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Abstract

In this paper, we present a new approximation for estimating blocking probability in overflow loss networks and
systems. Given a system for which an estimate of blocking probability is sought, we first construct a second system to
act as a surrogate for the original system. Estimating blocking probability in the second system with Erlang’s fixed point
approximation (EFPA) provides a better estimate for blocking probability in the original system than if we were to use the
conventional approach of directly using EFPA in the original system. We present a combination of numerical and theo-
retical results that indicate our new approximation offers a better estimate than EFPA for a certain pure overflow loss net-
work. Moreover, we demonstrate the accuracy of our new approximation for circuit-switched networks using alternative
routing. We argue that the success of our new approximation is due to its ability to utilize congestion information imbed-
ded in overflow traffic, whereas the conventional approach fails to utilize such information.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Overflow loss networks form a large and impor-
tant class of loss networks. They feature prevalently
in stochastic models of many computer and tele-
communications networks. The classic example is
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that of circuit-switched networks using alternative
routing. Other examples include telephony call cen-
ters [2], optical networks [29], and multiprocessor
systems with one redundant processor that can be
used to alleviate congestion on active processors
[9]. Roughly speaking, a loss network is classed as
an overflow loss network if calls (jobs) that have
been blocked at one server group are not simply
blocked for good but are permitted in some circum-
stances to overflow to another server group.
.
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1 The peakedness of a stream is defined as the variance-to-mean
ratio of the distribution of the number of busy servers on an
infinite server group to which the stream is offered and is usually
denoted by Z. The peakedness of a Poisson stream is unity, while
the peakedness of an overflow stream is always greater than
unity.
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Stochastic modeling of overflow loss networks is
usually in terms of a multidimensional Markov pro-
cess. Unlike many non-overflow loss networks, the
state distribution generally does not admit a prod-
uct-form solution. Although the state distribution
can in principle be computed by numerically solving
a set of balance equations, this approach must be
ruled out because the state-space is usually of an
unmanageable dimension.

Approximations therefore play an crucial role in
estimating blocking probability in overflow loss net-
works. The simplest yet crudest approach to esti-
mating blocking probability in an overflow loss
network proceeds via a one-moment approximation
in which stream i is characterized solely in terms of
its offered intensity mi.

All streams offered to a common server group
comprising N servers are pooled together to form
a combined stream that offers an intensity ofP

imi. The blocking probability perceived by the
combined stream as well as each marginal stream i

comprising the combined stream is estimated by
E
P

imi;N
� �

, where

Eða;NÞ ¼ aN

N !

XN

i¼0

ai

i!

 !�1

; N 2 N; a P 0 ð1Þ

expresses the blocking probability in an M/M/N/N
queue offered intensity a, and is commonly referred
as the Erlang B formula. The overflow of each mar-
ginal stream i may then go on to offer an intensity of
miE

P
imi;N

� �
to a subsequent server group.

Usually referred to as Erlang’s fixed-point

approximation (EFPA) in its most general form, this
approximation was proposed in [4] in 1964 for the
analysis of circuit-switched networks and has
remained a cornerstone of network performance
evaluation even to this day. The basic idea of EFPA
is to decompose the overflow loss system into a
number of server-group subsystems and treat each
subsystem as if it were an independent Erlang B
sub-system. See [1,3,8,13,12,17–19,22–26] and refer-
ences therein for applications of EFPA.

It is well-known that EFPA may be inaccurate
for overflow loss networks. The inaccuracy of EFPA
in the context of overflow loss networks is usually
attributable to two distinct sources of error:

1. EFPA characterizes the traffic offered by any
stream as if it were a Poisson process when in fact
the traffic offered by an overflow stream is of
greater peakedness1 relative to a Poisson process.
This is referred to as the Poisson error.

2. EFPA calculates the distribution of the number
of busy servers on a server group as if it were
mutually independent of any other server group,
when in fact there may be statistical dependence.
This is referred to as the independence error.

Numerous approaches have been suggested to
strengthen EFPA by combatting the presence of one
or the other of these two errors. Strengthening EFPA
to combat the Poisson error is usually accomplished
by characterizing each stream in terms of its peaked-
ness as well as its mean in an approach referred to
as moment-matching. The first attempt to combat
the Poisson error was made in [4], using Wilkinson’s
equivalent random method [21]. A similar approach
was later used in [11,15]. Combatting the indepen-
dence error was first considered in [10]. See the
extended version of this paper [28] for a comprehen-
sive survey of strengthened formulations of EFPA.

In this paper, we present a new approximation
for estimating blocking probability in overflow loss
networks, which is fundamentally different from
EFPA and its strengthened formulations. Given a
system for which an estimate of blocking probabil-
ity is sought, we first construct a second system to
act as a surrogate for the original system. Estimat-
ing blocking probability in the second system with
EFPA provides a better estimate for blocking prob-
ability in the original system than if we were to use
the conventional approach of directly using EFPA
in the original system.

The new constructed system is based on regard-
ing an overflow loss network as if it were operating
under a fictitious preemptive priority regime. In this
fictitious regime, each stream is classified according
to the number of server groups at which it has
sought to engage a server but found all servers busy;
that is, the number of times it has overflowed. The
key is to suppose a stream that has overflowed n

times is given strict preemptive priority over a
stream that has overflowed m times, n < m.

A simple overflow loss network model will be
defined in the next section, which facilitates the pre-
sentation of our approximation. This simple model
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is fundamental in the sense that it retains overflow
effects but excludes other effects such as reduced
load and the destabilizing effect of alternative rout-
ing in circuit-switched networks. It is therefore the
simplest and the most suitable example to expose
weaknesses of EFPA and to demonstrate our new
approximation. Moreover, its pure and fundamen-
tal nature makes it more amenable to analysis and
more suited for understanding the overflow traffic
behavior and the blocking probability performance
of the various approaches.

