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Preface

Nonlinear systems constitute a fundamental subject for study in systems

engineering. The subject has been extensively investigated by both non-

linear control and nonlinear dynamics communities, whereas the focus is

usually very different, on controllers design and dynamics analysis, respec-

tively. The last two decades have witnessed gradual merging of control

theory and dynamics analysis, but not to the extent of controlling nonlin-

ear dynamics such as bifurcations and chaos. This monograph is an attempt

to fill the gap to a certain extent while presenting a rather comprehensive

coverage of the nonlinear systems theory in a self-contained and hopefully

easily-readable manner.

This introductory treatise is not intended to be a research reference with

the state-of-the-art theories and techniques presented, nor as a very com-

prehensive handbook, given that there are already many available in the

market today. It is written for self-study and, in particular, as an elemen-

tary textbook that can be taught in a one-semester course at the advanced

undergraduate level or entrance level of graduate curricula focusing on non-

linear systems — both control theory and dynamics analysis.

The main contents of the book comprise systems stability (Chapters 2–

4), bifurcation and chaos dynamics (Chapter 5) and controllers design

(Chapter 6), for both continuous-time and discrete-time settings. In partic-

ular, it discusses the special topics on bifurcation control and chaos control

at the end of the last chapter.

This monograph is presented in a textbook style, in which most contents

are elementary with some classical results and popular examples taken or

modified from the existing literature, which might have also appeared in

some other introductory textbooks. Since this is not a survey, a long list of

related references is not included, yet appreciation to the various original

vii
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sources are indicated. Throughout the book, to keep its contents at an

elementary level, some advanced theories are presented without detailed

proofs, merely for the completeness of the relevant discussions. This kind

of contents and exercises are marked by ∗ for indication.

To this end, I would like to especially thank Dr. Yi Jiang from the

City University of Hong Kong for helping proof-read the entire manuscript,

and thank Ms. Lakshmi Narayanan from the World Scientific Publishing

Company for her support and assistance.

Guanrong Chen

Hong Kong, 2023
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Chapter 1

Nonlinear Systems: Preliminaries

A nonlinear system in the mathematical sense refers to a set of nonlinear

equations, which can be algebraic, difference, differential, integral, func-

tional, and operator equations, or a combination of some of them. A non-

linear system is used to describe a physical device or process that otherwise

cannot be well defined by a set of linear equations of any kind, although a

linear system is considered as a special case of a nonlinear system. Dynam-

ical system, on the other hand, is used as a synonym of a mathematical or

physical system, where the output behavior evolves with time and some-

times with other varying system parameters as well. The system responses,

or behaviors, of a dynamical system is referred to as system dynamics.

1.1 A Typical Nonlinear Dynamical Model

A representative mathematical model of nonlinear dynamical systems is the

pendulum equation. The study of pendula can be traced back to as early as

Christian Huygens who investigated in 1665 the perfect synchrony of two

identical pendulum clocks that he invented in 1656. He then reported his

findings to the Royal Society of The Netherlands [Huygens (1665)].

A simple and idealized pendulum consists of a volumeless ball and a

rigid and massless rod, which is connected to a pivot, as shown in Fig. 1.1.

In this figure, ℓ is the length of the rod, m is the mass of the ball, g is

the constant of gravity acceleration, θ = θ(t) is the angle of the rod with

respect to the vertical axis, and f = f(t) is the resistive force applied to the

ball. The straight down position finds the ball at rest; but if it is displaced

by an angle from the reference axis and then let go, it will swing back and

forth on a circular arc within a vertical plane to which it is confined.

For general purpose of mathematical analysis of the pendulum, a basic

1
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2 Nonlinear Systems
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Fig. 1.1 Schematic diagram of a pendulum model.

assumption is that the resistive force f is proportional to the velocity along

the arc of the motion trajectory of the volumeless ball, i.e. f = κ ṡ, where

κ ≥ 0 is a constant and s = s(t) = ℓ θ(t) is the ball-traveled arc length

measured from the vertical reference axis.

It follows from Newton’s second law of motion that

ms̈ = −mg sin(θ)− κ ṡ ,

or

θ̈ +
κ

m
θ̇ +

g

ℓ
sin(θ) = 0 . (1.1)

This is the idealized and damped pendulum equation, which is nonlinear

due to the involvement of the sine function. When κ = 0, i.e. f = 0, it

becomes the undamped pendulum equation

θ̈ +
g

ℓ
sin(θ) = 0 . (1.2)

To this end, by introducing two new variables,

x1 = θ and x2 = θ̇ ,

the damped pendulum equation can be rewritten in the following state-

space form:

ẋ1 = x2 ,

ẋ2 = − κ

m
x2 −

g

ℓ
sin(x1) . (1.3)

Here, the variables x1 = x1(t) and x2 = x2(t) are called the system states,

for they describe the physical states, namely the angular position and an-

gular velocity respectively, of the pendulum.
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Nonlinear Systems: Preliminaries 3

From elementary physics, it is known that the pendulum state vector

x(t) = [x1(t) x2(t)]
⊤ is periodic. In general, even in a higher-dimensional

case, a state x(t) of a dynamical system is a periodic solution if it is a

solution of the system and moreover satisfies x(t + tp) = x(t) for some

constant tp > 0. The least value of such tp is called the (fundamental)

period of the periodic solution, while the solution is said to be tp-periodic.

Although conceptually straightforward and formally simple, this pen-

dulum model has many important and interesting properties. This repre-

sentative model of nonlinear systems will be frequently referred to, not only

within this chapter but also throughout the book.

1.2 Autonomous Systems and Map Iterations

The pendulum model (1.3) is called an autonomous system, in which there

is no independent (or separated) time variable t, other than a time variable

as the system states, anywhere in the model formulation. On the contrary,

the following forced pendulum is nonautonomous:

ẋ1 = x2 ,

ẋ2 = − κ

m
x2 −

g

ℓ
sin(x1) + h(t) , (1.4)

since t exists as a variable in the function h(t), independent of the system

states, which in this example is an external force applied to the pendulum.

One example of such a force input is h(t) = a cos(ωt), which will change the

angular acceleration of the pendulum, where a and ω are some constants.

The forced pendulum (1.4) has a time variable, t, within the external

force term h(t), which may not be shown as the time variables in the system

states x1 and x2 for brevity. However, if h(t) = a cos(θ(t)), then the forced

pendulum is considered to be autonomous because the time variable in the

force term becomes the time variable of the system state x1(t). In the latter

case, the external input should be denoted as h(x1) instead of h(t) in the

system equations.

In general, an n-dimensional autonomous system is described by

ẋ = f(x;p) , x0 ∈ Rn , t ∈ [t0,∞) , (1.5)

and a nonautonomous system is expressed as

ẋ = f(x, t;p) , x0 ∈ Rn , t ∈ [t0,∞) , (1.6)

where x = x(t) = [x1(t) · · · xn(t)]⊤ is the state vector, x0 is the initial

state with initial time t0 ≥ 0, p is a vector of system parameters, which can
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4 Nonlinear Systems

be varied but are independent of time, and

f =



f1
...

fn


 =



f1(x1, . . . , xn)

...

fn(x1, . . . , xn)




is called the system function or vector field.

