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This letter investigates a new chaotic system and its role as a joint function between two
complex chaotic systems, the Lorenz and the Chen systems, using a simple variable constant
controller. With the gradual tuning of the controller, the controlled system evolves from the
canonical Lorenz attractor to the Chen attractor through the new transition chaotic attractor.
This evolving procedure reveals the forming mechanisms of all similar and closely related chaotic
systems, and demonstrates that a simple control technique can be very useful in generating and
analyzing some complex chaotic dynamical phenomena.
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1. Introduction

Chaos as an interesting complex dynamical phe-
nomenon has been extensively studied within the
scientific, engineering and mathematical communi-
ties for more than three decades. Recently, the tra-
ditional trend of analyzing and understanding chaos
has evolved to a new phase in investigation: con-
trolling and utilizing chaos. Research in the field of
chaos control, synchronization and modeling includ-
ing not only suppressing chaos when it is harmful,
but also chaotification, i.e. generating chaos inten-
tionally when it is useful. These tasks can both be

carried out by means of conventional control tech-
nology [Chen, 2001; Chen & Dong, 1998; Wang &
Chen, 2000].

Lorenz found the first canonical chaotic at-
tractor in 1963, in a simple three-dimensional au-
tonomous system [Sparrow, 1982], which has just
been mathematically recently confirmed to exist
[Stewart, 2000]. In 1999, Chen found another
chaotic attractor [Chen & Ueta, 1999; Ueta & Chen,
2000], also a simple three-dimensional autonomous
system, as the dual of the Lorenz system, in a sense
defined by Vanĕc̆ek and C̆elikovský [1996]: For the
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linear part of the system, A = [aij ]3×3, the Lorenz
system satisfies the condition a12a21 > 0 while the
Chen system satisfies a12a21 < 0. Very recently, Lü
and Chen [2002] found a new critical chaotic sys-
tem, which satisfies the condition a12a21 = 0 and
represents the transition between the Lorenz and
the Chen attractors.

We have provided a somewhat detailed dynam-
ical analysis on this new chaotic system in [Lü
et al., 2002a]. Furthermore, we have found that
this new chaotic attractor has a compound struc-
ture by merging together two simple attractors after
performing one mirror operation [Lü et al., 2002b],
which is similar to the modified Lorenz system and
the Chen system [Elwakil & Kennedy, 2001; Özoğuz
et al., 2002; Lü et al., 2002c]. Meanwhile, we have
pointed out that the new critical chaotic attractor
is a transition between the Lorenz and the Chen at-
tractors [Lü et al., 2002a]. This letter offers further
details on the observation of this interesting transi-
tion with some analysis on the joint function of this
intermediate chaotic attractor.

2. The Joint Function of the
New Chaotic Attractor

The aforementioned critical chaotic system is de-
scribed by 

ẋ = a(y − x)

ẏ = −xz + cy

ż = xy − bz
(1)

which has a chaotic attractor as shown in Fig. 1(a)
when a = 36, b = 3, c = 20.

To further investigate the joint function of this
new chaotic attractor, a constant control term is
added to the third equation:

ẋ = a(y − x)

ẏ = −xz + cy

ż = xy − bz +m.

(2)

When m = 40, it has a similar topological structure
to the Lorenz attractor, as shown in Fig. 1(b); while
when m = −300, it has similar topological structure
to the Chen attractor, as shown in Fig. 1(c).

2.1. Some basic properties of the
controlled system

The controlled system (2) shares several important
qualitative properties with the original chaotic sys-
tem (1). They are further discussed in the following:
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Fig. 1. The new chaotic attractor and its variants similar
to the Lorenz attractor and the Chen attractor. (a) m = 0,
(b) m = +40, (c) m = −300.

2.1.1. Symmetry and invariance

At first, it is easy to notice the invariance of
the system under the transformation (x, y, z) →
(−x, −y, z), i.e. under the reflection about the
z-axis. The symmetry persists for all values of the
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system parameters a, b, c and m. Also, it is clear
that the z-axis itself is an orbit, i.e. if x = y = 0
at t = 0 then x = y = 0 for all t > 0. Fur-
thermore, the trajectory on the z-axis tends to
the origin as t → ∞, since for such a trajectory,
dx/dt = dy/dt = 0 and dz/dt = −bz + m. There-
fore, the controlled system (2) shares the symmetry
and invariance with system (1) for various values
of m.

