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A B S T R A C T

In mobile cellular design, one important quality-of-service metric is the blocking probability. Using computer
simulation for studying blocking probability is quite time-consuming, whereas existing teletraffic-based
methods such as the Information Exchange Surrogate Approximation (IESA) only give a rough estimate of
blocking probability. Another common approach, direct blocking probability evaluation using neural networks
(NN), performs poorly when extrapolating to network conditions outside of the training set. This paper
addresses the shortcomings of existing teletraffic and NN-based approaches by combining both approaches,
creating what we call IESA-NN. In IESA-NN, an NN is used to estimate a tuning parameter, which is in turn
used to estimate the blocking probability via a modified IESA approach. In other words, the teletraffic approach
IESA still forms the core of IESA-NN, with NN techniques used to improve the accuracy of the approach via
the tuning parameter. Simulation results show that IESA-NN performs better than previous approaches based
on NN or teletraffic theory alone. In particular, even when the NN cannot produce a good value for the tuning
parameter, for example when extrapolating to network conditions not experienced in the training set, the final
IESA-NN estimate is generally still accurate as the estimate is primarily determined by the underlying teletraffic
theory, with the NN determining the tuning parameter playing a supplementary role. The combination of the
IESA framework with NN in a secondary role makes IESA-NN quite robust.
1. Introduction

Evaluating quality-of-service (QoS) metrics and meeting minimum
QoS requirements form crucial components of many mobile cellular de-
sign and optimization problems, including base station (BS) sleeping [1,
2], BS deployment [3,4], user association [5], dynamic routing [6],
network resource allocation [7], and load balancing [8]. Accurate,
robust, and computationally efficient algorithms for QoS evaluation are
thus very important for obtaining practical solutions in such search-
based optimization problems. This is especially true for optimization
problems on large-scale networks, which require the QoS evaluation of
a large number of candidate solutions.

In particular, the blocking probability of requests in the network is a
widely-used QoS metric, defined as the long-term average proportion of
mobile user requests not successfully completed. As there are generally
no closed-form solutions for evaluating blocking probability and other
QoS metrics in practical optimization problems, one traditional way to
evaluate such metrics is via computer simulation, which can achieve
a high level of accuracy under most circumstances but is considered
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time-consuming and not scalable for application scenarios with a large
number of BSs and a high volume of user requests, e.g. a densely-
populated area served by novel millimeter-wave BSs. This disadvantage
prevents simulation from being effectively adopted in next-generation
mobile applications. The problem of long running times is further
exacerbated in new mobile communications applications with very
high QoS requirements, for example Ultra-Reliable Low-Latency Com-
munication (URLLC), where the blocking probability requirements are
typically at or below 10−6. Therefore, other approaches must be used.

A list of abbreviations used in this paper is given as Table 1.

1.1. Teletraffic theory-based approaches

Another method for blocking probability evaluation is using tele-
traffic theory-based approaches such as the classical Erlang Fixed Point
Approximation (EFPA) [9]. Kelly [9] demonstrated that for networks
with fixed routing, a fixed-point algorithm, using the means of the
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Table 1
List of key abbreviations.

Abbreviation Meaning

BLS Broad learning system (NN model)
BS Base station
EFPA Erlang Fixed Point Approximation
ELM Extreme learning machine (NN model)
EEM-ELM Enhancement of error-minimized ELM
IESA Information Exchange Surrogate Approximation
IESA-CN IESA for cellular networks
IESA-NN IESA with neural networks
NN Neural network
R3S Round robin with random start
SLFN Single-hidden-layer feedforward network
QoS Quality of service

per-link offered traffic alone, is asymptotically exact as the number of
channels per link tends to infinity (with the offered traffic increasing in
proportion). Although Kelly [9] focused on wired telecommunication
networks, Kelly also demonstrated how the method could be applied
to channel assignment in a cellular radio network. Finally, Kelly also
demonstrated the properties of EFPA when applied to networks with
alternate routing. In such cases, EFPA may have multiple fixed points
corresponding to different metastable states of the network, caused by
feedback loops that arise when alternate-routed traffic consume more
resources than direct traffic.

However, the two main simplifying assumptions of EFPA, namely
that of Poisson traffic (including overflow traffic) and independence
between base stations (BSs), result in large approximation errors in
some cases [10]. In addition, EFPA tends to be especially inaccurate
when the system blocking probability is low (e.g., below 10−3) and
when the system exhibits high levels of mutual overflow. Mutual over-
flow is a phenomenon that occurs when traffic offered to overloaded
BSs overflows (is redirected) to neighboring BSs, in turn overloading
those BSs and yielding overflow traffic to the original BS.

The performance evaluation of overflow loss systems with mutual
overflow is a long-standing problem [11]. Over the past decade, a
new approach has emerged to address this problem, by modifying
EFPA to address its shortcomings for such networks (caused by its
simplifying assumptions). This has led to what is known as Informa-
tion Exchange Surrogate Approximation (IESA) framework [12]. IESA
applies an EFPA-based decomposition approach on a fictitious surrogate
system instead of the real system to be evaluated, aiming to capture fea-
tures in systems with mutual overflow traffic that are ignored by EFPA.
As a result, IESA exhibits significantly improved accuracy and robust-
ness over EFPA, while maintaining EFPA’s computational efficiency. To
the best of our knowledge, there are no viable teletraffic theory-based
approaches other than IESA that can effectively and efficiently evaluate
blocking probability in overflow loss systems with mutual overflow.

A revised version of IESA, called IESA for Cellular Networks (IESA-
CN) [13], was devised for cellular networks, which have unique locality
and mobility features not present in previously-considered overflow
loss models such as video-on-demand systems. By introducing a tuning
parameter to reflect the extent of traffic overflow and mobility among
different BSs, IESA-CN can capture the unique features of cellular
networks and obtain highly accurate approximations in many cases.
However, IESA-CN remains inaccurate in some cases, for example when
the offered traffic is extremely low or when user mobility is extremely
high. Improving the accuracy and robustness of IESA-CN thus forms the
main objective of this paper.

1.2. Neural network-based approaches

Neural networks (NN) are now commonly used in many applica-
tions. In particular, single-hidden-layer feedforward network (SLFN)
models, such as the broad learning system (BLS) [14] and extreme
2

learning machine (ELM) [15], with a sufficient number of hidden
nodes, provide universal approximation ability, namely the ability to
approximate any continuous function with any desired precision. In
the past decade, the NN approach has been adopted for traffic predic-
tion and QoS evaluation in a number of telecommunications applica-
tions [16–20].

