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Fig. 2. Response when E = 1.0: (a) reference trajectory, (b) I(YTsl(. 
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Fig. 3. 
1, (c) Torque input: joint 2. (d) c ( t ) .  

Response when E = 1.0: (a) Tracking errors, (b) Torque input: joint 
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Fig. 4. Response when t = 0.1: (a) reference trajectory, (b) IIY’’sII. 

are i1 = 7.6 x and 42 = 6.5 x and the steady-state 
estimate is 10.47. The steady-state errors and estimate are smaller 
and larger than the previous ones, respectively because of the given 
small E value. In this case, however, some chattering occurs at 0.8 
seconds. 

v. CONCLUSION AND DISCUSSION 
In this note, we have presented a robust control law for robot 

manipulators based on Spong’s work [ 11, in which a simple estimation 
law for uncertainty bound is proposed to exclude an assumption 
about the uncertainty bound. The proposed control scheme is easier 
to design than [ I ]  because the pre-computation of the uncertainty 
bound is not needed. In practical application of adaptive control, its 
computational burden and persistency of excitation condition should 
be considered. In our scheme, since only one parameter, i.e., an upper 
bound on the uncertainty needs to be estimated using the proposed 
simple algorithm, it does not require much computation time and the 
persistent excitation condition. 
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Fig, 5. 
1, (c) Torque input: joint 2, (d) P(t) .  

Response when E = 0.1: (a) Tracking errors, (b) Torque input: joint 
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The Optimal Multicopy Aloha 

Eric W. M. Wong and Tak-Shing P. Yum 

Abstrucf- Multicopy Aloha is a generalization of single-copy Aloha 
where multiple copies of a packet are transmitted without first learning 
whether the transmission of the first copy is successful or not. Different 
users in the system can transmit different number of copies. But the 
optimal multicopy policy is found to be of the “pure” type whereby all 
nsers transmit the same number of copies. To maximize the probability 
of successful transmission we found that the optimal copy number is one 
for the normalized channel traffic A in range 0.48 < A 5 1, two for 
0.28 < A 5 0.48, three for 0.20 < A 5 0.28, etc. Potential applications 
of multicopy Aloha include packet satellite systems, multichannel Aloha 
systems and reservation Aloha systems. 
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I. INTRODUCTION 
When m copies of a packet are transmitted on a slotted Aloha 

channel [l] one would be tempted to believe that the probability 
of successful transmission for that packet, or the probability that at 
least one of the m copies will not involve in a collision, would be 
higher than that when only one copy is transmitted. This is only 
true, however, when other packets are transmitting in single copies 
or when the channel traffic is very light because otherwise the higher 
probability of collision caused by the m times increase of traffic will 
more than offset the gain of diversity. 

In this paper, we investigate the trade-off between these two 
factors and derive the optimal multiple-copy transmission policy 
under various channel traffic conditions. In addition, we compare 
two policies for multicopy Aloha: 

1 )  Pure policy: All users transmit the same number of copies. 
2) Mixed policy: Different users may transmit different number 

of copies. 
To maximize the probability of successful transmission, we shall 
prove that the optimal pure policy is always better than the optimal 
mixed policy for Poisson arrivals. We choose to study only the slotted 
version as the unslotted version is just a minor variation. 

Multicopy Aloha is not suitable for systems where the sensing of 
carriers is convenient. It is also not suitable for systems where the 
round-trip propagation delay between the transmitters and receivers 
is small because the kind of "look-ahead-retransmission" offered by 
multicopy Aloha is unwarranted in such systems. On the other hand, 
we do see potential application in the following three situations. 

In packet satellite systems [2] with long round-trip propaga- 
tion delay, multicopy Aloha can give higher probability of 
successful transmission than single-copy Aloha in light traffic 
conditions. 
In an M-channel Aloha system [3], m copies of a packet can 
be distributed to m of the M available channels. For A4 large 
(necessary for the Poisson assumption stated in the next section 
to be valid), the same throughput gain can be obtained without 
randomly delaying the m copies as in the single channel case. 
In a reservation Aloha system [2], the reservation sub-channel 
is in general very lightly loaded. The use of multicopy Aloha 
for the reservation packets can give a higher probability of 
successful reservation. 