2.1.2. Dissipativity and the existence
of attractor

For system (2), one has

∇V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −(a+ b− c) .

Hence, with a+b > c, system (2) is dissipative, with
an exponential contraction rate:

dV

dt
= e−(a+b−c) .

That is, a volume element V0 is contracted by the
flow into a volume element V0e

−(a+b−c) in time t.
This means that each volume containing the system
trajectory shrinks to zero as t→∞ at an exponen-
tial rate −(a + b − c). Therefore, all system orbits
are ultimately confined into a specific subset of zero
volume, and this asymptotic motion settles onto an
attractor. Thus, when a+ b > c, the controlled sys-
tem (2) has the same dissipativity as the original
system (1) for any value of m.

2.2. Equilibria and bifurcations

In the following, assume that the parameters a, b
and c are all positive. The equilibria of system (2)
can be easily found by solving the three equations
ẋ = ẏ = ż = 0, which lead to

a(y−x) = 0 , −xz+cy = 0 and xy−bz+m = 0 .

It can be easily verified that the equilibria of system
(2) are:

(i) when m ≥ bc, there is only one equilibrium:
S0(0, 0, m/b);

(ii) when m < bc, there are three equilibria:

S0(0, 0, m/b)

S−(−
√
bc−m, −

√
bc−m, c)

S+(
√
bc−m,

√
bc−m, c) .

Note that the null solution is not any longer an
equilibrium of system (2) if m 6= 0. Pitchfork bi-
furcation of the equilibrium S0 at m = bc can be
observed. The other equilibria, S− and S+, are
symmetrically placed with respect to the z-axis.

Linearizing the controlled system (2) about the
equilibrium S0 provides an eigenvalue λ1 = −b
along with the following characteristic equation:

f(λ) = λ2 + (a− c)λ+
a(m− bc)

b
= 0 . (3)

When m < bc, the two eigenvalues satisfy λ2 >
0 > λ3, so the equilibrium S0 is a saddle point in
three-dimension; when m > bc and a < c, the equi-
librium S0 is a saddle; when m > bc and a > c, the
equilibrium S0 becomes a sink.

Next, linearizing the system about the
other equilibria yields the following characteristic
equation:

f(λ) = λ3+(a+b−c)λ2+(ab−m)λ+2a(bc−m) = 0 .
(4)

Obviously, the two equilibria S± have the same sta-
bility. The Routh–Hurwitz conditions lead to the
conclusion that the real parts of the roots λ are
negative if and only if

a+ b− c > 0 , 2a(bc−m) > 0 ,

and

(a+ b− c)(ab−m)− 2a(bc−m) > 0 .

Therefore:

(i) if a+c > b, then when m > (ab(3c−a−b)/(a+
c− b)), the equilibria S± are sinks;

(ii) if a+c < b, then when m < (ab(3c−a−b)/(a+
c− b)), the equilibria S± are sinks.

In the following, assume that a > c. For the
equilibria S±, one has bc − m > 0 and ab − m >
bc−m > 0. Note that the coefficients of the cubic
polynomial (4) are all positive. Therefore, f(λ) > 0
for all λ > 0. Consequently, there is instability
(Re(λ) > 0) only if there are two complex conju-
gate zeros of f .

Now, it is clear that when m = bc, the three ze-
ros are λ = 0, −(a−c), −b, and therefore the system
has linear stability or marginal stability. The first
zero gives λ ∼ −(2a(bc −m)/(ab −m)), as m ↑ bc,
so stability is lost in the limit as m approaches bc
from below. As m decreases from bc, instability can
set in only when Re(λ) = 0, i.e. when two zeros are
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λ = ±ωi for some real ω. But the sum of three
zeros of the cubic polynomial f is

λ1 + λ2 + λ3 = −(a+ b− c) .
Hence, λ3 = −(a+b−c). On the margin of stability,
λ = ±ωi, so that, on this margin,

0 = f(−(a+ b− c)) = ab(3c−a− b) +m(b−a− c) ,
that is,

mh =
ab(3c− a− b)
a+ c− b . (5)

In fact, if there is instability then as m decreases
from bc the following phenomenon can be observed:
λ1 decreases from zero until it coalesces with λ2

(when λ1 = λ2 < 0); then they become a complex
conjugate pair, and eventually their real part in-
creases through zero; while λ3 remains negative for
all m < bc. One can thus see that each of the points
S+ and S−, when being unstable, has one negative
eigenvalue and two complex conjugate eigenvalues.
So this equilibrium is a saddle-focus.