In a well-formulated mathematical model, the system function should

satisfy some defining conditions such that the model, for example (1.5) or

(1.6), has a unique solution for each initial state x0 in a region of interest,

Ω ⊆ Rn, and for each permissible set of parameters p. According to the

elementary theory of ordinary differential equations, this is ensured if the

function f satisfies the Lipschitz condition

||f(x)− f(y)|| ≤ α ||x− y||
for all x and y in Ω that satisfy the system equation, and for some constant

α > 0, called the Lipschitz constant. Here and throughout the book, || · ||
denotes the standard Euclidean norm (the “length”) of a vector, i.e. the

L2-norm. This general setting, i.e. with the fulfillment of some necessary

defining conditions for a given mathematical model, will not be repeatedly

mentioned and described later on, for simplicity of presentation.

Sometimes, an n-dimensional continuous-time dynamical system is de-

scribed by a time-varying map,

Fc(t) : x → g
(
x, t;p

)
, x0 ∈ Rn, t ∈ [t0,∞) , (1.7)

or, by a time-invariant map,

Fc : x → g
(
x;p

)
, x0 ∈ Rn, t ∈ [t0,∞) . (1.8)

These two maps, in the continuous-time case, take a function to a function;

so by nature they are operators, which however will not be further studied

in this book.

For the discrete-time case, with similar notation, a nonlinear dynamical

system is either described by a time-varying difference equation,

xk+1 = fk
(
xk;p

)
, x0 ∈ Rn, k = 0, 1, . . . , (1.9)

where the subscript of fk signifies the dependence of f on the discrete time

variable k, or described by a time-invariant difference equation,

xk+1 = f
(
xk;p

)
, x0 ∈ Rn, k = 0, 1, . . . . (1.10)

Also, it may be described either by a time-varying map,

Fd(k) : xk → gk

(
xk;p

)
, x0 ∈ Rn, k = 0, 1, . . . , (1.11)
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Nonlinear Systems: Preliminaries 5

or by a time-invariant map,

Fd : xk → g
(
xk;p

)
, x0 ∈ Rn, k = 0, 1, . . . . (1.12)

These discrete-time maps, particularly the time-invariant ones, are very

important and convenient for the study of system dynamics; they will be

further discussed in the book later on.

For a system given by a time-invariant difference equation, repeatedly

iterating the system function f leads to

xk = f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(
x0

)
:= fk

(
x0

)
, (1.13)

where “◦” denotes the composition operation of two functions or maps.

Similarly, for a map Fd, repeatedly iterating it backwards yields

xk = Fd

(
xk−1

)
= Fd

(
Fd(xk−2)

)
= · · · := F k

d

(
x0

)
, (1.14)

where k = 0, 1, 2, . . . .

Example 1.1. For the map

f(x) = p x(1− x) , p ∈ R .

one has

f2(x) = f
(
p x(1− x)

)
= p [p x(1− x)]

(
1− [p x(1− x)]

)
,

where the last equality is obtained by substituting each x in the previous

step with [px(1−x)]. For a large number n of iterations, it quickly becomes

very messy and actually impossible to write out the final explicit formula

of the composite map fn(x).

If a function or map f is invertible, with inverse f−1, then one has

f−2(x) =
(
f−1

)2
(x), and f−n(x) =

(
f−1

)n
(x), and so on. With the con-

vention that f0 denotes the identity map, namely f0(x) := x, a general

composition formula for an invertible f can be obtained:

fn(x) = f ◦ fn−1(x) = f
(
fn−1(x)

)
, n = 0,±1,±2, . . . . (1.15)

The derivative of a composite map can be obtained via the chain rule.

For instance, in the 1-dimensional case,
(
fn

)′(
x0

)
= f ′

(
xn−1

)
· · · f ′

(
x0

)
. (1.16)

This formula is convenient to use, because one does not need to explicitly

compute fn(x), or (fn)′(x). Moreover, using the chain rule, one has

(
f−1

)′
=

1

f ′
(
x−1

) , x−1 := f−1(x) . (1.17)
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6 Nonlinear Systems

Example 1.2. For f(x) = x(1− x) with x0 = 1/2 and n = 3, one has

f ′(x) = 1− 2x , x1 = f(x0) = 1/4 , and x2 = f(x1) = 3/16 ,

so that
(
f3

)′
(1/2) = f ′(3/16) f ′(1/4) f ′(1/2)

=
(
1− 2(3/16)

)(
1− 2(1/4)

)(
1− 2(1/2)

)

= 0 .

Finally, consider a function or map f given by either (1.13) or (1.14).

Definition 1.1. For a positive integer n, a point x∗ is called a periodic

point of period n, or an n-periodic point, of f , if it satisfies

fn
(
x∗) = x∗ but fk

(
x∗) ̸= x∗ for 0 < k < n . (1.18)

If x∗ is of period one (n = 1), then it is also called a fixed point, or an

equilibrium point, which satisfies

f
(
x∗) = x∗ . (1.19)

Moreover, a point x∗ is said to be eventually periodic of period n if there

is an integer m > 0 such that

fm
(
x∗) is a periodic point and fm+n

(
x∗) = fm

(
x∗) . (1.20)

Consequently,

fn+q
(
x∗) = fq

(
x∗) for all q ≥ m.

This justifies the name “eventually”.

Example 1.3. The map f(x) = x3 − x has three fixed points: x∗1 = 0 and

x∗1,2 = ±
√
2, which are solutions of the equation f(x∗) = x∗. It has two

eventually fixed points of period one: x∗1,2 = ±1, since their first iterates

go to the fixed point 0.

Definition 1.2. For a continuous-time function or map, f , with a fixed

point x∗, the forward orbit of x∗ is

Ω+
(
x∗) :=

{
fk
(
x∗) : k ≥ 0

}
.

If f is invertible, then the backward orbit of x∗ is

Ω−(x∗) :=
{
fk
(
x∗) : k ≤ 0

}
.

The whole orbit of x∗, thus, is

Ω
(
x∗) = Ω+

(
x∗) ∪ Ω−(x∗) =

{
fk
(
x∗) : k = 0,±1,±2, . . .

}
.
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Nonlinear Systems: Preliminaries 7

Definition 1.3. For a continuous-time function or map, f , a set S ⊂ Rn

is said to be forward invariant under f , if fk(x) ∈ S for all x ∈ S and for

all k = 0, 1, 2, . . .. Furthermore, for an invertible f , a set S ⊂ Rn is said

to be backward invariant under f , if fk(x) ∈ S for all x ∈ S and for all

k = 0,−1,−2, . . ..

1.3 Dynamical Analysis on Phase Planes

In this section, a general 2-dimensional nonlinear autonomous system is

considered:

ẋ = f
(
x, y

)
,

ẏ = g
(
x, y

)
. (1.21)

In this system, the two functions f and g together describe the vector field

of the system. Here and in the following, for 2- or 3-dimensional systems,

the state variables will be denoted as x, y, and z, instead of x1, x2, and x3,

for notational convenience.

1.3.1 Phase Plane of a Planar System

The path traveled by a solution of the continuous-time planar system (1.21),

starting from an initial state (x0, y0), is a solution trajectory or orbit of the

system, and is sometimes denoted as φt(x0, y0).