In Section 3, the new approximation will be intro-
duced, its supporting intuition will be discussed and
we will present some results that lead us to conjec-
ture that our approximation yields a more accurate
estimate of blocking probability than EFPA. Section
4 will demonstrate the versatility of our approxima-
tion by considering its extension to circuit-switched
networks using alternative routing. Numerical
results will be presented that suggest for a symmetric
fully meshed circuit-switched network, our approxi-
mation is more accurate than EFPA.
2. An overflow loss network model

We consider the following simplified model of an
overflow loss network that arose during the study of
a video-on-demand distributed-server network [6].
The network comprises N cooperative and identical
servers. Calls (i.e., requests to download video
streams) initiated by users are offered to each server
according to an independent time-homogenous
Poisson processes of intensity a. A call that arrives
at a busy server overflows to one of the other
N � 1 servers with equal probability and without
delay. A call continues to overflow as such until
either: it encounters an idle server in which case it
engages that server until its service period is com-
plete; or, it has sought to engage all N servers
exactly once but found all N servers busy in which
case it is blocked and never returns. The search
for an idle server is conducted instantly and referred
to as a random hunt. Service periods are independent
and identically distributed according to an exponen-
tial distribution with normalized unit mean.

An n-call is defined as a call that overflows n

times before engaging the (n + 1)th server of its ran-
dom hunt. According to this definition, an N-call is
a call that is blocked and cleared. In summary, each
of the N servers is offered: calls initiated by users
(exogenous calls), which have been defined as 0-
calls; and, calls that were originally 0-calls but have
overflowed n times to become n-calls, n > 0.

This model of a distributed-server network can
be regarded as an M/M/N/N queue that is offered
an intensity of Na. This allows for exact calculation
of blocking probability using the Erlang B formula
as P = E(Na,N). Therefore, E(Na,N) provides a
benchmark to gauge the error in estimating block-
ing probability via EFPA. An easily computable
benchmark is one of the incentives for resorting to
such a simplified model.

2.1. Erlang’s fixed point approximation

At any time instant, server i is either busy or idle.
Let Xi be a random variable such that Xi = 1 if ser-
ver i is busy and Xi = 0 if server i is idle. Let
X = (X1, . . . ,XN) 2 {0, 1}N and

bi ¼ PðX i ¼ 1Þ: ð2Þ
The independence error inherent to EFPA is a result
of treating the random variables X1, . . . ,XN as if
they were independent and thus writing

PðX ¼ xÞ ¼
YN
i¼1

PðX i ¼ xiÞ; x 2 f0; 1gN
: ð3Þ

All N servers are statistically identical in that bi = bj

for all i, j = 1, . . . ,N. This is because the random
hunt ensures the intensity of n-calls offered to server
i is the same as the intensity of n-calls offered to ser-
ver j. We therefore suppress the subscript i in bi and
refer to an arbitrary server.

It can be verified that n-calls arriving at a server
offer an intensity of

aðnÞ ¼
X

i1;...;in 6¼i

aðbi1 ; . . . ; binÞ
ðN � 1Þ!
ðN � n� 1Þ!

¼ abn; n ¼ 0; . . . ;N � 1; ð4Þ

where the sum
P

i1;...;in 6¼i is to be understood as the
sum over all (N � 1)!/(N � n � 1)! permutations of
(i1, . . . , in) such that i1, . . . , in 2 {1, . . . ,N} � {i}. To
explain (4), we note that a 1-call is offered to server
i if a 0-call is blocked at any of the other N � 1 serv-
ers, which occurs with probability b, and then has
server i listed as the second server in its random hunt,
which occurs with probability 1/(N � 1). There are
no other permutations in which a 1-call is offered
to server i, hence a(1) = ab(N � 1)/(N � 1).

According to EFPA,

b ¼ E
XN�1

n¼0

aðnÞ; 1
 !

¼
PN�1

n¼0 aðnÞ
1þ

PN�1
n¼0 aðnÞ

: ð5Þ
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The Poisson error is a result of treating each of the
marginal streams offered to a server as if they were a
Poisson stream when in fact it is only the stream
corresponding to 0-calls that is a Poisson stream.
In admitting the Poisson error, we have that the
combined stream offered to each server is a Poisson
stream that offers an intensity given by the sum of
intensities of each of the marginal streams, as shown
in (5).

Substituting (4) into (5) gives the fixed-point
equation

b ¼ a
PN�1

n¼0 bn

1þ a
PN�1

n¼0 bn
¼ a� abN ð6Þ

in which a and N are given and b is to be
determined.

It follows that the EFPA estimate of blocking
probability is given by

P ¼ Pðc ¼ N -callÞ ¼ bN : ð7Þ
2.2. Strengthened formulations of Erlang’s fixed-

point approximation

Approaches to strengthening EFPA by combat-
ting the Poisson error usually entail constructing a
better estimate of the blocking probability perceived
by an overflow stream than simply approximating it
as if it were a Poisson stream. For a survey of these
approaches see the extended version [28]. In this
paper, we consider the three strengthened formula-
tions that are listed in Table 1.

Our purpose is to gauge the error in estimating
blocking probability via EFPA and its strengthened
formulations. An experiment was conducted in
which the intensity offered to each of 10 servers is
varied over the range [0.2,1]. The error in estimating
blocking probability relative to the benchmark pro-
vided by the Erlang B formula P = E(Na,N) is plot-
ted in Fig. 1. Table 1 defines each formulation of
Table 1
Formulations of EFPA

EFPA One-moment formulation
EFPA 2M Two-moment formulation (Hayward’s

method) [7]
EFPA BPP EFPA strengthened via

Bernoulli–Poisson–Pascal (BPP)
approximation [5]

EFPA IPP EFPA strengthened via
Interrupted Poisson Process (IPP)
approximation [14]
EFPA considered. Relative error is defined in the
usual way as the ratio ð~x� xÞ=x, where ~x is an esti-
mate of x.

It was found that the numerical stability of
EFPA IPP was poor and often several re-initializa-
tions were required to ensure convergence of the
sequence generated by iterating, especially for low
intensities. Estimates provided by EFPA IPP for
a < 0.3 do not feature in Fig. 1 for this reason.

Fig. 1 indicates that EFPA may yield an esti-
mate of blocking probability that is too inaccurate
for engineering purposes. Although strengthening
EFPA via higher-moment approximations may
offer a marginal reduction in error (reduction in rel-
ative error does not exceed 0.12), this reduction is
hardly justified in consideration of the computa-
tional burden in dealing with additional moments.