Hopf bifurcations emerge from the value of
mh = (ab(3c − a − b)/(a + c − b)), where
the complex conjugate eigenvalues are λ =
±
√

(2ab(a− c)/(a + c− b))i (with a + c > b).
When m > mh, S+ and S− are both stable sinks.
At m = mh, however, they change to two two-
dimensional unstable saddles. If a = 36 and b = 3
are fixed while c and m are varied, then one can
observe the continuous Hopf bifurcations, as shown
in Fig. 2.

2.3. Dynamical behaviors of the
controlled system

To investigate the joint function of the new chaotic
attractor and to clarify the relationship between the
Lorenz and the Chen attractors, the dynamical be-
havior of the controlled system (2) is further studied
here.

By varying the variable constant control input
m, as listed in Table 1, one can observe different
dynamical behaviors of the controlled system.

It can be seen from Table 1 that (i) when m
is large enough (e.g. m ≥ 43.8), the system con-
verges to a point; (ii) when m decreases gradually,
system (2) enters into a chaotic region. Especially,
the procedure is quite similar to the Lorenz system
[Sparrow, 1982], and the attractor is an invari-
ant of the Lorenz attractor; (iii) when m is rela-
tively small, system (2) goes through the transition
gradually, generating the joint chaotic attractor;
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Fig. 2. The continuous Hopf bifurcations of system (2).

Table 1. A summary of the controller parameter range for
behaviors of system (2), as determined by both theory and
computation.

For m > 43.8, the system converges to a point;
For 43.6 < m ≤ 43.8, there exists the onset of chaos [see

Fig. 3(a)];
For 42.79 < m ≤ 43.5, there exist a chaotic attractor and a

pair of stable attracting rest points S± [see Fig. 3(b)];
For 25 < m ≤ 42.79, the attractor is similar to the Lorenz

attractor [see Fig. 1(b)];
For −30 < m < 25, the attractor is a transition attractor [see

Fig. 1(a)];
For −785 < m < −30, the attractor is similar to the Chen

attractor [see Fig. 1(c)];
For −1043 ≤ m < −785, there are period-doubling bifurca-

tions [see Figs. 3(c)–3(e)];
For −900.5 ≤ m ≤ −897.8, there is a periodic window [see

Fig. 3(f)];
For −105 < m < −1043, there is a limit cycle [see Fig. 3(g)];
For −105 ≤ m ≤ −106, there is an attractor [see Fig. 3(h)].

(iv) when m is small enough, system (2) enters into
another chaotic region, and the attractor has sim-
ilar topological structure with the Chen attractor.
Here, it is interesting to see that the invariant of the
Chen attractor is also produced by period-doubling
bifurcations.

Both Table 1 and Fig. 3 show that the new
chaotic attractor has a joint function. Indeed, the
controlled system (2) represents the transition from
one system to another when the key control param-
eter m is slowly varied. Moreover, the routes to
chaos and bifurcations in this system are both sim-
ilar to that of the original Lorenz and the Chen
attractors [Sparrow, 1982; Ueta & Chen, 1999].
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Fig. 3. The phase portraits of the controlled system (2). (a) m = 43.8, (b) m = 43, (c) m = −800, (d) m = −950,
(e) m = −10 000, (f) m = −900, (g) m = −1100, (h) m = −106.
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Fig. 3. (Continued )

3. Conclusions

Recently, a new chaotic attractor connecting the
dual Lorenz and Chen attractors is coined. In addi-
tion to the previously given analysis of its dynam-
ical behavior and compound structure, this Letter
has further studied the joint function of this new
attractor and explored the relationship between the
Lorenz and the Chen attractors. This new attrac-
tor has contributed to a better understanding of
all similar and closely related chaotic systems, and
therefore deserves further investigation in the near
future.
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