For autonomous systems, the x–ẋ coordinate plane is called the phase

plane of the system. In general, even if y ̸= ẋ, the x–y coordinate plane is

called the (generalized) phase plane. In the higher-dimensional case, it is

called the phase space of the underlying dynamical system. Moreover, the

orbit family of an autonomous system, corresponding to all possible initial

conditions, is called a solution flow in the phase space. The graphical layout

of the solution flow provides a phase portrait of the system dynamics in the

phase space, as depicted by Fig. 1.2.

The phase portrait of the damped and undamped pendulum systems,

(1.1) and (1.2), are shown in Fig. 1.3.

Examining the phase portraits shown in Fig. 1.3, a natural question

arises: how can one determine the motion direction of the orbit flow in the

phase plane as the time evolves? Clearly, a computer graphic demonstration

can provide a fairly complete answer to this question. However, a quick

sketch to show the qualitative behavior of the system dynamics is still quite

possible, as illustrated by the following two examples.
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8 Nonlinear Systems

0
Orbits

Initial points

x

y

Fig. 1.2 Phase portrait on the phase plane of a dynamical system.

−−3

θ

θ

˙

3ππππ

(a) damped pendulum

3− π ππ

θ

θ

˙

(b) undamped pendulum

Fig. 1.3 Phase portraits of the damped and undamped pendula.

Example 1.4. Consider the simple linear harmonic oscillator

θ̈ + θ = 0 .

By defining

x = θ and y = θ̇ ,

this harmonic equation becomes

ẋ = y ,

ẏ = −x .
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Nonlinear Systems: Preliminaries 9

With initial conditions x(0) = 1 and y(0) = 0, this equation has solution

x(t) = cos(t) and y(t) = − sin(t) .

The solution trajectory in the x–y–t space and the corresponding orbit on

the x–y phase plane are sketched in Fig. 1.4, together with some other

solutions starting from different initial conditions. This shows clearly the

direction of motion of the phase portrait.

x

t

y

0 2 4 6 8ππππ

(a) phase portrait in the x–y–t space

x

y

(b) phase portrait on the x–y phase plane

Fig. 1.4 Phase portraits of the simple harmonic equation.

Example 1.5. Consider the normalized undamped pendulum equation

θ̈ + sin(θ) = 0 .

By defining

x = θ and y = θ̇ ,

this pendulum equation can be written as

ẋ = y ,

ẏ = − sin(x) .
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10 Nonlinear Systems

With initial conditions x(0) = 1 and y(0) = 0, it has solution

x(t) = θ(t) = 2 sin−1
(
tanh(t)

)
and y(t) = θ̇(t) .

The phase portrait of this undamped pendulum, along with some other

solutions starting from different initial conditions, is sketched on the x–

y phase plane shown in Fig. 1.5. This sketch also clearly indicates the

direction of motion of the solution flow. The shape of a solution trajectory

of this undamped pendulum in the x–y–t space can also be sketched, which

could be quite complex however, depending on the initial conditions.

−π π x = θ

One Period

y = θ̇

Fig. 1.5 Phase portrait of the undamped pendulum equation.

Example 1.6. Another way to understand the phase portrait of the general

undamped pendulum

ẋ = y ,

ẏ = − g

ℓ
sin(x)

is to examine its total (kinetic and potential) energy

E =
y2

2
+
g

ℓ

∫ x

0

sin(σ) dσ =
y2

2
+
g

ℓ

(
1− cos(x)

)
.

Figure 1.6 shows the potential energy plot, P (x), versus x = θ, and the cor-

responding phase portrait on the x–y phase plane of the damped pendulum.

It is clear that the lowest level of total energy is E = 0, which corresponds

to the angular positions x = θ = ±2nπ, n = 0, 1, . . .. As the total energy

increases, the pendulum swings up or down, with an increasing or decreas-

ing angular speed, |y| = |θ̇|, provided that E is within its limit indicated

by E2. Within each period of oscillation, the total energy E = constant,

according to the conservation law of energy, for this idealized undamped

pendulum.
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Nonlinear Systems: Preliminaries 11

x = θ

y = 
E = 0

E = E1

Ep

E = E2

E = E3

θ̇

Fig. 1.6 Phase portrait of the undamped pendulum versus its total energy.

1.3.2 Analysis on Phase Planes

This subsection addresses the following question: why is it important to

study autonomous systems and their phase portraits?

The answer to this question is provided by the following several theo-

rems, which together summarize a few important and useful properties of

autonomous systems in the study of nonlinear dynamics. Although these

theorems are stated and proven for planar systems in this subsection, they

generally hold for higher-dimensional autonomous systems as well.

Theorem 1.1. A nonautonomous system can be equivalently reformulated

as an autonomous one.

Proof. Consider a general nonautonomous system,

ẋ = f
(
x, t

)
, x0 ∈ Rn .

Let the independent time variable t be a new variable by defining xn+1(t) =

t for this separated variable t of the system. Then, ẋn+1 = 1. Consequently,

the original system can be equivalently reformulated by augmenting it as
[

ẋ

ẋn+1

]
=

[
f
(
x, xn+1

)

1

]
,

which is an autonomous system.

Obviously the price to pay for this conversion, from a nonautonomous

system to an autonomous one, is the increase of dimension. In dynamical
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12 Nonlinear Systems

systems analysis, this usually is acceptable since the increase is only by one,

which is not a big deal for higher-dimensional systems. Nevertheless, this

shows that, without loss of generality, one may only discuss autonomous

systems in nonlinear dynamical analysis especially in higher-dimensional

cases.

However, it is important to note that, in a nonlinear control system of

the form

ẋ = f
(
x,u(t)

)
,

which will be studied in detail later in the book, the controller u(t) is a time

function and is yet to be designed, which it is not a system variable. In this

case, one should not (cannot) convert the control system to be autonomous

using this technique; otherwise, the controller loses its physical meaning

and can never be designed for the intended control tasks. This issue will

be revisited later within the context of feedback controllers design.

Theorem 1.2. If x(t) is a solution of the autonomous system ẋ = f(x),

then so is the trajectory x(t+ a), for any real constant a. Moreover, these

two solutions are the same, except that they may pass the same point on

the phase plane at two different time instants.

The last statement of the theorem describes the inherent time-invariant

property of autonomous systems.

Proof. Because d
dt x(t) = f(x(t)), for any real constant τ , one has

d

dt
x(t+ a)

∣∣∣
t=τ

=
d

ds
x(s)

∣∣∣
s=τ+a

= f(x(s))
∣∣∣
s=τ+a

= f(x(t+ a))
∣∣∣
t=τ

.

Since this holds for all real τ , it implies that x(t + a) is a solution of the

equation ẋ = f(x). Moreover, the value assumed by x(t) at time instant

t = t∗ is the same as that assumed by x(t + a) at time instant t = t∗ − a.

Hence, these two solutions are identical, in the sense that they have the

same trajectory if they are both plotted on the same phase plane.

Example 1.7. The autonomous system ẋ(t) = x(t) has a solution x(t) =

et. It is easy to verify that et+a is also a solution of this system for any real

constant a. These two solutions are the same, in the sense that they have

the same trajectory if they are plotted on the x–ẋ phase plane, except that

they pass the same point at two different time instants; for instance, the

first one passes the point (x, ẋ) = (1, 1) at t = 0 but the second, at t = −a.
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Nonlinear Systems: Preliminaries 13

However, a nonautonomous system may not have such a property.

Example 1.8. The nonautonomous system ẋ(t) = et has a solution x(t) =

et. But et+a is not its solution if a ̸= 0.