In particular, the SLFN approach has been used to evaluate blocking
probability in optical networks [21]. However, this approach was
shown to provide low accuracy when the blocking probability of the
network is small (e.g., below 10−3). As the range of blocking probabil-
ities in practical telecommunications networks can span several orders
of magnitude, this approach is not suitable for estimating blocking
probability values. However, this issue can be readily resolved by
first applying a logarithmic transformation to the blocking probability
values [17,18].

In addition, [17,18] also employ ELM-based approaches for con-
structing an SLFN for blocking probability estimation in optical net-
works. Since the input weights and activation biases of the hidden layer
nodes in ELM-trained SLFNs are randomly generated, only the output
weights need to be computed, using an algorithm that is several orders
of magnitude faster than backpropagation in traditional SLFN training
algorithms. The output weights can be computed based on a matrix
pseudoinverse or incrementally as each hidden node is added to the
SLFN [22–24].

Nevertheless, there are some well-known drawbacks of NN-based
approaches. Among these, the most fundamental problem is the lack of
explainability of NN output (i.e., the black box problem [25]), where
there is no specific method for determining or interpreting the rationale
behind decisions made by an NN. Furthermore, the NN output may be
very poor for input values outside the range of the training set; in other
words, NNs generally have poor extrapolation capabilities.

1.3. Contributions of this paper

This paper considers a cellular network model with user mobility
and mutual overflow traffic among BSs due to dynamic user association
mechanisms. We aim to develop an accurate evaluation method for
request blocking probability across a wide range of network conditions.
Instead of using a pure black-box NN approach, which heavily depends
on the number and variability of training samples, this paper proposes
a hybrid approach for generating an accurate estimate of blocking
probability for a wide range of scenarios.

The fundamental model underlying our proposed approach is based
on the IESA framework with an additional tuning parameter 𝑘. Whereas
𝑘 was previously evaluated in IESA-CN using polynomial regression
[13], in this paper the value of 𝑘 is evaluated using an NN. We shall
therefore call our proposed method IESA with neural networks (IESA-
NN). In both IESA-CN and IESA-NN, 𝑘 depends on network parameters
including the offered load to each BS, the level of user mobility, the
capacity (number of channels) of each BS, and the neighbor set of each
BS cell in the network. We shall use an enhancement of error-minimized
ELM (EEM-ELM) [18,26] to train our NN.

The proposed IESA-NN method in this paper is based on a similar
approach in [19] for a generic and highly simplified overflow loss
system model. Despite its simplicity, the model considered in [19]
still possesses the key element of mutual overflow and demonstrates
the benefits of combining the IESA framework with NN to evaluate
blocking probability in such networks. In this paper, we further develop
IESA-NN by extending it to a much more realistic application/system
model with additional features, namely locality (a request may only
overflow to a neighboring cell) and user mobility (a user may move
between cells during its request). In this paper, we show that despite
these additional network features, our IESA-NN approach remains ef-
fective at evaluating blocking probability in cellular networks. This
again demonstrates the versatility and power of the IESA approach with
the help of NN.
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Table 2
Cellular network model notations.

Symbol Meaning

𝑐 Capacity of each BS (number of channels)
𝛿 Migration rate of requests between neighboring cells
𝜃 Probability that a request will undergo further handover before

completion, equal to 𝛿∕(1 + 𝛿)
𝑁 Number of neighbors of each cell in the network, in this case 6
𝛤𝑖 Set of neighboring cells of cell 𝑖
𝛾𝑖,𝑛 𝑛th BS in some arbitrary ordering of 𝛤𝑖
𝐺 Number of cells/BSs in the network
𝑔𝑖,𝑟,𝑛 BS attempted by requests at cell 𝑖 with 𝑛 overflows, where 𝑟 is a

random starting index, as defined in (2)
𝜆𝑖 Offered load of fresh requests to cell 𝑖
𝜆 Mean load of fresh requests to each cell
𝐵𝑖 Non-completion probability for requests originating at cell 𝑖, i.e.,

the probability that such requests are blocked (immediately) or
dropped (during handover)

𝛥 In the fictitious IESA surrogate model, the set of previously
attempted BSs of a given request (reset upon handover)

𝛺 In the fictitious IESA surrogate model, the congestion estimate
attribute of a given request (reset upon handover)

Note that in the original IESA-CN [13], which used simple second-
rder polynomial regression rather than NNs to evaluate 𝑘, could not

maintain accuracy across the full range of parameters considered. In
this paper, we show that, using EEM-ELM, we can obtain improved val-
ues of 𝑘 and in turn produce more accurate and robust approximations
of network blocking probability compared to not only IESA-CN but
also methods based solely on NN for blocking probability evaluation
(‘‘direct NN’’).

2. Background

2.1. A modern cellular network and its mechanisms

2.1.1. Network model
We consider a cellular network with 𝐺 = 49 hexagonal cells, as

hown in Fig. 1. Such hexagonal lattices are commonly used as simple
ellular network models, e.g. [27,28]. Note, however, that our proposed
ethodology in this paper can be applied to cellular networks with

ither regular or irregular topologies, as long as the neighbors of each
ell are known. Each cell is associated with a single base station (BS).

There is a one-to-one correspondence between cells and BSs, and
e will use the terms ‘‘cells’’ and ‘‘BSs’’ interchangeably. Each BS has
capacity of 𝑐 channels. We assume negligible inter-cell interference,

or example by using an orthogonal frequency-division multiple access
OFDMA) transmission scheme.

We define a fresh request as a request offered to the BS by an
nd user physically located within that BS’s cell, which has not yet
ttempted access to any other BS. The offered load of fresh requests
o each cell 𝑖, 𝑖 ∈ {1,… , 𝐺}, is denoted as 𝜆𝑖. The set of neighbors of
ach cell 𝑖 is denoted 𝛤𝑖, such that 𝛤𝑖 ⊆ {1,… , 𝐺} ⧵ 𝑖. Note that for the
odel under consideration, |

|

𝛤𝑖
|

|

= 𝑁 = 6 for all BSs 𝑖 in the network.
Requests to the network have an exponentially distributed service

ime requirement with unit mean. Requests physically located in each
ell 𝑖 will migrate to a neighboring cell in 𝛤𝑖 with rate 𝛿, triggering a
andover event. A request newly arrived (physically) in cell 𝑖, either a
resh request or a handover request, will first attempt service from BS
. If all channels in BS 𝑖 are occupied, then the request will attempt
o obtain service from each BS in 𝛤𝑖 in random order. We say that this
equest overflows to the neighbors of BS 𝑖. Finally, if all BSs in 𝛤𝑖 are also

fully occupied, the request is blocked (for a fresh request) or dropped
(for a handover request).