3. The new approximation

The distributed-server model developed in the
previous section will be called the true model
(TM) in this section for reasons that will become
apparent soon. The purpose of this section is to
introduce our new approximation and discuss the
intuition that we believe underpins its success.

In short, the new approximation is based on
transforming the TM to a new model that we call
the fictitious model (FM). Given an overflow net-
work for which an estimate of blocking probability
is required, we consider estimating blocking proba-
bility in the FM using EFPA. This estimate is usu-
ally more accurate for the TM than if we directly
use EFPA to estimate blocking probability in the
TM.

In this section, we will consider our new approx-
imation in the context of the distributed-server net-
work. In other words, the TM is equal to the model
of the distributed-server network developed in the
previous section. We first address the question of
how to construct the FM from the TM.

The FM is constructed by imposing preemptive
priorities in the TM. The preemptive priorities are
such that each stream is classified according to the
number of servers which it has sought to engage
but found busy; that is, the number of times it has
overflowed. A stream that has overflowed n times
is given strict preemptive priority over a stream that
has overflowed m times, n < m, given that both
streams compete for a common server.

An n-call that arrives at a server engaged by an
m-call, n < m, is given the right to preempt the
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Fig. 1. Gauging the relative error in estimating blocking probability via EFPA and its strengthened formulations for N = 10.
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m-call and seize the server for itself. The preempted
m-call must then seek to engage a server that it has
not yet visited. Given that an idle server is found,
the service period begins anew irrespective of the
service time accumulated at prior servers at which
it was preempted. A call is blocked if it has sought
to engage all N servers exactly once, but has been
unable to engage a server for its entire service per-
iod. Owing to the fact that each stream is classified
according to the number of times it has overflowed,
we call this preemptive priority regime overflow
priority classification (OPC) [27]. A depiction of
the TM and FM convention is shown in Fig. 2.
A description of our new approximation is as
follows:

Given an instance of the TM, impose on it the

OPC preemptive priority regime to yield the corre-

sponding FM. Estimate blocking probability in the

FM using EFPA.

The two-step process of constructing the FM
from the TM and applying EFPA to the FM is
called the OPC approximation (OPCA). OPCA is
Fig. 2. A conceptual depiction of the TM and FM convention.
in contrast to EFPA proper in which EFPA or
one of its strengthened formulations is applied
directly to the TM.

We therefore have a TM and FM estimate of
blocking probability, which we denote as eP MT

andeP MF
, respectively. The TM estimate of blocking

probability eP MT
is calculated as given by (7), while

the FM estimate will be derived soon. We have used
the subscripts MT and MF to set apart notation
common to both models. Furthermore, a tilde is
used to denote an estimate of blocking probability
as opposed to its true value. Table 2 gives an exam-
ple of this convention.

We continue by discussing the intuition we
believe underlies our new approximation. Extensive
numerical testing and the explanations that follow
provide support for the following sequence of
inequalities:

eP MT
6 eP MF

6 P MT
6 P MF

: ð8Þ
P MT
Exact blocking probability in the TM

P MF Exact blocking probability in the FMeP MT
Estimate of blocking probability in the TM as per
applying EFPA to the TMeP MF
Estimate of blocking probability in the FM as per
applying EFPA to the FM



Fig. 3. Conceptual depiction of our new approximation.
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Our goal is to estimate P MT
. Since eP MF

lies betweeneP MT
and P MT

, obviously eP MF
is a more accurate esti-

mate of P MT
compared to eP MT

.
We will prove the first inequality in (8) in Propo-

sition 2, we will provide numerical evidence sup-
porting the second, though a proof is not given,
and we provide intuition supporting the last
inequality. In short, we claim that eP MF

and P MF

are close to each other making eP MF
a good approx-

imation for P MT
, which is sandwiched between

them. This is illustrated in Fig. 3, where all three
are close together and ePMT

is somewhat lower.
In Fig. 3, the starting point is the TM, for which

we seek to estimate blocking probability. Our new
approximation is contained within the shaded
region in Fig. 3. The first step of our new approxi-
mation involves constructing the FM from the
TM by imposing the OPC priority regime on the
TM. The second step involves applying EFPA to
the FM.

The remainder of this section is organized as fol-
lows. We present our intuitive discussions in Sec-
tions 3.1 and 3.2, and then present some rigorous
results in Sections 3.3 and 3.4.
3.1. Intuition supporting P MT
� P MF

Consider a particular server engaged with an
n-call, n > 0, and suppose a new call arrives at this
server while the n-call is in service. The new call is
considered a 0-call at the instant it arrives. What
happens next depends on whether we are in the
FM or the TM.

In the FM, the new call preempts the n-call
causing it to overflow to an alternative server at
which it has not visited before. There is exactly
N � n � 1 such servers. But we can view the pre-
emption of the n-call in a different way. In partic-
ular, the n-call’s remaining service time at the time
the new call arrives is equal to the service time
of the new call. This is because service periods
are independent, identical and exponentially dis-
tributed. Therefore, instead of preempting the n-
call, we can force the new call to overflow to any
of the N � n � 1 servers that the n-call has not vis-
ited. From the point of view of the blocking
probability P MF

, there is no difference between pre-
empting the n-call and forcing the new call to
overflow.

In this way, the new call is instantly transformed
into an n-call, even though it has just arrived and
has not overflowed from any server. But what is
the purpose of instantly transforming a new call to
an n-call? The purpose is that it limits the number
of servers that a new call can visit. In particular, a
new call that arrives at a server engaged with an
n-call, n > 0, perceives a limited availability system

comprising only N � n � 1 servers.
In contrast, in the TM, a new call perceives a full

availability system comprising N servers, irrespective
of whether or not it arrives at a server engaged with
an n-call, n > 0. In particular, in the TM, a new call
that arrives at a server already engaged with a call
must overflow from all N servers before it is
blocked.