Note that, if one applies Theorem 1.1 to Example 1.8 and let y(t) = t,

then

ẋ(t) = ey(t) ,

ẏ(t) = 1 ,
(a)

which has solution

x(t) = et ,

y(t) = t .
(b)

Theorem 1.1 states that (b) is a solution of (a), which does not mean that

(b) is a solution of the original equation ẋ(t) = et. In fact, only the first part

of (b), i.e. x(t) = et, is a solution of the original equation, and the second

part of (b) is merely used to convert the given nonautonomous system to

be an autonomous one.

Theorem 1.3. Suppose that a given autonomous system ẋ(t) = f(x(t))

has a unique solution starting from an initial state x(t0) = x0. Then, there

will not be any other (different) orbit of the same system that also passes

through this same point x0 on the phase plane at any time.

Before giving a proof to this result, two remarks are in order. First,

this theorem implies that the solution flow of an autonomous system has

simple geometry, as depicted in Fig. 1.7, where different orbits starting from

different initial states do not cross each other. Second, in the phase portrait

of the (damped or undamped) pendulum (see Fig. 1.3, it may seem that

there are more than one orbit passing through the points (−π, 0) and (π, 0)

etc. However, those orbits are periodic orbits, so the principal solution of

the pendulum corresponds to those curves located between the two vertical

lines passing through the two end points x = −π and x = π, respectively.

Thus, within each 2π period, actually no self-crossing exists. It will be

seen later that all such seemingly self-crossing occur only at those special

points called stable node (sink), unstable node (source), or saddle node (see

Fig. 1.8), where the orbits either spiral into a sink, spiral out from a source,

or spiral in and out from a saddle node in different directions.
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14 Nonlinear Systems

y

x

y
x = f(x)·

ξ = f(ξ)ξ ≠ x
·

x

(a) flow has no self-crossing (b) crossing is impossible

Fig. 1.7 Simple phase portrait of an autonomous system.

(a) source (b) sink (c) saddle node

Fig. 1.8 Simple phase portrait of an autonomous system.

Proof. Let x1 and x2 be two solutions of ẋ = f(x), satisfying

x1(t1) = x0 and x2(t2) = x0 , t1 ̸= t2 .

By Theorem 1.2, one has

x̃2(t) := x2

(
t− (t1 − t2)

)
,

which is the same solution of the given autonomous system, namely,

x2(t) = x̃2(t) . (a)

This solution satisfies

x̃2(t1) := x2

(
t1 − (t1 − t2)

)
= x2(t2) = x0 .

Therefore, by the uniqueness of the solution, x1 and x̃2 are the same:

x1(t) = x̃2(t) , (b)

since they are both equal to x0 at the same initial time t1. Thus, (a) and

(b) together imply that x1 and x2 are identical.

Note that a nonautonomous system may not have such a property.

Example 1.9. Consider the nonautonomous system

ẋ(t) = cos(t) .
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Nonlinear Systems: Preliminaries 15

This system has the following solutions, among others:

x1(t) = sin(t) and x2(t) = 1 + sin(t) .

These two solutions are different, for if they are plotted on the phase plane,

they show two different trajectories:

ẋ1(t) = cos(t) = ±
√
1− sin2(t) = ±

√
1− x21 ,

ẋ2(t) = cos(t) = ±
√
1− sin2(t) = ±

√
1− [1 + sin(t)− 1]2

= ±
√
1− (x2 − 1)2 .

These two trajectories cross over at a point, (x1, x2) = (1/2, 1/2), as can

be seen from Fig. 1.9.

0 1 2 x1, x2

1 – x1
2

1
2

x1 =

1 – x1
2x1 = –

1 – (x2 – 1)2x2 = –

1 – (x2 – 1)2x2 =˙

˙

˙

˙

x1, x2˙ ˙

Fig. 1.9 Two crossing trajectories of a nonautonomous system.

Theorem 1.4. A closed orbit of the autonomous system ẋ = f(x) on the

phase plane corresponds to a periodic solution of the system.

Proof. For a τ -periodic solution, x(t), one has x(t0 + τ) = x(t0) for any

t0 ∈ R, which means that the trajectory of x(t) is closed.

On the contrary, suppose that the orbit of x(t) is closed. Let x0 be a

point in the closed orbit. Then, x0 = x(t0) for some t0, and the trajectory

of x(t) will return to x0 after some time, say τ ≥ 0; that is, x(t0+τ) = x0 =

x(t0). Since x0 is arbitrary, and so is t0, this implies that x(t + τ) = x(t)

for all t, meaning that x(t) is periodic with period τ .

Yet, a nonautonomous system may not have such a property.

Example 1.10. The nonautonomous system

ẋ = 2 t y ,

ẏ = −2 t x ,
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16 Nonlinear Systems

has solution

x(t) = α cos(t2) + β sin(t2) ,

y(t) = −α sin(t2) + β cos(t2) ,

for some constants α and β determined by initial conditions. This solution

is not periodic, but it is a circle (a closed orbit) on the x–y phase plane.

As mentioned at the beginning of this subsection, the above four theo-

rems hold for general higher-dimensional autonomous systems. Since these

properties are simple, elegant and easy to use, which a nonautonomous sys-

tem may not have, it is very natural to focus a general study of complex

dynamics on autonomous systems in various forms with any dimensions.

This motivates the following investigations.

1.4 Qualitative Behaviors of Dynamical Systems

In this section, consider a general 2-dimensional autonomous system,

ẋ = f(x, y) ,

ẏ = g(x, y) . (1.22)

Let Γ be a periodic solution of the system which, as discussed above, has a

closed orbit on the x–y phase plane.

Definition 1.4. Γ is said to be an inner (outer) limit cycle of system

(1.22) if, in an arbitrarily small neighborhood of the inner (outer) region

of Γ, there is always (part of) a nonperiodic solution orbit of the system.

Γ is called a limit cycle, if it is both inner and outer limit cycles.

Simply put, a limit cycle is a periodic orbit of the system that corre-

sponds to a closed orbit on the phase plane and possesses certain (attracting

or repelling) limiting properties. Figure 1.10 shows some typical limit cy-

cles for the 2-dimensional system (1.22), where the attracting limit cycle is

said to be stable, while the repelling one, unstable.

Example 1.11. The simple harmonic oscillator discussed in Example 1.4

has no limit cycles. The solution flow of the system constitutes a ring of

periodic orbits, called periodic ring, as shown in Fig. 1.4. Similarly, the

undamped pendulum has no limit cycles, as shown in Fig. 1.3.
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Nonlinear Systems: Preliminaries 17

(a) inner limit cycle (b) outer limit cycle (c) attracting limit cycle

(d) repelling limit cycle (e) saddle limit cycle (f) saddle limit cycle

Fig. 1.10 Periodic orbits and limit cycles.

This example shows that, although a limit cycle is a periodic orbit, not

all periodic orbits are limit cycles, not even inner or outer limit cycles.

Example 1.12. A typical example of a stable limit cycle is the periodic

solution of the Rayleigh oscillator, described by

ẍ+ x = p
(
ẋ− ẋ3

)
, p > 0 , (1.23)

which was formulated in the 1920s to describe oscillations in some electrical

and mechanical systems. This limit cycle is shown in Fig. 1.11 for some

different values of p. These phase portraits are usually obtained either

numerically or experimentally, because they do not have simple analytic

formulas.

