Introducing the Generalized Lorenz Systems Family: Theory and Applications

Guanrong Chen 陈关荣
Centre for Chaos and Complex Networks
City University of Hong Kong 9-9-09
To the Memory of

Father of Chaos

Edward N. Lorenz

(23 May 1917 – 16 April 2008)
Acknowledgements

Tetsushi Ueta 上田哲史
Tokushima University, Japan

Sergej Čelikovský 切尼科夫斯基
Czech Academy of Science, Czech Republic

Jinhun Lü 吕金虎
Chinese Academy of Science, China

Tianshou Zhou 周天寿
Zhongshan University, China

Jun-an Lu 陆君安
Wuhan University, China

Wallace K. S. Tang 邓杰生
City University of Hong Kong, China

Yuxia Li 李玉霞
Shandong University of Science and Technology, China

Chunguang Li 李春光
Zhejiang University, China

Zhenting Hou 候振挺
Central South University, China
Contents

- Lorenz System
- Chen System
- Generalized Lorenz System
- Hyperbolic Generalized Lorenz System
- Generalized Lorenz Systems Family
- Hyperchaotic Chen System
- Fractional-Order Chen System
- Conclusions
The Lorenz System

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= cx - xz - y \\
\dot{z} &= xy - bz, \\
\end{align*}
\]

\[a = 10, b = \frac{8}{3}, c = 28\]

G Chen: Generalized Lorenz systems family
Any Extension or Connection?

Lorenz (1963)

3-D Autonomous with
1 or 2 Quadratic Terms

Sprott (1997)

Rössler (1976)

(others)
Lorenz System

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= cx - xz - y + u \\
\dot{z} &= xy - bz
\end{align*}
\]

Chen System

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= (c - a)x - xz + cy \\
\dot{z} &= xy - bz
\end{align*}
\]

\[u = -ax + (1 - c)y + 0z\]

The Chen System is described by the following system of equations:

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= (c - a)x - xz + cy \\
\dot{z} &= xy - bz,
\end{align*}
\]

with parameters \(a = 35\), \(b = 3\), and \(c = 28\).

Some Comparisons:

Stable Manifolds

Lorenz Attractor

Chen Attractor

G Chen: Generalized Lorenz systems family
Remark 1:

Equivalence Lorenz ↔ Chen?

 Lorenz system and Chen system are not smoothly equivalent
 (i.e., no diffeomorphism between them)

Q: Are Lorenz system and Chen system topologically equivalent
 (i.e., any homeomorphism between them)?
Remark 2: Global Boundedness

Early Attempt: G. R. Chen, W. X. Qin, J. A. Lu, D. M. Li, …, R. Barboza

G Chen: Generalized Lorenz systems family
Proof

Existence of a Chaotic Attractor

Shilnikov Theorem (1967):

If a 3D autonomous system has two distinct saddle fixed points and there exists a heteroclinic orbit connecting them, and if the eigenvalues of the Jacobin of the system at these fixed points are

\[\alpha_k, \beta_k \pm j \omega_k \quad (k = 1, 2) \quad \text{satisfying} \quad |\alpha_k| > |\beta_k| > 0 \quad (k = 1, 2) \]

and \(\beta_1 \beta_2 > 0 \) or \(\omega_1 \omega_2 > 0 \) then the system has infinitely many Smale horseshoes and hence has horseshoe chaos.
Proof

Show the existence of a heteroclinic orbit between two saddle-focus fixed points (a constructive approach)

- Start from a series expansion of the heteroclinic orbit
- Substituting it into the characteristic equation of the system
- Force it to satisfy the basic properties as a heteroclinic orbit
- Force it to satisfy the Shilnikov conditions
- Guarantee the uniform convergence of the series expansion

Circuit Implementation

Electronic Attractor

Chen Attractor
Some Applications
Generalized Lorenz System

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{33}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} +
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

According to the C-V Canonical Form –

Lorenz System satisfies: \(a_{12}a_{21} > 0 \)

Chen System satisfies: \(a_{12}a_{21} < 0 \)

Q: What system satisfies \(a_{12}a_{21} = 0 \)?

\[\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= -xz + cy \\
\dot{z} &= xy - bz,
\end{align*} \]

\[a = 36; \quad b = 3; \quad c = 20 \]

\[a_{12} a_{21} = 0 \]

A Unified Chaotic System

\[
\begin{align*}
\dot{x} &= (25\alpha + 10)(y - x) \\
\dot{y} &= (28 - 35\alpha)x - xz + (29\alpha - 1)y \\
\dot{z} &= xy - \frac{1}{3}(\alpha + 8)z,
\end{align*}
\]

where \(a \in [0,1] \)

When \(\alpha = 0, \alpha = 1, \alpha = 0.8 \)

it becomes the Lorenz, Chen, or Lü system, respectively.