Because a new call in the FM perceives a limited
availability system, while a new call in the TM per-
ceives a full availability system, it is apparent that
P MT
6 P MF

.
To show that this inequality is tight, we revisit

our example in which a new call arrives at a server
engaged with an n-call, n > 0. Although in the FM
the new call sees a limited availability system com-
prising N � n � 1 servers, we argue that there
would be little benefit in the new call visiting the
other n servers. In particular, it is likely these other
n servers are still engaged with calls because we
know our n-call visited each of these n servers not
too long ago and found each of them engaged with
a call. There is a relatively small probability that
one of these n servers becomes idle in the period
beginning from when our n-call visited them and
found them busy, and ending at the arrival time
of the new call. The duration of this period is less
than our n-call’s service time. Therefore, we argue
that P MT

� P MF
. We numerically verify this claim

in Section 3.4.
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3.2. Intuition supporting jP MF
� eP MF

j 6 jP MT
� eP MT

j

OPCA increases the proportion of the total
intensity offered to a server that is owing to the
stream formed by 0-calls. We will prove this result
in Corollary 1, which is presented in Section 3.4.
To counterbalance this increase, the proportion of
the total intensity offered to a server that is owing
to the streams formed by n-calls, n > 0, is decreased.
This ‘re-proportioning’ of the total intensity offered
to a server is effective in combating the indepen-
dence error and the Poisson error.

We discussed in Section 3.1 that in the FM, a new
call arriving at a server engaged with an n-call,
n > 0, perceives a limited availability system. There-
fore, the maximum number of servers from which
the new call can overflow is less than if it were in
the TM, which is a full availability system. This
is the reason why the proportion of the total inten-
sity offered to a server that is owing to the streams
formed by n-calls, n > 0, is smaller in the FM.

As we discuss next, the benefit of reducing the
proportion of calls that have overflowed and
increasing the proportion of calls that have not is
to reduce the magnitude of the independence error
and the Poisson error.

3.2.1. Combatting the independence error
Let i1 and i2, i1 5 i2, denote two servers in the

FM. Independence error arises from treating the
random variables X i1 and X i2 as if they were inde-
pendent. The dependence between the random vari-
ables X i1 and X i2 is decreased in the FM because the
combined stream offered to server i1 comprises a lar-
ger proportion of 0-calls, which are by definition
independent of the random variable X i2 ; and vice-
versa, the combined stream offered to server i2 com-
prises a larger portion of 0-calls, which are by
definition independent of the random variable X i1 .
Hence, by increasing the proportion of the total
intensity offered to a server owing to the stream
formed by 0-calls, the magnitude of the indepen-
dence error is reduced.

3.2.2. Combatting the Poisson error

The peakedness of the combined stream offered
to a server is reduced in the FM because it com-
prises a larger proportion of 0-calls, which by defini-
tion form a Poisson stream. Hence, the magnitude
of the error attributable to treating the combined
stream offered to a server as if it were a Poisson
stream is reduced.
We conclude this subsection by arguing that
OPCA has the ability to utilize congestion informa-
tion imbedded in a call that has overflowed. To
demonstrate, suppose a new call arrives at a server
engaged with an (N � 1)-call. The presence of an
(N � 1)-call indicates the likelihood of a highly con-
gested system. Therefore, it is likely that the new call
is blocked. But what actually happens to the new
call in the FM and TM?

In the FM, we can instantly transform the new
call to an (N � 1)-call at the instant it arrives. We
discussed why this is possible in Section 3.1. There-
fore, the new call is blocked without ever overflow-
ing from a server. We argue that there may not have
been much benefit in allowing the new call to over-
flow in the hope of finding an idle server. This is
because not too long before the arrival of the new
call, the original (N � 1)-call visited all the N � 1
servers and found each of them engaged with a call.
There is a relatively small probability that one of
these N � 1 servers became idle in the period begin-
ning from when our (N � 1)-call visited them and
found them busy, and ending at the arrival time of
the new call. It is as if our original (N � 1)-call tells
the new call: ‘‘Don’t even bother trying to find an
idle server because I’ve just visited each of them
and found each of them to be engaged.’’ The new
call accepts this advice and leaves the system with-
out overflowing. From an approximation perspec-
tive, this is a desirable feature because it reduces
the number of calls that overflow.

In contrast, in the TM, the new call must visit all
N � 1 servers before it is blocked, which is a likely
outcome given that the new call arrives to a server
engaged with an (N � 1)-call. Unlike in the FM,
the presence of the (N � 1)-call conveys no informa-
tion to the new call.
3.3. Analysis of the fictitious model

Let Xi = n if server i is busy with a (0,1,2, . . . ,n)-
call and Xi = �1 if server i is idle.

Let X = (X1, . . . ,XN) 2 { � 1,0, . . . ,N � 1}N and
rewrite (2) such that

biðxÞ ¼ PðX i ¼ xÞ; x 2 f�1; 0; . . . ;N � 1g:

As before, the random variables X1, . . . ,XN are trea-
ted as if they were independent and thus (3) holds
except the state-space must be enlarged to
x 2 { � 1,0, . . . ,N � 1}N. Owing to the same ratio-
nale described in Section 2.1, all N servers are
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statistically equivalent and thus it can be written
that b(n) = bi(n).

Parallel to the reasoning leading to (4), n-calls
arriving at a server offer an intensity of

aðnÞ ¼
a; n ¼ 0;

aðbð0Þ � � � bðn� 1ÞÞ; n ¼ 1; . . . ;N � 1:

�
ð9Þ

The stream formed by n-calls, n > 0, arriving at a
server is characterized as if it were a Poisson stream
of intensity a(n). Hence, the blocking probability
perceived by an n-call seeking to engage a server is
b(n).

The preemptive priority regime defined by OPC
awards highest priority to 0-calls. A 0-call is there-
fore oblivious to the existence of n-calls, n > 0,
and only perceives the existence of other 0-calls. It
follows that

bð0Þ ¼ Eðað0Þ; 1Þ: ð10Þ

A 1-call is oblivious to the existence of n-calls, n > 1;
however it may be preempted by a 0-call that com-
petes for a common server.