Example 1.13. Another typical example of a stable limit cycle is the pe-

riodic solution of the van der Pol oscillator, described by

ẍ+ x = p
(
1− x2

)
ẋ , p > 0 , (1.24)

which was formulated around 1920 to describe oscillations in a triode cir-

cuit. This limit cycle is shown in Fig. 1.12, which is usually obtained either

numerically or experimentally, because it does not have a simple analytic

formula.
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18 Nonlinear Systems

x

x

ẋ
ẋ

(a) (b)
ẋ ẋ

x x

(c) (d)

Fig. 1.11 Phase portrait of the Rayleigh oscillator. (a) p = 0.01; (b) p = 0.1; (c) p = 1.0;

(d) p = 10.0.

x

x

–3

–3

–2

–1

1

2

3

˙

–2 –1 0 1 2 3

Fig. 1.12 Phase portrait of the van der Pol oscillator.
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Nonlinear Systems: Preliminaries 19

1.4.1 Qualitative Analysis of Linear Dynamics

For illustration, consider a 2-dimensional linear autonomous (i.e. time-

invariant) system,

ẋ(t) = Ax(t) , x(0) = x0 , (1.25)

where A is a given 2×2 constant matrix and, for simplicity, the initial time

is set to t0 = 0.

Obviously, this system has a unique fixed point x∗ = 0 and has a unique

solution x(t) = etAx0. Decompose its solution as

x(t) = etA x0 =M etJM−1x0 , (1.26)

where M =
[
v1 v2

]
with v1 and v2 being two linearly independent real

eigenvectors associated with the two eigenvalues of A, and J is in the Jordan

canonical form, which is one of the following three possible forms:
[
λ1 0

0 λ2

]
,

[
λ κ

0 λ

]
,

[
α −β
β α

]
,

with λ1, λ2, λ, α, and β being real constants, and κ = 0 or 1. Note that

for the third case, its eigenvalues are complex conjugates: λ1,2 = α ± j β,

where j =
√
−1.

Thus, there are three cases to study, according to the three different

canonical forms of the Jordan matrix J shown above.

Case (i). The two constants λ1 and λ2 are different, but both real and

nonzero.

In this case, λ1 and λ2 are the eigenvalues of matrix A, associated with

two eigenvectors v1 and v2, respectively. Let

z =M−1x ,

where M =
[
v1 v2

]
. Then, the given system is transformed to

ż =

[
λ1 0

0 λ2

]
z , with z0 =M−1x0 :=

[
z10
z20

]
.

Its solution is

z1(t) = z10 e
tλ1 and z2(t) = z20 e

tλ2 ,

which are related by

z2(t) = c z
λ2/λ1

1 (t) , with c = z20
(
z10

)−λ2/λ1
.

To show the phase portraits of the solution flow, there are three situa-

tions to consider: (a) λ2 < λ1 < 0; (b) λ2 < 0 < λ1; (c) 0 < λ2 < λ1.
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20 Nonlinear Systems

z1
0

z2

Fig. 1.13 Phase portrait of the transformed case (a): λ2 < λ1 < 0.

Only situation (a) is discussed in detail here. In this case, the two

eigenvalues are both negative, so that etλ1 → 0 and etλ2 → 0 as t → ∞,

but the latter tends to zero faster. The corresponding phase portrait is

shown in Fig. 1.13, where the fixed point (the origin) is a stable node.

Now, return to the original state, x = Mz. The original phase por-

trait is somewhat twisted, as shown in Fig. 1.14. Figures 1.13 and 1.14

are topologically equivalent, hence can be considered to be the same qual-

itatively. A more precise meaning of topological equivalence will be given

later in (1.29). Roughly speaking, it means that their dynamical behaviors

are qualitatively similar.

0

v2
v1

x1

x2

Fig. 1.14 Phase portrait of the original case (a): λ2 < λ1 < 0.

The other two situations, (b) and (c), can be analyzed in the same way,

where case (b) shows a saddle node and case (c), an unstable node. This

is left as an exercise to sketch.
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Nonlinear Systems: Preliminaries 21

Case (ii). The two constants λ1 and λ2 are nonzero complex conjugates:

λ1,2 = α± j β, where j =
√
−1. Let

z =M−1x ,

and transform the given system to

ż =

[
α −β
β α

]
z , with z0 =

[
z10
z20

]
.

In polar coordinates,

r =
√
z21 + z22 and θ = tan−1

(
z2
z1

)
,

which has solution

r(t) = r0 e
α t and θ(t) = θ0 + β t ,

where r0 = (z210+z
2
20)

1/2 and θ0 = tan−1
(
z20/z10

)
. This solution trajectory

is visualized by Fig. 1.15, where the fixed point (the origin) in case (a) is

called a stable node, in case (b), an unstable focus, and in case (c), a center.

On the original x–y phase plane, the phase portrait has a twisted shape, as

shown in Fig. 1.16.

α 

r r r

α > 0 α = 0< 0

(a) stable focus (b) unstable focus (c) center

Fig. 1.15 Phase portrait of the transformed Case (ii): λ1,2 = α± j β.

x

y y y

x x

(a) stable focus (b) unstable focus (c) center

Fig. 1.16 Phase portrait of the original Case (ii): λ1,2 = α± j β.
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22 Nonlinear Systems

Case (iii). The two constants λ1 and λ2 are nonzero multiple real values:

λ1 = λ2 := λ. Let

z =M−1x ,

and transform the given system to

ż =

[
λ κ

0 λ

]
z , with z0 =

[
z10
z20

]
.

Its solution is

z1(t) = eλt
(
z10 + κ z20t

)
and z2(t) = z20 e

λt ,

which are related via

z1(t) = z2(t)

[
z10
z20

+
κ

λ
ln

(
z2(t)

z20

)]
.

Its phase portrait is shown in Fig. 1.17, and its corresponding phase portrait

on the x–y phase plane is similar; in particular, the linear coordinates that

transform M do not change the shape of any straight line on the two phase

planes.

λ < 0
 = 0κ

λ > 0
 = 0κ

z
2

z1

z
2

z1

(a) stable focus (b) unstable focus

λ < 0
 = 1κ

λ > 0
 = 1κ

z2

z1

z2

z1

(c) stable node (d) unstable node

Fig. 1.17 Phase portrait of Case (iii): λ1 = λ2 ̸= 0.

Case (iv). One, or both, of λ1,2 is zero.

In this degenerate case, the matrix A in ẋ = Ax has a nontrivial null

space, of dimension 1 or 2 respectively, so that any vector in the null space
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Nonlinear Systems: Preliminaries 23

of A is a fixed point. As a result, the system has a fixed or equilibrium

subspace. Specifically, these two situations are as follows:

(a) λ1 = 0 but λ2 ̸= 0

In this case, the system can be transformed to

ż =

[
0 0

0 λ2

]
z , with z0 =

[
z10
z20

]
,

which has solution

z1(t) = z10 and z2(t) = z20 e
λ2t .

The phase portrait of x = Mz is shown in Fig. 1.18, where (a) shows a

stable equilibrium subspace and (b), an unstable subspace.

x2

x1

x2

x1

(a) a stable equilibrium subspace (b) an unstable equilibrium subspace

Fig. 1.18 Phase portrait of Case (iv) (a): λ1 = 0 but λ2 ̸= 0.