Experimental Observations

G Chen: Generalized Lorenz systems family
Generalized Lorenz Canonical Form

\[
\begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_2 \\
z_3
\end{bmatrix} + \begin{bmatrix}
0 & 0 & -1 \\
0 & 0 & -1 \\
1 & \tau & 0
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_2 \\
z_3
\end{bmatrix}, \quad \lambda_1 > 0, \; \lambda_{2,3} < 0,
\]

where

\[
z = [z_1, \; z_2, \; z_3]^T, \; c = [1, \; -1, \; 0] \quad -\lambda_2 > \lambda_1 > -\lambda_3 > 0, \quad \tau \in R
\]

- **Lorenz:** \(0 < \tau < +\infty \)
- **Lü:** \(\tau = 0 \)
- **Chen:** \(-1 < \tau < 0 \)
- **?:** \(\tau \leq -1 \)

Proof

Show the existence of a heteroclinic orbit between two saddle-focus fixed points (a constructive approach)

- Start from a series expansion of the heteroclinic orbit
- Substituting it into the characteristic equation of the system
- Force it to satisfy the basic properties as a heteroclinic orbit
- Force it to satisfy the Shilnikov conditions
- Guarantee the uniform convergence of the series expansion
Hyperbolic Generalized Lorenz Canonical Form

\[\dot{x} = \begin{bmatrix} A & 0 \\ 0 & \lambda_3 \end{bmatrix} x + x_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\text{sgn}(\tau + 1) \\ 0 & 1 & 0 \end{bmatrix} x, \]

where \(x = [x_1, x_2, x_3]^T \), \(\lambda_1 > 0, \lambda_{2,3} < 0 \), \(\tau \leq -1 \)

Lorenz: Eigenvalues = \(\{0, \pm j\} \) \quad **HGLC:** Eigenvalues = \(\{0, \pm 1\} \)

The case of $\tau = -1$

Shimizu-Morioka Model (1976):

\[
\begin{aligned}
\frac{dx}{d\theta} &= y \\
\frac{dy}{d\theta} &= x(1 - z) - \lambda y \\
\frac{dz}{d\theta} &= -\alpha z + x^2
\end{aligned}
\]

It is the case of the Generalized Lorenz Canonical Form with $\tau = -1$

\[
\begin{aligned}
x &= (z_1 - z_2) \sqrt[3]{\frac{\lambda_1 - \lambda_2}{(-\lambda_1 \lambda_2)^{3/2}}} \\
y &= (\lambda_1 z_1 - \lambda_2 z_2) \sqrt[5]{\frac{\lambda_1 - \lambda_2}{(-\lambda_1 \lambda_2)^{5/2}}} \\
z &= z_3 - \frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2} \\
\theta &= t \sqrt{-\lambda_1 \lambda_2},
\end{aligned}
\]

\[\lambda = -\frac{\lambda_1 + \lambda_2}{\sqrt{-\lambda_1 \lambda_2}}, \quad \alpha = \frac{\lambda_3}{\sqrt{-\lambda_1 \lambda_2}}.\]

A Special Case

Liu-Liu-Liu-Liu Model (Xi’an JTU, 2004):

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= bx - kxz \\
\dot{z} &= -cz + hx^2,
\end{align*}
\]

where \(a, b, c, k, h > 0 \)

It is a special case of the Shimizu-Morioka Model (1976). Therefore,

It is a special case of the Generalized Lorenz Canonical Form with \(\tau = -1 \)

Summary

Generalized Lorenz Canonical Form (GLCF) and Its Special Realization

<table>
<thead>
<tr>
<th>GLCF</th>
<th>Special Chaotic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \in (-\infty, -1)$</td>
<td>Hyperbolic Generalized Lorenz System (2002)</td>
</tr>
<tr>
<td>$\tau = -1$</td>
<td>Shimizu-Morioka System (1979)</td>
</tr>
<tr>
<td>$\tau \in (-1, 0)$</td>
<td>$a_{21}a_{12} < 0$ Chen System (1999)</td>
</tr>
<tr>
<td>$\tau = 0$</td>
<td>$a_{21}a_{12} = 0$ Lü System (2002)</td>
</tr>
<tr>
<td>$\tau \in (0, \infty)$</td>
<td>$a_{21}a_{12} > 0$ Lorenz System (1963)</td>
</tr>
</tbody>
</table>