A list of notations for the cellular network model is given in Table 2.
Hereafter:
3

Fig. 1. 49-cell wraparound (toroidal) network topology.

• The term ‘‘fresh request’’ refers to a request which has not yet
undergone any overflows or handovers.

• The term ‘‘handover request’’ refers to a request which has un-
dergone handover, with no overflows since the most recent han-
dover.

• The term ‘‘overflow request’’ refers to a request that has un-
dergone overflow since its last handover (or since arrival if the
request has not undergone any handovers).

• The term ‘‘origin cell’’ refers to the cell at which a fresh request
originates.

• The term ‘‘starting cell’’ refers to the cell in which a fresh or
handover request is physically situated, that is, the cell from
which it first attempts service after arriving at a new physical
location.

• The term ‘‘serving cell’’ refers to the cell that is currently serv-
ing the request, which may differ from the starting cell due to
overflow.

2.1.2. Handover and handover probability
We assume that the time between handover events for a given

request is exponentially distributed with mean 1∕𝛿, and that the proba-
bility 𝜃 that a request will undergo further handover before completion
s independent of elapsed time or the number of previous handovers.
herefore,

= 𝛿
1 + 𝛿

. (1)

Eq. (1) can be explained by noting that a request will either complete
at its current serving cell with rate 1, or undergo handover with rate
𝛿, with no other options.

Note that:

• The total load to a BS includes the original traffic of fresh re-
quests, handover traffic, and overflow traffic, which may be
caused by both fresh and handover requests.

• A handover request may overflow back to the previous serving
cell and continue to be served there, if it is a neighbor of the
new starting cell. On the other hand, the old serving cell may
have a maximum distance of two from the new starting cell and
a maximum distance of three from the new serving cell, forming
a straight line of adjacent cells: old serving cell, old starting cell,
new starting cell, new serving cell.
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Fig. 2. Routing sequences depicting 𝑔𝑖,𝑟,𝑛 for a given cell 𝑖 and two different starting
ndexes 𝑟. In this example 𝛾𝑖,𝑛, 𝑛 = 1,… , 6, is defined in a clockwise order. Gray arrows
enote blocked/dropped requests after 𝑁 + 1 = 7 overflows.

.1.3. Round Robin with Random Start (R3S)
As allowing full random routing of overflow traffic results in in-

ractable computational complexity, we shall approximate random
outing with round robin with random start (R3S) [12]. Recall that 𝑁 is

the number of neighbors of each BS in our model, and let
(

𝛾𝑖,1,… , 𝛾𝑖,𝑁
)

be an arbitrary ordering of the neighbor set 𝛤𝑖 for each BS 𝑖 in the
network. For convenience, define
[[

𝜒
]]

= 𝜒 −
⌊

𝜒 − 1
𝑁

⌋

𝑁.

In other words,
[[

𝜒
]]

equals 𝜒 minus the largest multiple of 𝑁 strictly
less than 𝜒 , such that

[[

𝜒
]]

∈ {1,… , 𝑁} for all positive integer 𝜒 .
The overflow count of a request is reset to zero upon a new han-

dover attempt. Finally, the index of the BS that a request with starting
cell 𝑖 and 𝑛 overflows is offered to, 𝑛 ∈ {0,… , 𝑁}, is:

𝑔𝑖,𝑟,𝑛 =

{

𝑖, 𝑛 = 0
𝛾𝑖,[[𝑗+𝑛−1]], 𝑛 = 1,… , 𝑁,

(2)

where 𝑟 is a random starting index. A graphical example depicting 𝑔𝑖,𝑟,𝑛
for a given cell 𝑖 is provided in Fig. 2. We can see that 𝑔𝑖,1,𝑛 = 𝛾𝑖,𝑛 and
𝑔𝑖,4,𝑛 = 𝛾𝑖,[[𝑛+3]] for 𝑛 ∈ {1,… , 6}, with 𝛾𝑖,𝑛 defined in a clockwise fashion
around cell 𝑖.

In this paper, we will use R3S to approximate full random routing in
EFPA, IESA-CN, and IESA-NN, while comparing against simulation re-
sults using full random routing. Numerical results in [12] demonstrated
that R3S is a close approximation to full random routing in terms of
blocking probability evaluation.
4

2.2. EFPA

EFPA is based on two simplifying assumptions:

1. All traffic in the network (including handover and overflow
traffic) is Poisson.

2. The traffic streams to all BSs are mutually independent.

he two assumptions above lead to a set of fixed-point equations that
an be solved via iterative substitution [29]. Furthermore, each BS can
e modeled using a simple Erlang B queue model. A brief derivation of
FPA for the current cellular network model is given in Appendix A.

.3. IESA and IESA-CN

IESA [12] is an EFPA-based approach that has been demonstrated to
mprove accuracy in blocking probability estimation compared to the
riginal EFPA. IESA applies EFPA on a fictitious hierarchical surrogate

system, where each request has two specifically designed attributes,
denoted 𝛥 and 𝛺. Specifically, 𝛥 records the BSs that a request has
attempted and been rejected from (due to lack of capacity), whereas 𝛺
erves as an estimate of the number of busy (full) BSs in the network.

For an overflowing request with attributes 𝛺 = 𝑗 and |𝛥| = 𝑛, the
robability that it will immediately abandon the network (i.e. blocking
r dropping) without attempting the remaining BSs is:

𝑘,𝑛,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑗 < 𝑁
( 𝑗−𝑛
𝑁−𝑛

)

( 𝑘−𝑛
𝑁−𝑛

)
, 𝑗 ≥ 𝑁,

(3)

where 𝑘 is a parameter denoting the maximum allowed 𝛺 value of
requests in the network. In addition to the abandonment policy defined
by (3), the fictitious IESA surrogate system also introduces rules for up-
dating 𝛥 and 𝛺 after each overflow, which are detailed in Appendix B.
Note that during a handover event, a request’s 𝛥 and 𝛺 are reset to ∅
(the empty set) and 0, respectively.

Based on the traffic hierarchy on 𝛺 created by the abandonment
policy, an EFPA-like process can be applied to estimate 𝐵𝑖 for each BS
𝑖 in the network. A full derivation is provided in Appendix B. Note that
the abandonment policy defined by (3) creates bounds on the blocking
probability estimated generated by IESA: 𝑘 = 1 creates a system with
no overflows, thus maximizing the blocking probability, while 𝑘 → ∞
disables the abandonment policy and causes IESA to converge to EFPA.
In other words, the accuracy of IESA-based approximations depend
heavily on the choice of tuning parameter 𝑘. In the original IESA [12],
designed for video-on-demand systems, 𝑘 was fixed to 𝐺, which is not
appropriate for networks such as cellular networks with strong locality
and mobility effects. To enhance the accuracy of IESA for cellular
networks, in [13] the concept of IESA for cellular networks (IESA-CN)
was proposed, in which the value of 𝑘 is obtained via second-order
polynomial regression, with training values obtained via simulation.