(b) λ1 = λ2 = 0

In this case, the system is transformed to

ż =

[
0 1

0 0

]
z , with z0 =

[
z10
z20

]
,

which has solution

z1(t) = z10 + z20 t and z2(t) = z20 .

The phase portrait of x = Mz is shown in Fig. 1.19, which is a saddle

equilibrium subspace.

1.4.2 Qualitative Analysis of Nonlinear Dynamics

This subsection is devoted to some qualitative analysis of dynamical be-

haviors of a general nonlinear autonomous system in a neighborhood of a
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24 Nonlinear Systems

x1

x2

Fig. 1.19 Phase portrait of Case (iv) (b): λ1 = λ2 = 0.

fixed point (equilibrium point) of the system. Therefore, unlike the linear

systems discussed above, all results derived here are local.

Consider a general nonlinear autonomous system,

ẋ = f(x) , x0 ∈ Rn , (1.27)

where it is assumed that f ∈ C1, i.e. it is continuously differentiable with

respect to its arguments, and that the system has a fixed point, x∗.
Taylor-expanding f(x) at x∗ yields

ẋ = f
(
x∗)+

[
∂f

∂x

]

x=x∗

(
x− x∗)+ e(x) = J

(
x− x∗)+ e(x) ,

where

J =

[
∂f

∂x

]

x=x∗
=




∂f1/∂x1 · · · ∂f1/∂xn

...
...

∂fn/∂x1 · · · ∂fn/∂xn



x=x∗

is the Jacobian, and e(x) = o(||x||) represents the residual of all higher-

order terms, which satisfies

lim
||x||→∞

||e(x)||
||x|| = 0 .

Letting y = x− x∗ leads to

ẏ = J y + e(y) ,

where e(y) = o(||y||). In a small neighborhood of x∗, ||x − x∗|| is small,

so o(||y||) ≈ 0. Thus, the nonlinear autonomous system (1.27) and its

linearized system ẋ = J (x− x∗) have the same dynamical behaviors; par-

ticularly, the latter in a small neighborhood of x∗ is the same as ẏ = J y in
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a small neighborhood of 0. In other words, between x and y, the following

are comparable:

ẋ = f(x) versus ẏ = J y (1.28)

x∗ is





stable node

unstable node

stable focus

unstable focus

saddle node

⇐⇒ y = 0 is





stable node

unstable node

stable focus

unstable focus

saddle node

(1.29)

In this sense, the local dynamical behaviors of the two systems in (1.28)

are said to be qualitatively the same, or topologically equivalent. A precise

mathematical definition is given as follows.

Definition 1.5. Two time-invariant system functions, f : X → Y and

g : X∗ → Y ∗, where X, Y , X∗, and Y ∗ are (open sets of) metric spaces,

are said to be topologically equivalent, if there is a homeomorphism, h :

Y → Y ∗, such that h−1 : X∗ → X and

g(x) = h−1 ◦ f ◦ h(x) , x ∈ X ,

where ◦ is the composite operation of two maps.

This definition is illustrated in Fig. 1.20. Here, a homeomorphism is

an invertible continuous function whose inverse is also continuous. For

instance, for X = Y = R, the two functions f(x) = 2x3 and g(x) = 8x3 are

topologically equivalent. This is because one can find a homeomorphisim,

h(x) = (x)1/3, which yields

h−1 ◦ f ◦ h(x) =
(
2
(
(x)1/3

)3)3
= 8x3 = g(x) .

A homeomorphism preserves the system dynamics as seen from the one-

one correspondence (1.29). When both X and Y are Euclidean spaces, the

homeomorphism h may be viewed as a nonsingular coordinates transform.

For discrete-time systems (maps), such topological equivalence is also

called the topological conjugacy, and the two maps are said to be topologi-

cally conjugate if they satisfy the relationships shown in Fig. 1.20, where h

is a homeomorphism.

Theorem 1.5. If f and g are topologically conjugate, then

(i) the orbits of f are mapped to the orbits of g under h;

(ii) if x∗ is a fixed point of f , then the eigenvalues of f ′(x∗) are mapped to

the eigenvalues of g′(x∗).
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26 Nonlinear Systems

X∗ - Y ∗
g

X - Y

f

6

h−1

?

h

Fig. 1.20 Two topologically equivalent functions or topologically conjugate maps.

Proof. First, note that the orbit of x∗ under iterates of map f is

Ω(x∗) =
{
. . . , f−k(x∗), . . . , f−1(x∗), x∗, f(x∗), . . . , fk(x∗)

}
.

Since f = h−1 ◦ g ◦ h, for any given k > 0 one has

fk(x∗) =
(
h−1 ◦ g ◦ h

)
◦ · · · ◦

(
h−1 ◦ g ◦ h

)
(x∗)

= h−1 ◦ gk ◦ h(x∗) .

On the other hand, since f−1 = h−1 ◦ g−1 ◦ h, for any given k > 0 one has

h ◦ f−k(x∗) = g−k ◦ h(x∗) .

A comparison of the above two equalities shows that the orbit of x∗ under

iterates of f is mapped by h to the orbit of h(x∗) under iterates of map g.

This proves part (i).

The conclusion of part (ii) follows from a direct calculation:

df

dx

∣∣∣
x=x∗

=
dh−1

dx

∣∣∣
x=x∗

· dg
dx

∣∣∣
x=h(x∗)

· dh
dx

∣∣∣
x=x∗

,

noting that similar matrices have the same eigenvalues.

Example 1.14. The damped pendulum system (1.1), namely,

ẋ = y ,

ẏ = − κ

m
y − g

ℓ
sin(x) ,

has two fixed points:
(
x∗, y∗

)
=

(
θ∗, θ̇∗

)
= (0, 0) and

(
x∗, y∗

)
=

(
θ∗, θ̇∗

)
= (π, 0) .

It is known from the pendulum physics (see Fig. 1.21) that the first fixed

point is stable while the second, unstable.

 N
on

lin
ea

r 
Sy

st
em

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 6

1.
93

.6
4.

23
5 

on
 0

8/
26

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Nonlinear Systems: Preliminaries 27

π

(a) stable fixed point (b) unstable fixed point

Fig. 1.21 Two fixed points of the damped pendulum.

According to the above analysis, the Jacobian of the damped pendulum

system is

J =

[
0 1

−g ℓ−1 cos(x) −κ/m

]
.

There are two cases to consider at the two fixed points:

(a) x∗ = θ∗ = 0

In this case, the two eigenvalues of J are

λ1,2 = − κ

2m
± 1

2

√(
κ/m

)2 − 4
(
g/ℓ

)
,

implying that the fixed point is stable since Re{λ1,2} < 0.

(b) x∗ = θ∗ = π

In this case, the two eigenvalues of J are

λ1,2 = − κ

2m
± 1

2

√(
κ/m

)2
+ 4

(
g/ℓ

)
,

where Re{λ1} > 0 and Re{λ2} < 0, which implies that the fixed point is a

saddle node and, hence, is unstable in one direction on the plane shown in

Fig. 1.21, along which the pendulum can swing back and forth.

Clearly, the mathematical analysis given here is consistent with the

physics of the damped pendulum as discussed before.

Example 1.15. For easy explanation of concept, consider a composite 2-

and 1-dimensional autonomous system,

ẋ =



−1 −2 0

2 −1 0

0 0 1


x .