The blocking probability perceived by a 1-call is
equal to the ratio given by the intensity of the
stream formed by 2-calls to the intensity of the
stream formed by 1-calls. Taking this ratio gives

bð1Þ ¼ að2Þ
að1Þ ¼

Eðað0Þ þ að1Þ; 1Þðað0Þ þ að1ÞÞ � að1Þ
að1Þ :

And in general,

bðnÞ ¼ aðnþ 1Þ
aðnÞ ¼

E
Pn

i¼0aðiÞ;1
� �Pn

i¼0aðiÞ �
Pn

i¼1aðiÞ
aðnÞ

ð11Þ

for all n = 0, . . . ,N � 1, where a(N) is defined as the
intensity of the stream formed by calls that are
blocked and cleared.

A desirable property is that the blocking proba-
bilities b(0), . . . ,b(N � 1) can be computed recur-
sively in O(N). This recursion is more desirable
than solving the fixed-point equation given by (6),
and then dealing with concerns regarding the exis-
tence and uniqueness of a fixed-point as well as con-
vergence of iteration.

Proposition 1. Given a > 0, the blocking probability

perceived by an n-call can be computed in O(n) via the

recursion
An ¼
a; n ¼ 0;

An�1 þ a� An�1

1þAn�1
; n > 0;

(
ð12Þ

and then

bðnÞ ¼ Anþ1 � An

An � An�1

; n > 0: ð13Þ

Proof. The proof is presented in Appendix A. h

Analogous to (7), the OPCA estimate of blocking
probability is given by

eP MF
¼ Pðc ¼ N -callÞ
¼ bð0Þbð1Þbð2Þ � � � bðN � 1Þ: ð14Þ
3.4. Some rigorous results

We claim that for all a P 0 and N 2 N,

eP MT
ða;NÞ 6 eP MF

ða;NÞ 6 P MT
ða;NÞ: ð15Þ

We prove the first inequality in (15) and we demon-
strate the second one numerically. We have per-
formed extensive numerical tests over a wide range
of parameters and could not find a case where the
second inequality in (15) does not hold. As such,
we refer to the second inequality in (15) as the
OPC Conjecture. From the numerical experiments
we have conducted, we believe the difficulty in prov-
ing the second inequality is because it is quite tight,
as demonstrated in Fig. 4, which is a very desirable
property.

Our task is to prove eP MT
ða;NÞ 6 eP MF

ða;NÞ. Let

mMðnÞ ¼
Xn

i¼0

aMðiÞ; M 2 fMT;MFg; ð16Þ

which is the sum of the intensities offered by
(0, . . . ,n)-calls arriving at a server.

To prove eP MT
ða;NÞ 6 eP MF

ða;NÞ, we first expresseP MT
ða;NÞ and eP MF

ða;NÞ in terms of the common
function given in Lemma 1, which then allows for
the main result stated in Proposition 2.

Lemma 1. For M 2 {MT,MF},

eP Mða;NÞ ¼ 1� mMðN � 1Þð1� EðmMðN � 1Þ; 1ÞÞ
a

:

ð17Þ

Proof. The proof is presented in Appendix B. h
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Proposition 2. For all a P 0 and N 2 N,eP MT
ða;NÞ 6 eP MF

ða;NÞ:

Proof. The proof is presented in Appendix C. h

Finally, we prove the following corollary of
Proposition 2, which is pertinent to the discussion
we gave in Section 3.2.

Corollary 1. The proportion of the total intensity

offered to a server that is owing to the stream formed by

0-calls, is larger in the FM than the TM. In particular,

~aMT
ð0ÞPN�1

j¼0 ~aMT
ðjÞ
6

~aMF
ð0ÞPN�1

j¼0 ~aMF
ðjÞ

:

Proof. According to the proof of Proposition 2,
mMF
ðN � 1Þ 6 mMT

ðN � 1Þ, N P 1, where the inequal-
ity is strict for N = 1. Since ~aMT

ð0Þ ¼ ~aMF
ð0Þ ¼ a, it

suffices to show that
PN�1

j¼0 ~aMF
ðjÞ 6

PN�1
j¼0 ~aMT

ðjÞ,
which follows from the fact that

PN�1
j¼0 ~aMF

ðjÞ ¼
mMF
ðN � 1Þ 6 mMT

ðN � 1Þ ¼
PN�1

j¼0 ~aMT
ðjÞ. h
Fig. 5. Switching office pair (i, j) of a fully meshed circuit-
switched network using alternative routing.
4. Circuit-switched networks using alternative routing

This section will demonstrate the versatility of
OPCA by using it to estimate blocking probability
in a variety of circuit-switched networks using alter-
native routing.
4.1. A symmetric fully meshed circuit-switched

network

Adopted is the usual model of a circuit-switched
network that has been used in [12,13,20]. The net-
work comprises N switching offices. Each pair of
switching offices is interconnected via a trunk group
comprising K cooperative servers. Therefore, there
exists a one-hop route as well as N � 2 two-hop
alternative routes between each pair of switching
offices, as shown in Fig. 5. Calls arrive at each
switching office pair according to independent and
time-homogenous Poisson processes of intensity a.
A call foremost seeks to engage the one-hop route
between the pair of switching offices at which it
arrives. A call that finds all K trunks on this one-
hop route busy overflows to one of the N � 2 two-



Calculate b(1), . . . ,b(N � 2)
Require N, �, a // Number of trunks, error

criterion and offered load
1: b1(n), b0(n) � Uniform(0,1)

"n = 1, . . . ,N � 2 // Initialization
2: k = 1
3: while $ jbk(n) � bk�1(n)j > � for any

n = 1, . . . ,N � 2 do

4: for n = 1, . . . ,N � 2 do

5: an¼2abkð0Þð1�bkðnÞÞ
Qn�1

j¼1 ð1�ð1�bkðjÞÞ2Þ
6: Bn ¼

Pn
j¼0aj

7: bkþ1ðnÞ ¼
Eða;KÞ; n ¼ 0
BnEðBn;KÞ�Bn�1EðBn�1;KÞ

Bn�Bn�1
; n > 0

�
8: end for

9: k = k + 1
10: end while

11: eP MF
¼ bkð0Þ

QN�2
j¼1 ð1� ð1� bkðjÞÞ2Þ //

Return
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hop alternative routes with equal probability and
without delay. A call continues to overflow as such
until either: it encounters a two-hop alternative
route possessing an idle trunk on both of its constit-
uent links, in which case the call engages both of
these idle trunks for its entire holding time; or, it
has sought to engage all N � 2 two-hop alternative
routes, in which case it is blocked and cleared.
According to the TM and FM convention, this
model serves as the TM.