Figs. 3 and 4 give the basic idea of the IESA and IESA-CN ap-
proaches. The inputs are defined as in Table 2, with 𝜆 =

∑

𝑖 𝜆𝑖∕𝐺. In
both cases, the IESA component takes the network parameters and the
tuning parameter 𝑘 as input and outputs the blocking probability 𝐵𝑖 for
each BS 𝑖. The IESA methodology itself, shown in the figures as ‘‘IESA
steps’’, is described in detail in Appendix B.

The differences between IESA and IESA-CN can be described as
follows. In IESA, 𝑘 is a fixed input parameter, whereas in IESA-CN it is
derived from the network parameters. Note that 𝑘 can be interpreted
physically as the expected number of BSs a request is expected to visit
during its service, due to both overflow and handover, and is therefore

rounded to the nearest integer in IESA-CN.
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Fig. 3. Conceptual depiction of IESA. See Table 2 for a list of notations. Bold arrows
denote vector inputs/outputs.

Fig. 4. Conceptual depiction of IESA-CN. See Table 2 for a list of notations. Bold arrows
denote vector inputs/outputs. Note that all inputs to the second-order polynomial are
scalars.

2.4. Direct NN

Since SLFNs with sufficient hidden nodes provide universal approx-
imation ability [14,15], an SLFN was proposed in [16] for evaluating
blocking probability in optical networks. This approach first uses com-
puter simulation to obtain a training set

{(

𝐱𝓁 , 𝑦𝓁
)

∣ 𝓁 = 1,… , 𝑠
}

, where
𝐱𝓁 is a vector containing the network parameters of the 𝓁th training
sample, 𝑦𝓁 is the corresponding blocking probability, and 𝑠 is the num-
ber of training samples. However, direct use of the 𝑦𝓁 ’s as NN target
values was shown to yield poor results when the blocking probability
values are small.

To handle the large range issue when estimating blocking probabil-
ity values, a logarithmic transformation can be applied [17,18], such
that the training set of the SLFN becomes

{(

𝐱𝓁 , log
(

𝑦𝓁
))

∣ 𝓁 = 1,… , 𝑠
}

.
In addition, ELM-based learning [17,18] provides a more computation-
ally efficient incremental approach to constructing the SLFN [22–24]
that is several orders of magnitude faster than backpropagation for
traditional NNs. We can extend the approach of [17,18] to handle the
case of cellular networks, as shown in Fig. 5. In this approach, the input
vector 𝒙𝓁 for a given sample network 𝓁 is its collection of network
parameters 𝜆, 𝑁 , 𝛿, and 𝑐, as defined in Table 2, and the corresponding
utput, is the logarithm of the network probability. As the (logarithm
f the) blocking probability is computed directly from the network
arameters, we call this the Direct-NN approach.

The Direct-NN approach, as shown in Fig. 5, suffers from a major
5

hortcoming known as the black-box problem [25], where the behavior
Fig. 5. Conceptual depiction of Direct-NN. See Table 2 for a list of notations. Note
that all inputs to the ELM network are scalars.

of a trained NN cannot be readily explained. Additionally, NNs can only
be trained based on the available data, and do not contain any intrinsic
knowledge of the system to be approximated. Therefore, NNs generally
do not possess any extrapolation ability to input parameter ranges not
previously seen, as shown in Section 4.

In the remainder of this paper, we propose a novel hybrid approach
for blocking probability evaluation in mobile cellular networks. In this
hybrid approach, the fundamental evaluation step is based on the
IESA framework with tuning parameter 𝑘, as in IESA-CN. However,
this value 𝑘 is now evaluated using a trained SLFN rather than via
polynomial regression, as in IESA-CN. Finally, an analytic continuation
of (3) is used to allow for non-integer values of 𝑘 to be used within
the IESA framework, based on the identities

(𝑛
𝑚

)

= 𝑛!
𝑚!(𝑛−𝑚)! and 𝑛! =

(𝑛 + 1). Numerical results in Section 4 demonstrate that the new
ybrid approach, which we call IESA-NN, is more accurate and robust
han both IESA-CN and Direct-NN, and has good extrapolation ability
hat is lacking in Direct-NN.

. Hybrid learning approach: IESA-NN

.1. Overview

This section considers a hybrid learning approach, namely IESA-
N, for estimating blocking probability in cellular networks. In hybrid

earning [30,31], machine learning and conventional models are com-
ined to produce more accurate results than can be obtained via either
ethod alone. In particular, the conventional model controls extrapo-

ation in regions of input space that lack training data, while the neural
etwork compensates for inaccuracies in the conventional model [30],
r is used to estimate its parameters, e.g., transmission and recovery
ates in epidemiological models [32]. Such approaches can be thought
f as a form of ‘‘theory-guided data science’’ [33]. Other applications
f hybrid learning approaches include power systems [34,35], oil and
as delivery [36], geology [37], and fluid mechanics [38].

A conceptual depiction of IESA-NN is shown in Fig. 6. The network
arameters 𝜆, 𝛿, 𝑁 , and 𝑐, as defined in Table 2, are first inputted

into an ELM network, which outputs an appropriate value of the tuning
parameter 𝑘 of the IESA algorithm. Then, the IESA algorithm gives an
estimate of the network blocking probability as the final output. In the
following subsections, we will describe the training procedure of the
ELM network.

Numerical results in Section 4 demonstrate that IESA-NN is more
accurate and robust than existing IESA approaches including the origi-
nal IESA and IESA-CN. Although replacing the default 𝑘 of IESA with a
fitted value in IESA-CN improves accuracy, the performance of IESA-CN
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Fig. 6. Conceptual depiction of IESA-NN. See Table 2 for a list of notations. Bold
arrows denote vector inputs/outputs. Note that all inputs to the ELM network are
scalars.

is still not ideal compared to IESA-NN, due to the limited approximation
ability of the second-order polynomial in IESA-CN. Additionally, using
an analytic continuation of (3) also improves performance of IESA-NN
compared to IESA-CN.