At the fixed point (0, 0, 0), this system has eigenvalues −1 ± 2j and 1,

implying that the origin is a saddle node, as illustrated by the phase portrait

in Fig. 1.22.
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28 Nonlinear Systems

Fig. 1.22 3-dimensional saddle node.

Example 1.16. Consider a simplified coupled-neuron model,

ẋ = −αx+ h(β − y) ,

ẏ = −αy + h(β − x) ,

where α > 0 and β > 0 are constants, and h(u) is a continuous func-

tion satisfying h(−u) = −h(u) with h′(u) being two-sided monotonically

decreasing as u→ ±∞. One typical case is the sigmoidal function

h(u) =
2

1− e−au
− 1 , a > 0 .

In this coupled-neuron model, with the general function h as described, one

has the following:

(i) there is a fixed point at x∗ = y∗ := λ;

(ii) if

h′(β − λ) = − dh(β − y)

dy

∣∣∣∣
y=λ

< α ,

then this fixed point is unique and is a stable node;

(iii) if h′(β − λ) > α, then there are two other fixed points, at(
µ, α−1h(β − µ)

)
and

(
α−1h(β − µ), µ

)

respectively, for the same value of µ; they are stable nodes; but the

one at (λ, λ) becomes a saddle point in this case.

Now it is noted that a fixed point at x∗ = y∗ = λ is equivalent to

showing that −αλ+h(β−λ) = 0, or that the straight line z = αx and the

curve z = h(β − x) has a crossing point on the x–z plane. This is obvious

from the geometry depicted in Fig. 1.23, since h is continuous.
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h(u

u

)

0

h(β

β

− x

x

)

0 βλ

f f = x

x
=⇒ =⇒

Fig. 1.23 Existence of a fixed point in the coupled-neuron model.

Then it is noted that λ is the unique root of equation

f(λ) := −αλ+ h(β − λ) = 0

being equivalent to showing that the function f(λ) is strictly monotonic,

so that f(λ) = 0 has only one root. To verify this, observe that

f ′(λ) = −α+ h′(β − λ) < 0 .

where h′(β − λ) = −d h(β − λ)/dλ < α by assumption. This implies that

f(λ) is decreasing. Moreover,

h(−u) = −h(u) =⇒ −h′(−u) = −h′(u) =⇒ h′(−u) = h′(u) .

Since h′(u) is two-sided monotonically decreasing as u→ ±∞, so are h′(−u)
and

f ′(λ) = −α+ h′(β − λ) .

Therefore, f(λ) is strictly monotonic, so f(λ) = 0 has only one root.

To determine the stability of this root, by examining the Jacobian

J
∣∣
x=y=λ

=

[ −α h′(β − λ)

h′(β − λ) −α

]
,

one can see that its eigenvalues

s1 = −α− h′(β − λ) and s2 = −α+ h′(β − λ)

satisfy s1 < s2 < 0, since h′(β−λ) < α. Hence, x = y = λ is a stable node.

Finally, consider the following equation:

f(x) = −αx+ h(β − x) = 0

on the x–z plane. If h′(β − λ) > α, then it can be verified that the curve

z = h(β − x) and the straight line z = αx have three crossing points, as

shown in Fig. 1.24.

In the above, it has already been shown that at least one crossing point

is at x = λ, where h′(β−λ) > α. It can be further verified that there must
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0 λλ rλ�

f

β

α

x

x

h(β − x)

Fig. 1.24 Three crossing points between the curve and the straight line.

be two more crossing points, one at λr > λ and the other at λℓ < λ, as

depicted in Fig. 1.24.

Indeed, for x > λ, since h′(β − x) is monotonically decreasing as dis-

cussed above, one has

f ′(x) = −α+ h′(β − x) > −α+ h′(β − λ) > 0 ,

so that

h′(β − x) > α > 0 , for all x > α .

Since h′(β − x) is two-sided monotonically decreasing, h′(β − x) → −∞ as

x→ ∞, there must be a point, λr, such that h′(β − λr) = α. This implies

that the two curves h(β − x) and αx have a crossing point λr > λ. The

existence of another crossing point, λℓ < λ, can be similarly verified.

Next, to find the two new fixed points of the system, one can set

−αx+ h(β − y) = 0

to obtain

x∗1 = α−1h(β − µ) ,

y∗1 = µ ,

and set

−αy + h(β − x) = 0

to obtain

x∗2 = µ ,

y∗2 = α−1h(β − µ) ,

where µ is a real value. These solutions have the same Jacobian, and the

eigenvalues of the Jacobian are

s1 = −α−
√
h′(β − x)h′(β − y) ,

s2 = −α+
√
h′(β − x)h′(β − y) ,

which satisfy s1 < s2 < 0 at the above two crossing points, and satisfy

s1 < 0 < s2 at x∗ = y∗ = λ, where the latter is a saddle node.
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Now, return to the general nonlinear autonomous system (1.27).

Definition 1.6. The fixed point x∗ of the autonomous system (1.27) is

said to be hyperbolic, if all the eigenvalues of the system Jacobian J at this

fixed point have nonzero real parts.

The importance of hyperbolic fixed points of a nonlinear autonomous

system can be appreciated by the following fundamental result on the local

dynamics of the autonomous system.

Theorem 1.6 (Grobman–Hartman Theorem for Systems). Let

x∗ be a hyperbolic fixed point of the nonlinear autonomous system (1.27).

Then, the dynamical properties of this system is qualitatively the same as

that of its linearized system, in a (small) neighborhood of x∗.

Here, the equivalence of the dynamics of the two systems is local, and

this theorem is not applicable to a nonautonomous system in general.

Proof. See [Robinson (1995)]: p. 158.

For discrete-time systems, there is another version of the theorem for

maps.

Theorem 1.7 (Grobman–Hartman Theorem for Maps). Let x∗ be

a hyperbolic fixed point of the continuously differentiable map f : Rn → Rn.

Then, the dynamical properties of this map is qualitatively the same as that

of its linearized map [Df(x∗)] : Rn → Rn, in a (small) neighborhood of x∗.

Proof. Without loss of generality, assume that x∗ = 0. Let A = [Df(0)],

and decompose its state space according to the stable eigenvalues, denoted

Es, and unstable eigenvalues, denoted Eu, respectively. Then, Rn = Es ⊕
Eu. Denote As = A

∣∣
Es and Au = A

∣∣
Eu , defined and restricted respectively

on the two eigenspaces. By choosing appropriate coordinates, it can be

assumed that ||As|| < 1 and ||A−1
u || < 1 < ||Au||. Moreover, denote µ =

max{||As||, ||A−1
u ||} < 1.

In a (small) neighborhood of the fixed point x∗ = 0, consider the expan-

sion of the map f(x) = [Df(0)]x+ g(x), with the higher-order terms satis-

fying g(0) = 0 and [Dg(0)] = 0. Thus, for any small δ > 0 there is a (small)

neighborhood of the fixed point, in which supx∈Rn{||g(x)||+|| [Dg(x)] ||} <
δ. This guarantees the existence of f−1, which is also continuously differ-

entiable.
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Now, the proof is carried out by verifying the topologically conjugate

relationship shown in Fig. 1.20.