Let b be the probability that all K servers are
busy on an arbitrary trunk group. It suffices to con-
sider an arbitrary trunk group as a consequence of
symmetry. It can be verified that applying EFPA
to the TM gives

b ¼ E aþ 2abð1� bÞ
XN�3

j¼0

ð1� ð1� bÞ2Þj;K
 !

ð18Þ

and that call blocking probability is estimated byeP MT
¼ bð1� ð1� bÞ2ÞN�2

: ð19Þ

Eq. (18) will be justified on a term-by-term basis.
The factor of two multiplying the summation arises
after enumerating all permutations in which a call
can be offered to an arbitrary trunk group. The term
(1 � (1 � b)2)j is the probability that a call overflows
from j two-hop alternative routes, while the term
1 � b is the factor by which intensity must be re-
duced to ensure that the intensities carried by both
links of a two-hop alternative route are equal. For
example, suppose a two-hop alternative route is of-
fered a Poisson stream of intensity a. The portion of
a that is offered to each of the two links constituting
this two-hop alternative route is calculated as
a(1 � b) to ensure that the intensities carried by
both links are equal and given by a(1 � b)2.

Eq. (19) states that a call is blocked in the event
that it overflows from its one-hop route, which
occurs with probability b, and then overflows from
each of its N � 2 two-hop alternative routes, which
occurs with probability (1 � (1 � b)2)N�2.

It is difficult to ascertain properties regarding
existence and uniqueness of solution for (18). Of fur-
ther concern is that it cannot be said if the sequence
fbig1i¼0 generated according to the usual fixed-point

mapping biþ1 ¼ E
�

aþ 2abið1� biÞ
PN�3

j¼0 ð1� ð1�
biÞ2Þj;K

�
converges.

The TM, and the FM to which it gives rise, are
defined in a completely analogous manner. In par-
ticular, an n-call is given strict preemptive priority
over an m-call, n < m, given that both calls compete
for a common trunk group. The definition of a n-
call must be adjusted to a call that overflows from
n routes before engaging the (n + 1)th route.

Let b(n) be the blocking probability perceived by
an n-call, n = 0, . . . ,N � 2, seeking to engage an arbi-
trary trunk group. It can be verified that for the FM,

bðnÞ ¼
Eða;KÞ; n ¼ 0;
BnEðBn;KÞ�Bn�1EðBn�1;KÞ

Bn�Bn�1
; n > 0;

(
ð20Þ

where Bn ¼
Pn

j¼0aj and

an ¼ 2abð0Þð1� bðnÞÞ
Yn�1

j¼1

ð1� ð1� bðjÞÞ2Þ; n > 0

ð21Þ
is the total intensity offered by n-calls to an arbitrary
trunk group. Hence, a0 = a. Call blocking probabil-
ity is then estimated as

eP MF
¼ bð0Þ

YN�2

j¼1

ð1� ð1� bðjÞÞ2Þ: ð22Þ

Eq. (20) follows the same justification provided for
(11).

The term 1 � b(n) in (21) precludes the use of a
recursion to compute the blocking probabilities
b(1), . . . ,b(N � 2), and thus an appropriate fixed-
point mapping must be used. In particular, we use
the following iterative procedure specified in Algo-
rithm 1. This iterative algorithm has been used exten-
sively in the context of EFPA [12,13,20]. In Algorithm
1, bk(n) denotes the value of b(n) at iteration k.

Algorithm 1
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Although convergence of Algorithm 1 is not a
certainty, divergence is rare in practice and can
often be overcome by periodically re-initializing
with a convex combination of the most recent
iterations.

OPCA can be generalized to the case of circuit-
switched networks protected with trunk reservation.
With trunk reservation in place, an n-call can be
preempted from a two-hop alternative route by an
m-call, m < n, in the usual preemptive priority
regime defined by OPC. However, an n-call, where
n > 0, can also be barred from engaging a two-hop
alternative route possessing an idle trunk on both
of its constituent links if the total number of busy
trunks that are engaged with (0, . . . ,n)-calls on
either of the links is greater than or equal to a pre-
defined threshold. Let that threshold be denoted by
M. If the total number of busy trunks that are
engaged with (0, . . . ,n)-calls on either of the links
exceeds or equals M, the n-call must seek another
alternative route; or, if it has sought to engage all
two-hop alternative routes, it is blocked and
cleared. See [16] for some rules of thumb governing
the choice of M.

To generalize OPCA to the case of circuit-
switched networks with trunkp reservation, (20) is
replaced with

bðnÞ¼
Eða;KÞ; n¼ 0;

aQðnÞþRðnÞ
Pn

j¼1aj�
Pn�1

j¼0 ajbðjÞ
an

; n> 0;

8><>:
ð23Þ

where Q(n) and R(n) are functions of the steady-
state probabilities of a one-dimensional birth-
and-death process characterizing a trunk group.
In particular, Q(n) = pK(n) and R(n) = pM(n) +
pM+1(n) + � � � + pK(n), where for a given n, the stea-
dy-state probabilities fpjðnÞgK

j¼0 are computed via
the recursion

pjðnÞ¼

ða0þa1þ���þanÞjp0ðnÞ
j!

; j¼ 1; . . . ;M ;

aj�M
0 ða0þa1þ�� �þanÞMp0ðnÞ

j!
; j¼Mþ1; . . . ;K:

8>>><>>>:
For each n, the normalization constant p0(n) is
determined by solving

PK
j¼0pjðnÞ ¼ 1. Note that

aQðnÞ þ RðnÞ
Pn�1

j¼1 aj divided by Bn is the average
steady-state blocking probability perceived by
(0, . . . ,n)-calls. Eq. (21) does not require any modi-
fication for the case of trunk reservation. Trunk
reservation will not be considered in the remainder
of this paper.

An experiment was conducted in which blocking
probability was estimated in a network comprising
four switching offices with 10 trunks per trunk
group. The error in estimating blocking probability
via EFPA and OPCA was gauged against a simula-
tion and is plotted in Fig. 6.

