraparound (toroidal) network topology. Reproduced
from [49].

specific to IESA’s early abandonment mechanism, there is no
equivalent EFPA+NN.

IESA+NN has also been applied to cellular and wireless
networks and shown to be more accurate and robust than both
IESA-CN and the direct neural-network-based approach [49].
To demonstrate the application of IESA+NN to cellular net-
works, we consider a 49-cell wraparound (toroidal) network,
as shown in Fig. 7. All cells support up to 10 simultaneous
requests and receive the same traffic load except for a central
cluster of seven cells, each of which receives α times the
regular load (α = 0.8 to 2).
We compare IESA-CN [46], IESA+NN for cellular net-

works [49], and direct NN evaluation of the blocking prob-
ability, with a blocking probability range of 10−2 to 10−3

for the training set and 10−2 to 10−4 for the training set.
The results, shown in Fig. 8, demonstrate that IESA-CN
is moderately accurate across the entire range of the train-
ing set, whereas direct NN fails to extrapolate to blocking
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FIGURE 8. Blocking probability results for a cellular network model. Subfigure (b) shows the poor extrapolation ability of the direct NN
approach. Reproduced from [49].

probabilities outside the training set. Finally, IESA+NN is
more accurate and robust than the other two approximations,
producing reliable blocking probability estimates across the
entire training-set range.

IV. DIRECTIONS FOR THE FUTURE DEVELOPMENT
OF IESA
In this section we describe potential directions for the future
development of IESA:

A. APPLYING IESA TO OTHER APPLICATIONS
IESA can be applied to other important applications in which
the system can be modeled as an NH-OLS. However, each
new application has its own challenges for applying IESA
to. For example, consider an ICU network in a metropolitan
city, composed of multiple connected clusters. This creates
a two-layer patient flow architecture with both intra-cluster
(local) and inter-cluster transfer of patients based on ICU
occupancy, in contrast with the single-cluster model previ-
ously considered in [13] (see Section III-E1). Note that IESA
has already been applied previously to multi-layer NH-OLSs
with both ‘‘vertical’’ and ‘‘horizontal’’ overflow [107], but
without multiple patient types. Furthermore, the approxima-
tion errors of IESA in [107], while much less than for EFPA,
are still quite large in many cases, highlighting the need for
further improvement.

B. IMPROVING THE ACCURACY OF IESA AND/OR
IESA+NN
Wecan further improve the accuracy of IESA by, for example,
developing new surrogate systems to replace the current sys-
tem. This involves a trade-off between improving the accu-
racy of IESA and maintaining computational efficiency. For
example, we may replace the (scalar) congestion estimate �

in the current surrogate systemwith the set of server groups in
the system believed to be busy (either via direct observation
or information exchange). Preliminary results by the authors
of this review suggest that such modification improves the
accuracy of IESA slightly in NH-OLSs with heterogeneous
loads, at the cost of increased computational complexity.

Another approach is to examine the effect of differ-
ent neural network algorithms when used in IESA+NN,

improving upon existing IESA+NN implementations as
described in Section III-F2. For example, one limitation of
current IESA+NN implementations [47], [49] is that the
inputs to the NN are based on system-wide average values;
thus heterogeneities in the network (e.g., in terms of the
offered load or number of neighbors of each cell) are not
captured by the NN part of IESA+NN.

C. IESA AS A CONGESTION CONTROL METHOD
The information exchange mechanism in IESA’s fictitious
surrogate model can potentially be used as a congestion
control mechanism. In particular, networks and systems
where overflow traffic consumes more resources than non-
overflow traffic are prone to bistability, in which the net-
work/system gets stuck in a high-blocking state where most
requests are overflow requests [74], [75]. Note that while
the surrogate model in IESA, as used currently, is a ficti-
tious model, the objective of IESA-based congestion control
is to use IESA’s mechanisms in the actual system to be
controlled.

Preliminary results [108] suggest that information-
exchange-based congestion control can be used on its own
or in conjunction with traditional trunk reservation [3] to
stabilize such networks and systems. Further investigation
requires answering the following research questions:

• What indicators should be used to estimate the conges-
tion level of the network? For example, the current IESA
surrogate model assigns an � attribute to each request,
denoting the estimated number of busy server groups
in the system. Alternatively, each request may carry a
set of server groups believed to be busy. The challenge
here is to strike a balance between the effectiveness of
the control mechanism and the required communication
overhead in the system to be controlled.

• How to estimate the actual congestion level of the net-
work from the values of the indicators? For example,
we may assume a linear relationship.

• How to respond to the congestion? For example, wemay
discard new arrivals with some probability when the
congestion indicator reaches a certain level (as in the
current IESA surrogate model).
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V. CONCLUDING REMARKS
In this paper, we described and compared different meth-
ods for the evaluation of blocking probability in NH-OLSs,
an important century-long challenge in teletraffic theory with
applications in various service and telecommunications sys-
tems, including wireless communications, cloud computing,
intensive care and emergency services. Among these, IESA
and its extensions provide a good combination of accuracy,
robustness, and computational efficiency across a wide range
of system parameters, thus forming a major breakthrough in
this century-long effort. The introduction of machine learning
in IESA+NN, as detailed in Section III-F2, provides further
improved accuracy and robustness, and was shown to bemore
robust than a direct machine-learning-only approach. Note
that since the only difference between IESA+NN and base
IESA is the modification of the early abandonment mecha-
nism, IESA+NN can be applied to any NH-OLS application
where IESA and EFPA can be used, making IESA+NN a
generic and versatile approach for blocking probability eval-
uation in NH-OLSs.

Although discrete-event simulation remains the golden
standard for accurate blocking probability evaluation in
stochastic systems, the availability of fast yet accurate/robust
approximation frameworks such as IESA will be very useful
in applications that require rapid performance evaluation of
a large number of configurations, such as optimization and
dynamic control. Such approximation frameworks can also be
useful for obtaining a better understanding of the mechanics
behind congestion in stochastic systems by reducing complex
systems into their most abstract form, while simulation can
be used for validation of modeling results at the expense of
requiring more computation time and data.
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