Multicopy Aloha is a generalization of the single copy Aloha. 
Its optimal use requires the knowledge of channel traffic. This 
knowledge, however, is always needed for channel stability control 
regardless of the copy numbers [ 2 ] .  

11. THE OPrIMAL POLICY 

Let the arrivals of packets be a Poisson process. For single 
copy slotted Aloha, it is generally assumed that if the average 
retransmission randomization delay is larger than five slots, the 
combined new and retransmitted packet arrivals can be approximated 
as a Poisson process [4]. In multicopy Aloha systems where packet 
copy transmissions are randomized in time, we make the analogous 
assumption that the combined new and retransmitted packet-copy 
transmissions constitute a Poisson process. The mean randomization 
delay for the m copies, including the first transmission, however, 
should be sufficiently large, say, no smaller than 5m slots. 

Let us first divide the input arrivals into n types where a type 
i arrival (i = 1, 2 , . . .  . n )  consists of i copies of the same packet 
whose transmissions are randomized in time. Let A, be the rate of 
the type i arrivals (including retransmissions) and let A = A1 + A 1  + 
... + A, be the total packet arrival rate of all types. The average 

number of copies per packet N is given by 
n 

N = A - ' E i A * .  (1) 
2 = 1  

The probability P, that a type i packet is successfully transmitted is 

P, = 1 - Prob [all z copies are collided] 
- - 1 - (1 - ?--N*y. 

The throughput contribution from type i packets, denoted as S,, is 
S,  = A,P, and the total throughput S is 

n n 

s = p z  = p , [ l - ( l - e - N * ) ' ] .  
2 = 1  *=l 

The probability of a successful transmission P for an arbitrary packet 
is just S /A  and the average number of transmission attempts per 
packet T is given by A/S. For the m-copy Aloha (m > 1)  with a 
mean randomization delay of 5m slots, the expected delay D for a 
packet to reach its destination [4] is 

D = 5m + ( R  + 5m)(A/S - 1) 

where R is the round-trip propagation delay on the channel. There- 
fore, for systems with a large R such as a packet satellite system, D 
is proportional to the average number of retransmissions ( A / S  - 1). 
The multi-copy Aloha optimization problem can be formulated as 
maximizing S with respect to {A,}  such that Cy='=, A, = A. 

Let Spu) be the throughput under the Pure Policy where all users 
transmit k copies per attempt. Then 

spu) = A p k  = A[1 - (1  - e-'*) ' ]  k = 1, 2 ,  3 , . . .  . ( 2 )  
Treat k in (2) as a continuous variable and differentiate (2) w.r.t. k, 
a global maximum at k = (ln2)/A is found. (The second derivative 
is always negative.) Thus, if we choose A equal to (ln2)/k, where 
IC = 1, 2, 3 , .  . . , in (2), S p u )  is maximized to be 

sp'qmax = !g [l-  (a)"] k = 1, 2, 3, 

The throughput under the mixed policy S"") is 

t = l  

From Lemma 1 in the Appendix we obtain 

S'""' < A [ l  - (1 - e - N A ) N ] .  (3) 
At A = (In2)/k this upper bound is maximized at N = (In2)/A = 
k. Thus using N = k in (3), we have 

at A = (ln2)/k.  In other words, at these values of A, S is maximized 
with the use of the pure policy consisting of type k traffic only. 

In the following, we present two theorems. Theorem 1 proves that 
even when A # (In2)lk the pure policy still gives higher throughput 
than the mixed policy. Theorem 2 gives the optimal pure policy for 
a given traffic rate A. The optimal number of copies IC* in the pure 
policy is found to increase with decreasing traffic load A as follows: 
k* = 1 for A 2 0.48, k* = 2 for 0.28 5 A < 0.48, etc. 

Let 8 be the set of positive real numbers and let R = 8 - 
(1112, (In2)/2, (In2)/3,. . .}. 

Theorem 1: For A E 52, S is maximized either when all users 
transmit the same k- = copies per attempt or when all users 
transmit the same k+ = copies per attempt. 