IESA-NN is also shown in Section 4 to outperform Direct-NN. For
Direct-NN, when the network parameters fall outside the range of the
training set, the NN may not be able to handle those particular network
conditions and will therefore yield inaccurate results. On the other
hand, even when previously unobserved network parameters result in
a poor choice of 𝑘 by the NN, final estimation of the request blocking
probability is still guided by a teletraffic model and thus does not
deviate from the true value too much.

3.2. Preparing the training data

In order to train an ELM network to output appropriate values of
𝑘, we need a training set

{(

𝐱𝓁 , 𝑘𝓁
)

∣ 𝓁 = 1,… , 𝑠
}

, where 𝒙𝓁 is a vector
containing the network parameters of the 𝓁th training sample, and
𝑘𝓁 is the corresponding value of 𝑘 for IESA-NN. The following steps
ummarize the method for obtaining 𝑘𝓁 for each training sample 𝓁:

1. Given network parameters 𝒙𝓁 , use computer simulation to obtain
the corresponding blocking probability 𝐵sim

𝓁 .
2. Using the IESA algorithm, use bisection search to find a value �̂�

such that 𝐵sim
𝓁

(

�̂�
)

= 𝐵sim
𝓁 and assign �̂� to 𝑘𝓁 . Use the best fit if

no match is found within the search range — since 𝐵sim
𝓁

(

�̂�
)

is
monotonic in �̂�, this will be one of the search bounds. For this
paper, the search bounds are 7 and 49, i.e. 𝑁 + 1 and 𝐺.

.3. ELM: notation

We consider an ELM network with a single hidden layer and 𝑁ℎ
idden nodes [15]. The output of the ELM network is given by

𝑁ℎ
(𝐱) =

𝑁ℎ
∑

ℎ=1
𝑤ℎ𝜙ℎ (𝐱) ,

here 𝒙 is a vector containing the network parameters for a given
ellular network, 𝑤ℎ is the weight between the ℎth hidden node and
6

he output node, and 𝜙ℎ is the output of the ℎth hidden node. In this
paper, we use the sigmoid function as the activation function for the
hidden nodes, such that

𝜙ℎ (𝐱) =
1

1 + 1∕ exp
{

𝝃⊺ℎ𝐱 + 𝛽ℎ
} ,

here 𝝃ℎ is the input weight vector of the ℎth hidden node, and 𝛽ℎ is
he corresponding activation bias, which are randomly generated for
ach hidden node ℎ [15].

Consider a training set with 𝑁𝑠 samples, i.e.
{(

𝐱𝓁 , 𝑘𝓁
)

∣ 𝓁 = 1,… , 𝑠
}

,
where 𝐱𝓁 and 𝑘𝓁 are the input vector and output value of the 𝓁th
training sample, respectively. For each hidden node ℎ, let

𝝋ℎ =

⎡

⎢

⎢

⎢

⎣

𝜙ℎ
(

𝐱1
)

⋮

𝜙ℎ

(

𝐱𝑁𝑠

)

⎤

⎥

⎥

⎥

⎦

,

and let 𝜱𝑁ℎ
=
[

𝝋1 ∣ … ∣ 𝝋𝑁ℎ

]

denote the output matrix of all the hidden
nodes over the entire training set. The training objective is then

argmin
𝐰

𝐽𝑁ℎ
(𝐰) , (4)

where 𝐽𝑁ℎ
(𝐰) is the objective function

𝐽𝑁ℎ
(𝐰) =

𝑁𝑠
∑

𝓁=1

(

𝑘𝓁 − 𝑓𝑁ℎ

(

𝐱𝓁
)

)2
= ‖

‖

‖

𝐤 −𝜱𝑁ℎ
𝐰‖‖
‖

2

2
,

where 𝐤 =
[

𝑘1 … 𝑘𝑁𝑠

]⊺
is the vector of target outputs and 𝐰 =

[

𝑤1,… , 𝑤𝑁𝑠

]⊺
are the output weights of the hidden layer. The solution

to (4) is simply 𝐰𝑁ℎ
= 𝜱†𝐤, where † denotes the Moore–Penrose

pseudoinverse.

3.4. Building the ELM network incrementally: EEM-ELM

In EEM-ELM [23,26], hidden nodes are added to the NN incremen-
tally. For each hidden node ℎ, the input weights 𝝃ℎ and bias term 𝛽ℎ
are generated randomly and then fixed as additional hidden nodes are
added. EEM-ELM provides a method of updating the output weights 𝐰
as each hidden node is added without retraining the entire network.
This reduces the complexity and running time of the training process.

Suppose the current ELM network contains 𝑁ℎ hidden nodes.
Adding an

(

𝑁ℎ + 1
)

th hidden node yields �̂�𝑁ℎ+1 =
[

𝜱 ∣ �̂�𝑁ℎ+1

]

.
The following recursive relationship can be used to compute �̂�𝑁ℎ+1
efficiently [23,26]:

𝐐𝑁ℎ+1 =
((

𝐈 −𝜱𝑁ℎ
𝜱†

𝑁ℎ

)

𝝋𝑁ℎ+1

)†

𝐓𝑁ℎ+1 =𝜱
†
𝑁ℎ

(

𝐈 − 𝝋𝑁ℎ+1𝐐𝑁ℎ+1

)†

�̂�𝑁ℎ+1 =

[

𝐓𝑁ℎ+1

𝐐𝑁ℎ+1

]

𝐤.

Finally, at each iteration in EEM-ELM, 𝑗 candidate hidden nodes are
generated and only the candidate yielding the best estimation error is
permanently added to the ELM network; thus

𝜑𝑁ℎ+1 = arg min
�̂�𝑁ℎ+1

𝐽𝑛 = arg min
�̂�𝑁ℎ+1

‖

‖

‖

𝐤 − �̂�𝑁ℎ+1�̂�𝑁ℎ+1
‖

‖

‖

2

2

4. Numerical results

In this section, we demonstrate and compare the performance of
four different approaches for blocking probability evaluation in cel-
lular networks, namely EFPA, IESA-CN, Direct-NN, and our proposed
IESA-NN.

4.1. Settings and datasets

We consider a 49-cell wraparound model as defined in Section 2.1.
As in [13], we designate a seven-cell cluster, denoted 𝐇, as the ‘‘hot
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Table 3
Summary of training and test set parameters.

Scenario Training
samples

Test
samples

Training set blocking
probability range

Test set blocking
probability range

In-Sample-1 2337 1002 1.36 × 10−4 to 0.075
In-Sample-2 1377 386 1.36 × 10−4 to 0.01
Out-Sample-1 2088 1251 0.001 to 0.075 1.36 × 10−4 to

0.075
Out-Sample-2 1983 356 0.001 to 0.01 1.36 × 10−4 to

0.001

Table 4
Cellular network parameters for the four scenarios.