The objective is to find a homeomorphism h : Rn → Rn in the form of

h = I + k, where I is the identity map and k : Rn → Rn is a continuous

map, such that

h ◦ (A+ g) = A ◦ h .
It can be verified that the topologically conjugate relationship is equivalent

to either

k = −g ◦ (A+ g)−1 +A ◦ k ◦ (A+ g)−1

or

k = A−1 ◦ g +A−1 ◦ k ◦ (A+ g) .

Now, in the small neighborhood of the fixed point x∗ = 0, define a

map F (k,g) = Fs(k,g) + Fu(k,g), according to the above topologically

conjugate relationship, as follows:

Fs(k,g) = −gs ◦ (A+ g)−1 +As ◦ ks ◦ (A+ g)−1

and

Fu(k,g) = A−1
u ◦ gu +A−1

u ◦ ku ◦ (A+ g) .

It can be verified that F (k,g) is continuous in g, satisfying F (0, 0) = 0,

and

||F (k,g)|| ≤ ||g||+ µ||k|| and ||F (k,g)− F (k′,g)|| ≤ µ||k− k′|| ,
for all continuous k,k′ ∈ Rn. Therefore, F (k,g) is also continuous in k

and furthermore F (·,g) is a uniform contraction mapping. Consequently,

F (k′,g) = g for some k′ if and only if there is a k such that k′ = k(g). It

follows that h(g) = I + k(g) and h ◦ (A+ g) = A ◦ h.
It remains to show that this h = h(g) is a homeomorphism.

Consider (A+g)◦r = r◦A with r = I+k′. Similarly to the above, it can

be verified that for each g, correspondingly there exists a unique r = r(g),

perhaps for a smaller δ > 0. It follows from the conjugate relationships for

both h and r that

h ◦ r =
[
A−1 ◦ h ◦ (A+ g)

]
◦ r

= A−1 ◦ h ◦
[
(A+ g) ◦ r

]

= A−1 ◦ h ◦ r ◦A .
On the other hand,

h ◦ r = I + k′ + k ◦ [I + k′] := I + s .
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Hence,

s = A−1 ◦ s ◦A if and only if s = A ◦ s ◦A−1 .

This implies that F (s, 0) = s. Since the fixed point is unique and since

F (0, 0) = 0, one has s = 0; therefore, h ◦ r = I. Similarly, it can be shown

that r ◦ h = I. Thus, h is a homeomorphism.

The following example provides a visual illustration of Theorem 1.6.

Example 1.17. Consider a nonlinear system,

ẋ = −x ,
ẏ = x2 + y .

Its linearized system at (0, 0) is

ẋ = −x ,
ẏ = y .

Their phase portraits are shown in Fig. 1.25.

0 0

(a) nonlinear system (b) linearized system

Fig. 1.25 Illustration of the Grobman–Hartman Theorem.

As can be seen, the two phase portraits are not exactly the same, but

they are qualitatively the same, namely topologically equivalent, in the

sense that one can be obtained from the other by smoothly bending the

flow of the solution curves.
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Exercises

1.1 For the following two linear systems, sketch by hand their phase

portraits and classify their fixed points:

ẋ = −3x+ 4y , ẏ = −2x+ 3y ,

and

ẋ = 4x− 3y , ẏ = 8x− 6y .

1.2 Consider the Duffing oscillator equation

ẍ(t) + a ẋ(t) + b x(t) + c x3(t) = γ cos(ωt) , (1.30)

where a, b, c are constants and γ cos(ωt) is an external force input.

By defining y(t) = ẋ(t), rewrite this equation in a state-space form.

Use a computer to plot its phase portraits for the following cases:

a = 0.4, b = −1.1, c = 1.0, ω = 1.8, and (1) γ = 0.620, (2) γ =

1.498, (3) γ = 1.800, (4) γ = 2.100, (5) γ = 2.300, (6) γ = 7.000.

Indicate the directions of the orbit flows.

1.3 Consider the Chua circuit, shown in Fig. 1.26, which consists of one

inductor (L), two capacitors (C1, C2), one linear resistor (R), and

one piecewise-linear resistor (g).

R

L

C2

vC2
vC1

g(·)

C1

iL

+ +

– –

Fig. 1.26 The Chua circuit.

The dynamical equations of the circuit are

C1 v̇C1
= R−1

(
v
C2

− v
C1
)− g(v

C1

)
,

C2 v̇C2
= R−1

(
v
C1

− v
C2

)
+ i

L
,

L i̇
L

= −v
C2
, (1.31)
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where i
L
is the current through the inductor L, v

C1
and v

C2
are the

voltages across C1 and C2 respectively, and

g
(
v
C1

)
= m0vC1

+
1

2

(
m1 −m0

) (
|v

C1
+ 1| − |v

C1
− 1|

)
,

with m0 < 0 and m1 < 0 being some appropriately chosen con-

stants. This piecewise linear function is shown in Fig. 1.27.

-

6
PPPPPP

@
@

@@PPPPPP

• •
−1 1

m0

m0

m1

Fig. 1.27 The piecewise linear resistance in the Chua circuit.

Verify that, by defining p = C2/C1 > 0 and q = C2R
2/L > 0, with

a change of variables, x(τ) = vC1
(t), y(τ) = VC2

(t), z(τ) = R i
L
(t),

and τ = t/(GC2), the above circuit equations can be reformulated

into the state-space form, as

ẋ = p
(
− x+ y − f(x)

)
,

ẏ = x− y + z ,

ż = −q y , (1.32)

where f(x) = Rg
(
v
C1

)
.

For p = 10.0, q = 14.87, m0 = −0.68, m1 = −1.27, with initial

conditions (−0.1,−0.1,−0.1), use a computer to plot the circuit

orbit portrait in the x–y–z space; or, show the portrait projections

on the three principal planes: (a) the x–y plane, z–x the plane, and

(c) the z–y plane.

1.4 Consider the following nonlinear system:

ẋ = y + κx
(
x2 + y2

)
,

ẏ = −x+ κ y
(
x2 + y2

)
.

Show that (0, 0) is the only fixed point, and find under what condi-

tion on the constant κ, this fixed point is a stable or unstable focus.

[Hint: Polar coordinates may be convenient to use.]

 N
on

lin
ea

r 
Sy

st
em

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 6

1.
93

.6
4.

23
5 

on
 0

8/
26

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



36 Nonlinear Systems

1.5 For the following two nonlinear systems, determine the types and

the stabilities of their fixed points:

ÿ + y + y3 = 0 ,

and

ẋ = −x+ xy ,

ẏ = y − xy .

1.6 For each of the following systems, find the fixed points and deter-

mine their types and stabilities:

(a)

ẋ = y cos(x) ,

ẏ = sin(x) ;

(b)

ẋ = (x− y)
(
x2 + y2 − 1

)
,

ẏ = (x+ y)
(
x2 + y2 − 1

)
;

(c)

ẋ = 1− x y−1 ,

ẏ = −x y−1
(
1− x y−1

)
;

(d)

ẋ = y ,

ẏ = −x− 1

3
x3 − y .

1.7 Let f and g be two topologically equivalent maps in metric spaces

X and Y , and h be the homeomorphism satisfying g = h−1 ◦ f ◦ h.
Verify that h

(
gk(x)

)
= fk

(
h(x)

)
for any integer k ≥ 0.

1.8 Verify that the following two maps are not topologically equivalent

in any neighborhood of the origin: f(x) = x and g(x) = x2.
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