Based on the outcome of this experiment,
although EFPA yields a better estimate of blocking
probabilities that are greater than about 0.02,
OPCA is preferred for the range of blocking proba-
bilities that are considered most relevant to engi-
neering approximations.

4.2. Other circuit-switched networks

The error in estimating blocking probability via
OPCA will be gauged for three other general cir-
cuit-switched networks and compared to EFPA as
well as a simulation. To conclude, a somewhat arti-
ficial example will be constructed in which OPCA
yields a poorer estimate of blocking probability
than EFPA. This example serves as a warning
against using OPCA carelessly.

The topologies of the three circuit-switched net-
works to be considered are shown in Fig. 10, where
each double-arrowed line represents two trunk
groups aligned in opposing directions, each com-
prising K trunks.

Routing is implemented in a sequential manner
in all three networks as follows. For each switching
office pair, the maximum number of alternative
routes that are disjoint with respect to trunk groups
are enumerated and stored in a routing table. The
routing table is then ordered such that the shortest
hop route is listed first and the longest hop route
is listed last.

Calls arrive at each office pair according to inde-
pendent Poisson processes of intensity a and
sequentially traverse (without delay) the sorted
routing table for an idle route. An idle route is a
route that contains at least one idle trunk on each
of its trunk groups at the time of a call arrival. A
call is blocked and cleared if it cannot engage a
route for its entire service period.

We gauged the error in estimating blocking
probability via OPCA and EFPA for all three cir-
cuit-switched networks for the case K = 10. A guide
to the numerical results is shown in Table 3.
The intensity offered to each switching office pair
was varied over a range that resulted in blocking



0.4 0.6 0.8 1
10

–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

Erlangs per office pair, a

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Simulation
OPCA
EFPA

0.4 0.6 0.8 1
1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

Erlangs per office pair, a

R
el

at
iv

e 
er

ro
r

OPCA
EFPA

Fig. 7. Eight node ring network.

4 6 8 10
10

–7

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

Erlangs per office pair

B
lo

ck
in

g 
pr

ob
ab

ili
ty

, P

Simulation
EFPA
OPCA

4 6 8 10
–1

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Erlangs per office pair

R
el

at
iv

e 
er

ro
r

EFPA
OPCA

Fig. 6. Estimating blocking probability in a fully meshed circuit-switched network using alternative routing, N = 4, K = 10.

E.W.M. Wong et al. / Computer Networks 51 (2007) 2958–2975 2969
probabilities that spanned the range [10�5,10�1].
The set of fixed-point equations inherent to OPCA
and EFPA were solved by iterating as described
earlier.

Based on these numerical results, it evident
that OPCA provides a more accurate estimate of
blocking probability for all three circuit-switched
networks, assuming K = 10 and the considered
routing strategy is in place. Since minimal addi-
tional computational effort is required to calculate
an estimate via OPCA relative to EFPA, it seems
that OPCA is the preferred approximation. The
additional computational effort in calculating an
estimate via OPCA is a consequence of the need
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to calculate the intensity offered and blocking prob-
ability perceived for each of (0,1, . . .)-calls offered to
a trunk group, whereas EFPA only requires calcula-
tion of these two parameters for the single combined
stream formed by pooling together the marginal
streams formed by (0,1, . . .)-calls.
To end this section, we construct an artificial
example in which OPCA yields a poorer estimate
of blocking probability than EFPA. In particular,
reconsider the model of the distributed-server net-
work, but suppose it is only those calls that arrive
at one particular server that are permitted to



Table 3
Guide to numerical results

Network Topology Blocking probability

Eight node ring Fig. 10a Fig. 7
Nine node wheel Fig. 10b Fig. 8
NSF (T1) Fig. 10c Fig. 9

a b

c

Fig. 10. Network topologies. (a) Eight node ring; (b) nine node
wheel; (c) NSF (Version T1).
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overflow in the usual manner prescribed by the ran-
dom hunt. These calls are referred to as premium

calls and arrive according to a Poisson process of
intensity a* to this one particular server. Calls arriv-
ing at all other servers are barred from overflowing
and thus either: engage the first server at which they
arrive, in the case that this server is idle; or, are
blocked and cleared, in the case that this server is
busy. These calls are referred to as standard calls

and arrive at all these other servers according to
independent Poisson processes of intensity a.

The blocking probability perceived by premium
calls and standard calls as well as the average per-
ceived blocking probability was estimated for a net-
work comprising four servers (of which one of these
four servers is offered only premium calls) via
OPCA and EFPA. In this experiment, a = 0.5 and
a* was varied within the range [0.3,1.8]. A simula-
tion was also implemented to gauge errors. The
results are plotted in Fig. 11.

Upon observing Fig. 11, it is clear that EFPA pro-
vides a better estimate of the blocking probability
perceived by premium calls and standard calls. An
interesting point is that the estimate of blocking
probability perceived by standard calls is indepen-
dent of a* for OPCA, which is not the case in prac-
tice. This is because for the FM of this network,
standard calls are oblivious to the existence of pre-
mium calls since a standard call is always given the
right to preempt a premium call in the FM. Hence,
the result is that OPCA overestimates the blocking
probability perceived by premium calls and underes-
timates the blocking probability perceived by stan-
dard calls, especially for high intensities.