Parameter Value(s)

𝜆𝑖 , 𝑖 ∉ 𝐇 7 to 10
𝛼 0.8 to 2
𝑐 10
𝛿 1
𝑁 6 (49-cell wraparound topology)

Fig. 7. Mean absolute logarithmic errors for Direct-NN and IESA-NN as applied to the
In-Sample-1 scenario.

cluster’’, in which the arrival rate to the BSs differs from the rest of the
network by a ratio of 𝛼. In other words, for all BS 𝑖, 𝑖 ∈ {1,… , 𝐺},

𝜆𝑖 =

{

𝜆, 𝑖 ∉ 𝐇
𝛼𝜆, 𝑖 ∈ 𝐇.

Note that 𝐇 is defined to contain one cell and its six neighbors, i.e. one
of the colored groups in Fig. 1.

To demonstrate that our proposed IESA-NN methodology can ac-
curately and efficiently evaluate blocking probabilities in mobile net-
works, in this section we consider four scenarios, as described in
Table 3. The training and test datasets for each scenario are generated
by regular sampling of the parameter space as shown in Table 4, with
the ‘‘true’’ blocking probability for each parameter setting found via
computer simulation. The training and test datasets are then filtered
according to the blocking probability ranges given in Table 3, giving
the number of training and test samples shown. Note that in Scenarios
In-Sample-1 and In-Sample-2, the blocking probabilities for the train-
ing and test sets cover the same range, for Out-Sample-1 the ranges
partially overlap, and for Out-Sample-2 they are disjoint.

Fig. 7 shows the training error (mean absolute logarithmic error) of
Direct-NN and IESA-NN as applied to In-Sample-1. The results show
that both algorithms produce near-optimal error results within 100
hidden nodes. Therefore, we shall use 𝑁ℎ = 100 hidden nodes for all
remaining results in this paper. Note, however, that since the NN in
Direct-NN estimates the blocking probability directly whereas the NN
in IESA-NN estimates the tuning parameter 𝑘, the training errors of the
two methods are not comparable.

The accuracy of out-of-sample testing (e.g., scenarios Out-Sample-1
and Out-Sample-2) is particularly useful and important in network de-
sign and optimization problems, especially in 5G URLLC (ultra-reliable
low-latency communication) applications where the target blocking
7

Fig. 8. EFPA results for Scenario In-sample-1, as defined in Table 3.

probability is very low due to strict QoS requirements. In such applica-
tions, it is difficult and time-consuming to obtain accurate simulation
results for such low blocking probabilities. This can be avoided if
the blocking probability of such networks can be accurately estimated
based on training data with higher blocking probabilities, which are
easier to simulate.

The approximation results are shown in Figs. 8–12 using scatter
plots, where the horizontal axes represent simulated blocking proba-
bilities and the vertical axes represent blocking probabilities obtained
by each of the approximation methods. For Figs. 9–12, the distributions
of the relative errors are also shown in histogram form.

4.2. In-sample scenarios

In this subsection, we examine the approximation results for sce-
narios where the training and test sets are sampled from the same
parameter range. First, we consider the classical EFPA method as a
separate case. Note that EFPA is purely teletraffic-based and does
not require a training set. However, the results, shown in Fig. 8,
demonstrate that EFPA underestimates blocking probability by at least
one order of magnitude across the entire parameter range considered.
Therefore, EFPA is not a viable approximation method for network
design and optimization.

Therefore, we shall hereafter focus on the other three approaches
only, namely IESA-CN, Direct-NN, and IESA-NN. The results of these
three approaches for the in-sample scenarios are shown in Figs. 9 and
10. It is shown that the performance of IESA-CN is the worst among the
three methods, with a tendency to overestimate blocking probability for
small values. This is because due to the limited approximation ability of
the second-order polynomial and the restriction of 𝑘 to integer values
only. On the other hand, the Direct-NN and IESA-NN approaches yield
similar results for both scenarios, with close to zero relative error in
the large majority of cases, as shown by the histograms in the bottom
parts of Figs. 9 and 10.

4.3. Out-of-sample scenarios

In this subsection, we examine the approximation results for sce-
narios where the training and test sets are sampled from different
parameter ranges. Results are shown in Figs. 11 and 12. The results
demonstrate that IESA-NN is the most accurate and robust among the
three methods shown. In particular, Fig. 11 demonstrates that Direct-
NN, while accurate for the portion of the test set that overlaps with the
training set, becomes increasingly inaccurate as the blocking probabil-
ity decreases beyond the lower limit of the training set. Furthermore,
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Fig. 9. Results for Scenario In-Sample-1, as defined in Table 3.
Fig. 10. Results for Scenario In-Sample-2, as defined in Table 3.
Direct-NN can even produce negative blocking probability estimates, as
shown by some cases having less than negative one relative error. This
is not possible with IESA-NN.

On the other hand, the combination of an NN and teletraffic theory
yields more accurate and robust results than either approach alone.
Recall that the abandonment policy defined by (3) creates bounds on
the blocking probability estimated generated by IESA, thus minimizing
the effect of suboptimal choice of 𝑘 when the blocking probability
is low. The robustness of IESA-NN compared to Direct-NN is best
demonstrated in Fig. 12, where IESA-NN is shown to have a much
tighter error distribution than Direct-NN.

4.4. Discussion

From the results in this section, it is demonstrated that while
Direct-NN gives the best performance of the three methods under
consideration when the test set parameter ranges fall within those of
the training set (Figs. 9 and 10), IESA-NN is the most robust method
8

when extrapolating to new parameter ranges not in the training set
(Figs. 11 and 12). The reason for this is because of nature of NN — its
purpose is to fit a regression to the data seen, without any interpretation
of underlying structures. In contrast, in IESA-NN, the NN component
is only used to fit a tuning parameter, with the underlying teletraffic
theory supporting IESA-NN providing some protection against wildly
inaccurate results. Additionally, whereas the range of possible blocking
probabilities in our training/test data spans several orders of mag-
nitude, the search range for our IESA-NN tuning parameter is much
narrower, namely 7 to 49. This makes it easier for the NN to fit the
training data more accurately. Finally, while IESA-CN is similar to IESA-
NN in that a tuning parameter is used to adjust the IESA result, the
polynomial-regression-based method used in IESA-CN is less flexible
than the NN-based method in IESA-NN, thus leading to less accurate
results for IESA-CN.