广义 Lorenz 系统族
Transition Between
Lorenz and Chen Attractors
Controlling Chaotic Chen System To Hyperchaotic

- Using a simple dynamical state-feedback controller
- Using a simple sinusoidal parameter perturbation input
From Chaos
To Hyperchaos

Controlled Generalized Lorenz Canonical Form:

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{u}
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & 0 & 1 \\
0 & 0 & a_{33} & 0 \\
-k & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
u
\end{bmatrix} +
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
u
\end{bmatrix}
\]

where \(u \) is the controller and \(k \) is the constant control gain to be determined (a very simple dynamical linear state feedback controller).
Controlling the Chen System

Parameters:

\[a_{11} = -a_{12} = -35, \quad a_{21} = 7, \quad a_{22} = 12, \]
\[a_{33} = -3, \quad k = 20 \]

(a) \(x \) vs \(z \)

(b) \(y \) vs \(z \)
Bifurcation Analysis

G Chen: Generalized Lorenz systems family
Visualizing the Bifurcation Process
Visualizing the Bifurcation Process
Visualizing the Bifurcation Process

G Chen: Generalized Lorenz systems family
Circuit Implementation
(Hyperchaotic Chen system)
G Chen: Generalized Lorenz systems family
G Chen: Generalized Lorenz systems family
Sinusoidal Control Input

The Controlled Unified Chaotic Systems:

\[
\begin{align*}
\dot{x} &= (25 - 10a) (y - x) \\
\dot{y} &= (17.5a + 10.5)x - \text{sign}(a) xz + (13.3 - 14a)y \\
\dot{z} &= \text{sign}(a) xy - \frac{8}{3} z
\end{align*}
\]

where \(a = \cos(\omega t) \in [-1,1] \) and \(\text{sign}(u) = \begin{cases}
1 & u \geq 0 \\
-1 & u < 0
\end{cases} \)
According to the canonical-form criterion:

\[a = \cos(\omega t) \in [-1,1] \]

\[t \in \left[\frac{1}{\omega} \left(2n\pi + \frac{\pi}{2} \right), \frac{1}{\omega} \left(2n\pi + \frac{3\pi}{2} \right) \right] \rightarrow \text{Generalized Lorenz System} \]

\[t \in \left[\frac{1}{\omega} \left(2n\pi - \frac{\pi}{2} \right), \frac{1}{\omega} \left(2n\pi + \frac{\pi}{2} \right) \right] \rightarrow \text{Generalized Chen System} \]
Bifurcation Analysis
Experimental Results
Observing Hyperchaotic Chen Attractor

Hyperchaotic Chen Attractor

G Chen: Generalized Lorenz systems family
Fractional-Order Chen System

\[
\begin{aligned}
\frac{d^\sigma x}{dt^\sigma} &= a(y - x) \\
\frac{d^\sigma y}{dt^\sigma} &= (c - a)x - xz + cy \\
\frac{d^\sigma z}{dt^\sigma} &= xy - bz,
\end{aligned}
\]

When \(\sigma = 0.6 \sim 0.7 \) this system is **chaotic** [J. G. Lu and G. Chen (2006): \(\sigma = 0.3 \)]

Fractional-Order Chen System

\[
\frac{d^\alpha x}{dt^\alpha} = a(y - x) + \gamma \cos(u), \\
\frac{d^\alpha y}{dt^\alpha} = (c - a)x - xz + cy, \\
\frac{d^\alpha z}{dt^\alpha} = xy - bz, \\
\frac{du}{dt} = \omega,
\]

When \(a = 35, b = 3, c = 32, \gamma = 35, \alpha = 0.8, \omega = 15 \) this system is hyperchaotic

Some Potential Applications

Chen-system-based hyperchaotic mixer

Related Technology:

- 吕金虎、禹思敏、陈关荣 (专利): 一种四阶网格状多环面混沌电路及其使用方法; 2005年申请，2009年批准；专利号 ZL2005 1 0086638.2.

Concluding Remarks

3-D Autonomous with 1 or 2 Quadratic Terms

Lorenz Done!

Rössler ?

Sprott ?

(Others) ?
with the compliments of

Guanrong Chen 陈光荣
Centre for Chaos and Complex Networks
City University of Hong Kong
http://www.ee.cityu.edu.hk/~gchen/