Proof: First, consider the use of the pure policy. Since S p u )  
has a global maximum at k = (ln2)/A, S(pu)  is maximum at either 
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Fig. 1. P versus A. 

k -  = L(ln2)/h] or k+ = [(ln2)/A]. It means that the maximum 
throughout of the pure policy occurs either when all users transmit 
the same k -  copies per attempt or when all users transmit the same 
k+ copies per attempt. 

Next, consider the use of the mixed policy. Depending on the 
value of N, we have three cases: 

i. N 5 k - :  From (3), the throughput of the mixed policy is 
bounded by S("") < A[1 - (1 - e--N*)N]. Since the bound 
has a single global maximum at N = ln2/A, for N 5 k- 
the bound is obviously maximized at N = E - ,  or S("") < 

ii. N 2 k+: Repeating the same argument in i), S(mx) < S z '  
when N 2 k + .  

iii. k -  < N < k + :  Lemmas 2 and 3 in the Appendix stipulate 
that either the pure policy with N = k-  or the pure policy 
with N = k+ has throughput larger than that of any mixed 
policy with the same A. Q.E.D. 

In the following, we shall, for convenience, suppress the superscript 

Theorem 2: For each interval le, y] where k = 1, 2 , . . . ,  

l n ( 1 -  e - k A )  - k +  1 

A[1 - (1 - = Sf-'). 

(pu) in the pure policy throughput notation. 

there exists a single point of given by the solution of 

In(1-  e - ( k + l ) ~ )  - 7 (5) 

such that 
s k + i ( A )  > S k ( A )  for A E [ s, A k )  
S k + i ( h )  = S k ( h )  for A = Ak 
S k + i ( A )  < S k ( h )  for A E ( A k ,  y]. 

Proof: From ( 2 )  it can be shown that 
S k + i ( A )  > s k ( A )  for A = k+l 
S k + l ( r l )  < s k ( A )  for A = y. 

Since S k ( A )  and S k + l ( A )  are continuous functions of A, the curves 
of s k  (A) and S k + l  (A) against A must have one or more intersection 
points. Let Ak be the intersection point. Then is the solution 

Canceling A, taking logarithm and rearranging, we obtain (5). 
Of s k ( A )  = S k + i ( h ) ,  Or A(1 - = h(1 - 1 -  k+l 

We now prove that the solution is unique. Let A be defined as 

A = (k + 1) In (1 - e - - ( k + l ) A )  - k In (1 - e-"). 

To show that (5) has only one solution, it is sufficient to show 

d A  - (k + 1)2e-(k+1)A k 2 e - k A  
(6) - _  -~ 

dA 1 - e - ( k + l ) A  1 - e-k.4 

is positive. Let us define a continuous function F ( x )  as 
x2e-xA 

1 - e - x A  
F ( r )  = ~ 

Fig. 2. Comparison of pure and mixed policies: (a) XI + X2 = 0.5, (b) 
X i  + A2 = 0.45. 

where F (  k +  1) - F (  k) = dA/dA. If we can prove that the derivative 
of F ( z )  is positive for k 5 x 5 k + 1, F ( k  + 1) - F ( k )  or dA/dA 
will indeed be positive. Differentiate F (x ) ,  we have 

d F ( z )  = 2x(2ez* - 2 - xAezA) 
- 1 2 ' (7) 

dx 1 
Replacing all positive terms in (7) by their minimum bound values 
and all negative terms in (7) by their most negative bound values, 
we have 

It can be shown that [a] in (8) is positive for k 2 8. Therefore, there 
is a unique A k  for k 2 8. Numerical results show that for k 5 7 
there is a unique solution for each k in the specified range. Q.E.D. 

In.  NUMERICAL RESULTS AND DISCUSSIONS 

Fig. 1 shows P versus A with 1 5 k 5 5. It shows that to 
maximize the probability of successful transmission, a single copy 
should be transmitted when the channel traffic A is larger than 0.48, 
when A E [0.28, 0.481, two copies should be transmitted, etc. It is 
seen that when A is small, P can be set arbitrarily close to one by 
using a large k. 