Note that although our generated training and test datasets in this
section are artificial, the parameter space outlined in Table 4 covers a
wide range of scenarios that may appear in real situations. Therefore,
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Fig. 11. Results for Scenario Out-Sample-1, as defined in Table 3.
Fig. 12. Results for Scenario Out-Sample-2, as defined in Table 3. Note negative Direct-NN estimates cannot be shown in the scatter plot, but are visible in the histogram (relative
error less than −1).
our proposed method is expected to obtain accurate approximations in
a computationally efficient manner even if real datasets are used.

5. Concluding remarks

In this paper, we proposed the IESA-NN approach for approximating
blocking probability in cellular mobile networks with user mobility, by
combining classic teletraffic theory with neural network techniques.
Blocking probability forms an important metric in such networks.
Specifically, IESA-NN adopts a neural network approach to estimate
a key parameter in the IESA framework. The results demonstrate that
IESA-NN significantly outperforms both direct-NN and pure teletraffic-
based approaches, especially when extrapolating beyond the parameter
range of the training data. This is because the NN portion of IESA-
NN can compensate for inaccuracies in base IESA, while the teletraffic
theory underlying IESA controls extrapolation of IESA-NN in regions
that lack training data for the NN.
9

The improvement in accuracy of IESA-NN over previous approaches
is important for application scenarios such as 5G URLLC, where the re-
quest blocking probability may be extremely low. Such cases cause ac-
curate simulation of such networks to become especially time-
consuming, especially in optimization scenarios where blocking proba-
bility results are required for a large number of parameter settings.
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Appendix A. Derivation of EFPA

In addition to the notation defined in Table 2, we also define:

• 𝑎𝑖,𝑟,𝑛 — Offered traffic with starting cell 𝑖, 𝑛 overflows and starting
index 𝑟, including both non-handover and handover requests. The
BS receiving this traffic is 𝑔𝑖,𝑟,𝑛 as defined by (2).

• 𝑒𝑖,𝑛 — Total offered traffic to BS 𝑖 with 𝑛 overflows.
• 𝐴𝑖 — Total offered traffic to BS 𝑖.
• 𝐴𝑖 — Total carried traffic of BS 𝑖, including traffic that may

undergo further handover.
• 𝑏𝑖 — Probability that all channels in BS 𝑖 are busy.
• 𝑣𝑖,𝑟,𝑛 — Overflow traffic with starting cell 𝑖, 𝑛 overflows, and

starting index 𝑟. The BS from which this traffic overflows is 𝑔𝑖,𝑟,𝑛−1
as defined by (2).

• 𝐵𝑖 — Non-completion probability for requests originating at cell
𝑖 (before any handovers), i.e., the probability that such requests
are blocked (immediately) or dropped (during handover).

We obtain

𝑒𝑖,𝑛 =
∑

(𝑞,𝑟)∶𝑔𝑞,𝑟,𝑛=𝑖
𝑎𝑞,𝑟,𝑛 (A.1)

𝐴𝑖 =
𝑁
∑

𝑛=0
𝑒𝑖,𝑛 (A.2)

𝐴𝑖 = 𝐴𝑖
(

1 − 𝑏𝑖
)

(A.3)

We also have

𝑎𝑖,𝑟,0 =
𝜆𝑖
𝑁

+ 1
𝑁2

∑

𝑞∶𝑖∈𝛤𝑞

𝐴𝑞𝜃, (A.4)

where the first term of the sum represents fresh traffic and the second
term represents handovers from the neighboring cells of cell 𝑖. To
explain (A.4), note that the handover traffic 𝐴𝑞𝜃 is first divided among
all 𝑁 neighbors of cell 𝑞, then among all 𝑁 possible starting indexes
for R3S (corresponding to the ‘‘𝑗’’ index in 𝑎𝑖,𝑗,0).

Applying the Poisson assumption, we obtain

𝑏𝑖 = 𝐸
(

𝐴𝑖, 𝑐
)

(A.5)

and

𝑣 = 𝑎 𝑏 , (A.6)
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𝑖,𝑟,𝑛 𝑖,𝑟,𝑛−1 𝑖
Fig. A.1. Update sequence for EFPA. Thick lines indicate updates for each iteration of
the inner (𝑛) loop, while thin lines indicate updates for each iteration of the outer (𝑖)
oop. Note that multiple fixed-point iterations are required for convergence. Numbers
n parentheses refer to equation numbers in this paper.

here 𝐸
(

𝐴𝑖, 𝑐
)

denotes the Erlang B formula with 𝐴𝑖 Erlangs of traffic
nd 𝑐 channels. Based on the R3S routing policy, we obtain for all
∈ {1,… , 𝑁}:

𝑖,𝑟,𝑛 = 𝑣𝑖,𝑟,𝑛. (A.7)

The relationships between (A.1)–(A.7) form a system of fixed-point
quations, as illustrated in Fig. A.1. The equations can be solved via
terative substitution, with initial values 𝑎𝑖,𝑟,0 ← 𝜆𝑖∕𝑁 and all other
nitial values set to zero. Finally, the overall non-completion probability
or requests with origin cell 𝑖 is defined as

𝑖 = (1 − 𝜃) 𝑏𝑖 +
𝜃
𝑁

∑

𝑞∈𝛤𝑖

𝐵𝑞 . (A.8)

Appendix B. Derivation of IESA

As IESA, IESA-CN, and IESA-NN differ only in the method by which
𝑘 is chosen in Eq. (3) (see Figs. 3, 4, and 6), in this section we
present a generic set of equations encompassing all three approximation
methods.

In addition to the notation defined in Table 2, we also define:

• 𝑎𝑖,𝑟,𝑛,𝑗 — Offered traffic with starting cell 𝑖, 𝑛 overflows, a con-
gestion estimate of 𝑗, and starting index 𝑟, including both non-
handover and handover requests. The BS receiving this traffic is
𝑔𝑖,𝑟,𝑛 as defined by (2).

• 𝑒𝑖,𝑛,𝑗 — Total offered traffic to BS 𝑖 with 𝑛 overflows and a
congestion estimate of 𝑗.

• 𝑎𝑖,𝑟,𝑛,𝑗 — Total offered traffic to BS 𝑔𝑖,𝑟,𝑛 with starting cell 𝑖, 𝑛
overflows, a congestion estimate of 𝑗 or less, and starting index
𝑟.

• 𝑒𝑖,𝑛,𝑗 — Total offered traffic to BS 𝑖 with 𝑛 overflows and a
congestion estimate of 𝑗 or less.