Since the blocking probability perceived by a
standard call is independent of a* in the FM (but
clearly increases with a* in the TM), the inequality
P MT
6 P MF

is not tight for this network. This exam-
ples serves as a warning against deeming OPCA to
be a universally superior estimate of blocking prob-
ability. However, as a rule of thumb, OPCA usually
performs well, and better than EFPA for networks
of high symmetry and connectivity in which each
traffic source is allowed to overflow many times
before it is blocked.
5. Conclusion

This paper introduced a new approximation
referred to as OPCA for estimating blocking proba-
bility in overflow loss networks. Unlike other meth-
ods that have improved EFPA through the
enumeration of higher moments, OPCA is based on
the most basic form of EFPA and hence remains sim-
ple and efficient but, through a system transforma-
tion, implicitly utilizes the congestion information



2972 E.W.M. Wong et al. / Computer Networks 51 (2007) 2958–2975
imbedded in the overflow traffic to achieve higher
accuracy. OPCA was shown to outperform the con-
ventional EFPA approach for the case of a distrib-
uted-server network as well as several cases of
circuit-switched networks using alternative routing.
Our rationale contends that the success of OPCA lies
in its ability to combat the Poisson error as well as the
independence error, which are two errors inherent to
EPFA that especially manifest themselves in overflow

loss networks.
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Appendix A. Proof of Proposition 1

Let

An ,

Xn

i¼0

aðiÞ;

where a(i) is given by (9). Then according to (9), for
n > 0 and a > 0, it follows that

bðnÞ ¼ Anþ1 � An

An � An�1

:

Using (11), this can be rewritten as

Anþ1 � An

An � An�1

¼
E
Pn

i¼0aðiÞ; 1
� �Pn

i¼0aðiÞ �
Pn

i¼1aðiÞ
aðnÞ

¼ 1

aðnÞ
A2

n

ð1þ AnÞ
þ a� An

� �
¼ 1

ðAn � An�1Þ
a� An

1þ An

� �
Hence, resulting in the required recursion

Anþ1 ¼ An þ a� An

1þ An
; n P 0;

where A0 = a. h
Appendix B. Proof of Lemma 1

Proof. For M = MT, according to (5) and (7),

eP MT
¼ EðmMT

ðN � 1Þ; 1ÞN : ð24Þ
Using (6) in (24) gives

eP MT
¼ a� EðmMT

ðN � 1Þ; 1Þ
a

¼
a� mMT

ðN � 1Þ 1� mMT
ðN�1Þ

1þmMT
ðN�1Þ

� �
a

;

after which the required result follows from the fact
that E(a,1) = a/(1 + a), a P 0.

For M = MF, according to (11),

eP MF
¼ aMF

ð1Þ � � � aMF
ðNÞ

aMF
ð0Þ � � � aMF

ðN � 1Þ ¼
aMF
ðNÞ
a

¼ mMF
ðNÞ � mMF

ðN � 1Þ
a

: ð25Þ

Let !(a) = aE(a,1). Note that for n > 0,

aMF
ðnÞ ¼ mMF

ðnÞ � mMF
ðn� 1Þ

¼ !ðmMF
ðn� 1ÞÞ � !ðmMF

ðn� 2ÞÞ; ð26Þ

where mMF
ð�1Þ ¼ 0. Substituting (26) into (16) gives

rise to a telescoping sum that results in the recursion

mMF
ðnÞ ¼ aþ !ðmMF

ðn� 1ÞÞ; n > 0: ð27Þ
To arrive at the required result, (27) is used in (25)
givingeP MF
¼ aþ!ðmMF

ðN � 1ÞÞ � mMF
ðN � 1Þ

a

¼ 1� mMF
ðN � 1Þð1�EðmMF

ðN � 1Þ;1ÞÞ
a

: �
Appendix C. Proof of Proposition 2
Proof. A simple rearrangement of Lemma 1 gives

eP Mða;NÞ ¼ 1� mMðN � 1Þ
að1þ mMðN � 1ÞÞ ; M 2 fMT;MFg:

Hence, it suffices to show that mMF
ðN � 1Þ 6

mMT
ðN � 1Þ. Induction will be used to show

mMF
ðnÞ 6 mMT

ðN � 1Þ; n ¼ 1; . . . ;N � 1:

According to (4),

mMT
ðN � 1Þ ¼ a

XN�1

i¼0

EðmMT
ðN � 1Þ; 1Þi ð28Þ

and explicitly writing out the first few terms of (27)
gives

mMF
ðnÞ ¼ aþ !ðmMF

ðn� 1ÞÞ
¼ aþ EðmMF

ðn� 1ÞÞðaþ !ðmMF
ðn� 2ÞÞÞ

¼ a
Xn

i¼0

Yi

j¼1

EðmMF
ði� jÞÞ; ð29Þ
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where a null product is unity. For the base case
n = 1, an immediate consequence of (28) and (29) is

mMF
ð1Þ ¼ aþ aEða; 1Þ 6 aþ aEðmMT

ðN � 1Þ; 1Þ
6 mMT

ðN � 1Þ:

The inductive hypothesis is that mMF
ðkÞ 6

mMT
ðN � 1Þ for all k < n 6 N � 1. Using the induc-

tive hypothesis and because E(a,1) is monotonically
increasing, it follows that

mMF
ðnÞ¼ a

Xn

i¼0

Yi

j¼1

EðmMF
ði� jÞÞ

¼ aþaEða;1ÞþaEða;1ÞEðmMF
ð1ÞÞþ �� �

6 aþaEðmMT
ðN �1ÞÞþaEðmMT

ðN �1ÞÞ2þ�� �

¼ a
Xn

i¼0

EðmMT
ðN �1Þ;1Þi6 mMT

ðN �1Þ:

Since the base case is true and the inductive step is
true, mMF

ðnÞ 6 mMT
ðN � 1Þ is true for all n 6 N � 1.

It may be noted that the case of n = 0 follows triv-
ially since mMT

ð0Þ ¼ mMF
ð0Þ ¼ a. h
Appendix D. Summary of notation

See Table 4.
Table 4
Summary of notation

n-call A call that has overflowed from n servers or trunk
groups

(0, . . . ,n)-call Used to reference either a 0-call or a 1-call, . . . ,
or an n-call

a(0) or a Exogenous load offered to a server or source and
destination pair

a(n) Load offered to a server or trunk group by calls
that have overflowed n times

bi(n) Steady-state blocking probability perceived for a
call that after overflowing n times seeks to engage
server or trunk group i

b(n) Used as a shorthand for bi(n) if all servers or
trunk groups are statistically equivalent

b Used only in the context of applying EFPA to the
TM; denotes the probability that a server or
trunk group is fully occupied

E(a,N) Blocking probability in an M/M/N/N queue
offered intensity a

K Number of trunks per trunk group
M Trunk reservation threshold for circuit-switched

networks; M < K

MT and MF True model and fictitious model, respectively
P and eP Exact and estimated system blocking probability,

respectively, perceived by a call; see Table 2
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