***** Mathematical Weekly *****

(Week 27)

Some Amazing Squares and Powers

1. First, this one is easy:

 $1+3 = 2^{2}$ $1+3+5 = 3^{2}$ $1+3+5+7 = 4^{2}$ $1+3+5+7+9 = 5^{2}$

Can you find more?

2. Second, this one is a bit harder:

 $1233 = 12^2 + 33^2$ $8833 = 88^2 + 33^2$

Can you find more?

3. Third, this one is even more difficult:

$956^2 = 913936$	\Rightarrow	$913 + 936 = 43^2$
$957^2 = 915849$	\Rightarrow	$915 + 849 = 42^2$
$858^2 = 917754$	\Rightarrow	$917 + 764 = 41^2$
$959^2 = 919681$	\Rightarrow	$919 + 681 = 40^2$
$960^2 = 921600$	\Rightarrow	$921 + 600 = 39^2$
$961^2 = 923521$	\Rightarrow	$923 + 521 = 38^2$
$968^2 = 937024$	\Rightarrow	$937 + 024 = 31^2$

Can you find more?

Well, I can only find one similar but not exactly:

$$1111111111^{2} = 12345678900987654321$$
$$\Rightarrow 1234567890 + 0987654321 = 111111111$$

4. Next, let's try third powers:

 $512 = (5 + 1 + 2)^{3}$ $4913 = (4 + 9 + 1 + 3)^{3}$ $5832 = (5 + 8 + 3 + 2)^{3}$ $17576 = (1 + 7 + 5 + 7 + 6)^{3}$ $19683 = (1 + 9 + 6 + 8 + 3)^{3}$

Can you find more?

5. Finally, these are really hard:

1 + 3 + 3² + 3³ + 3⁴ = 11²1 + 7 + 7² + 7³ = 20²

<u>Can you find more</u> in the form of $1 + n + n^2 + n^3 + \dots + n^k = m^2$ for n, k > 1? Well, Norwegian mathematician Wilhelm Ljunggren in 1943 proved that you can't! He also proved that $1 + 18 + 18^2 = 7^3$ is the only one of this type if the right-hand side has power 3. Moreover, no one knows what happens if the right-hand power is larger.

Likewise, <u>can you find</u> 3 integers (x, y, z) from {1,2,3,4,5,6,7,8,9} to satisfy the following identity?

 $x^{2} - y^{2} - z^{2} = x - y - z$

It is said that there are two and only two solutions. Can you find them?

GRC 🕲