• 𝐴𝑖,𝑗 — Total offered traffic to BS 𝑖 at level 𝑗 of the IESA hierarchy,
consisting of requests with congestion estimates of at most 𝑗.

• 𝐴𝑖 — Total carried traffic of BS 𝑖, including traffic that may
undergo further handover.

• 𝑣𝑖,𝑟,𝑛,𝑗 — Overflow traffic with starting cell 𝑖, 𝑛 overflows, a
congestion estimate of 𝑗, and starting index 𝑟, including both non-
handover and handover requests. The BS from which this traffic
overflows is 𝑔 as defined by (2).
𝑖,𝑟,𝑛−1
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• 𝑧𝑖,𝑟,𝑛,𝑗 — Blocked or dropped traffic with starting cell 𝑖, 𝑛 over-
flows, a congestion estimate of 𝑗, and starting index 𝑟, including
both non-handover and handover requests. The BS from which
this traffic overflows is 𝑔𝑖,𝑟,𝑛−1 as defined by (2).

• 𝑏𝑖,𝑗 — Probability that all channels in BS 𝑖 are busy at level 𝑗
of the IESA hierarchy, i.e., all channels are serving requests with
congestion estimates of at most 𝑗.

y definition, we have:

𝑒𝑖,𝑛,𝑗 =
∑

(𝑞,𝑟)∶𝑔𝑞,𝑟,𝑛=𝑖
𝑎𝑞,𝑟,𝑛,𝑗 (B.1)

𝑎𝑖,𝑟,𝑛,𝑗 =
𝑗
∑

𝑝=𝑛
𝑎𝑖,𝑟,𝑛,𝑝 (B.2)

𝑒𝑖,𝑛,𝑗 =
𝑗
∑

𝑝=𝑛
𝑒𝑖,𝑛,𝑝 (B.3)

𝐴𝑖,𝑗 =
𝑁
∑

𝑛=0
𝑒𝑖,𝑛,𝑗 (B.4)

𝑎𝑖,𝑟,0,0 =
𝜆𝑖
𝑁

+ 1
𝑁2

∑

𝑞∶𝑖∈𝛤𝑞

𝐴𝑞𝜃. (B.5)

sing the Erlang B formula, we obtain

𝑖,𝑗 = 𝐸
(

𝐴𝑖,𝑗 , 𝑐
)

. (B.6)

o obtain the overflow traffic from BS 𝑖 for a given congestion estimate
and 𝑛 overflows, we consider two scenarios:

• In the first scenario, a request with 𝑛− 1 overflows and a conges-
tion estimate of 𝑗 −2 or less finds, with probability 𝐵𝑖,𝑗−1 −𝐵𝑖,𝑗−2,
that all channels at BS 𝑖 are busy and the most senior (highest
congestion estimate) request at BS 𝑖 has a congestion estimate of
𝑗 − 1. The incoming request exchanges congestion estimates with
the senior request and overflows with a new congestion estimate
of 𝑗 (note that the congestion estimate is incremented upon over-
flow regardless of whether exchange of congestion information
occurs).

• In the second scenario, a request with 𝑛 − 1 overflows and a
congestion estimate of exactly 𝑗 − 1 find, with probability 𝐵𝑖,𝑗−1,
that all channels at BS 𝑖 are busy and all requests in service have
congestion estimates of 𝑗 − 1 or less. No information exchange
occurs and the incoming request simply increments its congestion
estimate by one upon overflow.

hus we obtain

𝑖,𝑟,𝑛,𝑗 = 𝑎𝑖,𝑟,𝑛−1,𝑗−2
(

𝑏𝑖,𝑗−1 − 𝑏𝑖,𝑗−2
)

(B.7)
+ 𝑎𝑖,𝑟,𝑛−1,𝑗−1𝑏𝑖,𝑗−1

= 𝑎𝑖,𝑟,𝑛−1,𝑗−1𝑏𝑖,𝑗−1
+ 𝑎𝑖,𝑟,𝑛−1,𝑗−2𝑏𝑖,𝑗−2.

By definition, values with negative indices are all zero. Applying the
abandonment policy, we obtain

𝑧𝑖,𝑟,𝑛,𝑗 = 𝑣𝑖,𝑟,𝑛,𝑗𝑃𝑘,𝑛,𝑗 (B.8)

𝑎𝑖,𝑟,𝑛,𝑗 = 𝑣𝑖,𝑟,𝑛,𝑗
(

1 − 𝑃𝑘,𝑛,𝑗
)

. (B.9)

where 𝑃𝑘,𝑛,𝑗 is defined in (3). Note also that 𝑃𝑘,𝑛,𝑗 = 1 if 𝛺 reaches 𝑘 or
𝛥| reaches 𝑁 . Finally, note that the highest level of the IESA hierarchy,
ontaining all offered traffic, is level 𝑘 − 1. Therefore, the total carried
raffic by BS 𝑖 is

𝑖 = 𝐴𝑖,𝑘−1
(

1 − 𝑏𝑖,𝑘−1
)

. (B.10)

Note that in our fictitious IESA surrogate model of the cellular
network, the 𝛥 and 𝛺 attributes of a request are reset to ∅ and 0,
respectively, upon handover. This is because congestion information
11
Fig. B.1. Diagram showing fixed-point relationships between the various equations in
the IESA algorithm (also applies to IESA-CN and IESA-NN). Numbers in parentheses
refer to equation numbers in this paper.

about the neighborhood set of one cell may be irrelevant to the neigh-
borhood set of another cell. This creates the scenario where the amount
of handover traffic to each BS with 𝛺 = 0 depends on the amount of
overflow traffic in the network with 𝛺 > 0. Therefore, unlike previous
applications of IESA such as video-on-demand networks that do not
contain handovers, fixed-point iteration is required to solve Eqs. (B.1)–
(B.10). A diagram of the relationships between (B.1)–(B.10) is provided
in Fig. B.1. The initial values for the fixed-point iteration are 𝑎𝑖,𝑟,0,0 ←

𝜆𝑖∕𝑁 with all other values initialized to zero. Finally, the total blocked
or dropped traffic for requests with starting cell 𝑖 (including handover
requests) is

𝑍𝑖 =
𝑁
∑

𝑟=1

𝑁+1
∑

𝑛=1

𝑘
∑

𝑗=𝑁
𝑧𝑖,𝑟,𝑛,𝑗 , (B.11)

and the overall non-completion probability for requests with origin cell
𝑖 is defined as

𝐵𝑖 = (1 − 𝜃)
𝑍𝑖
𝜆𝑖

+ 𝜃
𝑁

∑

𝑞∈𝛤𝑖

𝐵𝑞 . (B.12)
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