(Week 27)

Some Amazing Squares and Powers

1. First, this one is easy:

$$
\begin{aligned}
& 1+3=2^{2} \\
& 1+3+5=3^{2} \\
& 1+3+5+7=4^{2} \\
& 1+3+5+7+9=5^{2}
\end{aligned}
$$

Can you find more?
2. Second, this one is a bit harder:

$$
\begin{aligned}
& 1233=12^{2}+33^{2} \\
& 8833=88^{2}+33^{2}
\end{aligned}
$$

Can you find more?

3. Third, this one is even more difficult:

$$
\begin{aligned}
& 956^{2}=913936 \Rightarrow 913+936=43^{2} \\
& 957^{2}=915849 \Rightarrow 915+849=42^{2} \\
& 858^{2}=917754 \Rightarrow 917+764=41^{2} \\
& 959^{2}=919681 \Rightarrow 919+681=40^{2} \\
& 960^{2}=921600 \Rightarrow 921+600=39^{2} \\
& 961^{2}=923521 \Rightarrow 923+521=38^{2}
\end{aligned}
$$

$$
968^{2}=937024 \Rightarrow 937+024=31^{2}
$$

Can you find more?

Well, I can only find one similar but not exactly:

$$
\begin{aligned}
11111111111^{2} & =12345678900987654321 \\
& \Rightarrow 1234567890+0987654321=1111111111
\end{aligned}
$$

4. Next, let's try third powers:

$$
\begin{aligned}
& 512=(5+1+2)^{3} \\
& 4913=(4+9+1+3)^{3} \\
& 5832=(5+8+3+2)^{3} \\
& 17576=(1+7+5+7+6)^{3} \\
& 19683=(1+9+6+8+3)^{3}
\end{aligned}
$$

Can you find more?

5. Finally, these are really hard:

$$
\begin{aligned}
& 1+3+3^{2}+3^{3}+3^{4}=11^{2} \\
& 1+7+7^{2}+7^{3}=20^{2}
\end{aligned}
$$

Can you find more in the form of $1+n+n^{2}+n^{3}+\cdots+n^{k}=m^{2}$ for $n, k>1$? Well, Norwegian mathematician Wilhelm Ljunggren in 1943 proved that you can't! He also proved that $1+18+18^{2}=7^{3}$ is the only one of this type if the right-hand side has power 3 . Moreover, no one knows what happens if the right-hand power is larger.

Likewise, can you find 3 integers (x, y, z) from $\{1,2,3,4,5,6,7,8,9\}$ to satisfy the following identity?
$x^{2}-y^{2}-z^{2}=x-y-z$
It is said that there are two and only two solutions. Can you find them?

GRC ${ }^{-}$