Fig. 2 shows P versus XI with A = XI + A2 = 0.5 and with 
A = A1 + A2 = 0.45. It is seen that when A = 0.5 maximum S 
occurs at XI = 0.5 or with the use of the pure policy with k = 1. 
When A decreases slightly to 0.45 (i.e., less than the A = 0.48 
threshold) the maximum S location switches to XI = 0 or Xz = 0.5. 
The optimal policy is the pure policy with k = 2. It is also seen that 
the throughput curves are not convex functions of XI. This causes 
some complications in proving Lemma 3. 

Fig. 3 shows the optimal k as a function of A. It is seen that the 
optimal k decreases rapidly to one as A increases to 0.48. Classical 
single-copy Aloha analysis stipulates that S is maximized at A = 1. 
Thus for 0.48 < A 5 1, the optimal k is one. Beyond A = 1, 
packets should be transmitted with probability q = 11-l and blocked 
with probability 1 - q so as to maintain the effective traffic rate at 
one packet per slot. 

APPENDIX 
Lemma 1: 

n 

A[1 - (1 - > CX,[l - (1 - e-*')*]. (Al) 
t = l  

Proof: The inequality of the arithmetic and geometric means 
[5] states that 
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Proof: Let m = [y] and m + 1 = [?I. Then from (A2), 
we have 

s ( A  - X,+1)[1 - (1 - e--mA--X,+l)m] 

+ A m + l [ l  - (1 - e--mA--xm+1 ) m+l I .  (A31 
Numerical results show that for 1 < (ln2/A) < 4, SZ is maximized 
either at X,+1 = 0 or at X,+1 = A. It means that for 1 < 
(ln2/A) < 4, the throughput of the pure policy is always better 
than that of the two-type policy. For (ln2/A) > 4 (i.e., m 2 4), 
we prove this analytically. First, from the definition of m ,  we have 
(In2)/(nz+ 1) < A < (In2)/m. For m 2 4, we have 

(A41 
4 
-11-12 < mA < 1112. 
5 

Therefore, for m 1 4 we have 

A,+1 5 A < (In2)/m 5 (ln2)/4.  (‘45) 
Combining (A4) and (A5), we have 

4 5 
- I n 2 < m A + X m + 1  < -1n2. 
5 4 

Therefore 

(A61 

2 = 1  

1 - (a)‘ < 1 - e--mA--Xm+l < 1 - (i)’. (A7) 

Next, differentiate (A3) twice with respect to A m + l  and let G E 
-mil - Am+l ,  we have 

dswo-trPe,( l -e~)m+l e G [mA,+le“ -mA+( l -eC) ( l -A ,+~ ]  

Merging A into the summation, (Al) is obtained. Q.E.D. 
Lemma 2: For nonintegral value of N, the throughput of the two- 

type policy consisting of type [NI and type [NI is larger than the 
throughput of any other mixed policy under the same A and N .  

Pro08 Let m E LNI. Then [NI = m + 1. With type m and 
type m + 1 in the system, we have 

+ X,+i = A dXm+1 

and 

The throughput under the above two-type policy is 

s Itwo--type= X,[I - (1 - e-NA)m] + ~ , + 1 [ 1  - (1 - 
(‘42) 

Consider any other mixed policy system with A and N given. 
Then, it is always possible to divide the traffic into two groups such 
that group 1 contains { A ~ ” }  and satisfies 

and group 2 contains {A!”} and satisfies 

. [X,+l((m + 2)e“ - 3) - mA + 2(1 - e“)] 
+ [ma - (1 - e“)’(2 - A,+I)]}. (‘48) 

Replacing all positive terms in (AS) by their minimum bound 
values and all negative terms by their most negative bound values, 
i.e., using (A4)-(A7), we have, for m 2 4 

Using Lemma 1, the throughput contributions of the above two groups 
are bounded from above by 

This implies that Stwo--type is a convex U function of Am+l for 
m 2 4 and will attain its maximum at its boundary points X,+1 = 0 
or X,+1 = A. Hence Lemma 3 is proved. Q.E.D. 
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Adding up, we have Stwo-type > S(m”), or the throughput of the 
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that of any other mixed policy under the same A and N .  Q.E.D. 
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