IIR Filter Design

Chapter Intended Learning Outcomes:
(i) Ability to design analog Butterworth filters
(ii) Ability to design lowpass IIR filters according to predefined specifications based on analog filter theory and analog-to-digital filter transformation
(iii) Ability to construct frequency-selective IIR filters based on a lowpass IIR filter

Steps in Infinite Impulse Response Filter Design

The system transfer function of an IIR filter is:

$$
\begin{equation*}
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}} \tag{11.1}
\end{equation*}
$$

The task in IIR filter design is to find $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ such that $H(z)$ satisfies the given specifications.

Once $H(z)$ is computed, the filter can then be realized in hardware or software according to a direct, canonic, cascade or parallel form.

We make use of the analog filter design to produce the required $H(z)$

Fig.11.1: Steps in determining transfer function of IIR filter
Note that s is the Laplace transform parameter and substituting $s=j \Omega$ in $H_{a}(s)$ yields the Fourier transform of the filter, that is, $H_{a}(j \Omega)$.

Main drawback is that there is no control over the phase response of $H\left(e^{j \omega}\right)$, implying that the filter requirements can only be specified in terms of magnitude response .

Butterworth Lowpass Filter Design

In analog lowpass filter design, we can only specify the magnitude of $H_{a}(j \Omega)$. Typically, we employ the magnitude square response, that is, $\left|H_{a}(j \Omega)\right|^{2}$:

Fig.11.2: Specifications of analog lowpass filter

Passband corresponds to $\Omega \in\left[0, \Omega_{p}\right]$ where Ω_{p} is the passband frequency and ϵ is called the passband ripple.

Stopband corresponds to $\Omega \in\left[\Omega_{s}, \infty\right)$ where Ω_{s} is the stopband frequency and A is called the stopband attenuation.

Transition band corresponds to $\Omega \in\left[\Omega_{p}, \Omega_{s}\right]$.
The specifications are represented as the two inequalities:

$$
\begin{equation*}
\frac{1}{1+\epsilon^{2}} \leq\left|H_{a}(j \Omega)\right|^{2} \leq 1, \quad 0 \leq \Omega \leq \Omega_{p} \tag{11.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq\left|H_{a}(j \Omega)\right|^{2} \leq \frac{1}{A^{2}}, \quad \Omega \geq \Omega_{s} \tag{11.3}
\end{equation*}
$$

In particular, at $\Omega=\Omega_{p}$ and $\Omega=\Omega_{s}$, we have:

$$
\begin{equation*}
\left|H_{a}\left(j \Omega_{p}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}} \tag{11.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|H_{a}\left(j \Omega_{s}\right)\right|^{2}=\frac{1}{A^{2}} \tag{11.5}
\end{equation*}
$$

Apart from ϵ and A, it is also common to use their respective dB versions, denoted by R_{p} and A_{s} :

$$
\begin{equation*}
R_{p}=-10 \log _{10}\left(\frac{1}{1+\epsilon^{2}}\right) \Rightarrow \epsilon=\sqrt{10^{R_{p} / 10}-1} \tag{11.6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{s}=-10 \log _{10}\left(\frac{1}{A^{2}}\right) \Rightarrow A=10^{A_{s} / 20} \tag{11.7}
\end{equation*}
$$

The magnitude square response of a N th-order Butterworth lowpass filter is:

$$
\begin{equation*}
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}} \tag{11.8}
\end{equation*}
$$

The filter is characterized by Ω_{c} and N, which represent the cutoff frequency and filter order

- $\left|H_{a}(j \Omega)\right|^{2}=1$ at $\Omega=0$ and $\left|H_{a}(j \Omega)\right|^{2}=0.5$ at $\Omega=\Omega_{c}$ for all N.
- $\left|H_{a}(j \Omega)\right|^{2}$ is a monotonically decreasing function of frequency which indicates that there is no ripple.
- filter shape is closer to the ideal response as N increases, although the filter with order of $N \rightarrow \infty$ is not realizable.

Fig.11.3: Magnitude square responses of Butterworth lowpass filter

To determine $H_{a}(s)$, we first make use of its relationship with $H_{a}(j \Omega)$:

$$
\begin{equation*}
\left.H_{a}(s)\right|_{s=j \Omega}=H_{a}(j \Omega) \tag{11.9}
\end{equation*}
$$

From (11.8)-(11.9), we obtain:

$$
\begin{equation*}
H_{a}(s) H_{a}(-s)=\left.\left|H_{a}(j \Omega)\right|^{2}\right|_{\Omega=s / j}=\frac{\left(j \Omega_{c}\right)^{2 N}}{s^{2 N}+\left(j \Omega_{c}\right)^{2 N}} \tag{11.10}
\end{equation*}
$$

The $2 N$ poles of $H_{a}(s) H_{a}(-s)$, denoted by $c_{k}, k=0,1, \cdots, 2 N-1$, are given as:

$$
c_{k}= \begin{cases}\Omega_{c} e^{j k \pi / N}, & \text { odd } N \tag{11.11}\\ \Omega_{c} e^{j k \pi / N} \cdot e^{j \pi /(2 N)}, & \text { even } N\end{cases}
$$

$$
N=2
$$

$$
N=3
$$

Fig.11.4: Poles of Butterworth lowpass filter

- $\left\{c_{k}\right\}$ are uniformly distributed on a circle of radius Ω_{c} with angular spacing of π / N in the s-plane.
- poles are symmetrically located with respect to the imaginary axis.
- there are two real-valued poles when N is odd.

To extract $H_{a}(s)$ from (11.10), we utilize the knowledge that all poles of a stable and causal analog filter should be on the left half of the s-plane. As a result, $H_{a}(s)$ is:

$$
\begin{equation*}
H_{a}(s)=\frac{\Omega_{c}^{N}}{\prod_{\Re\left\{c_{k}\right\}<0}\left(s-c_{k}\right)} \tag{11.12}
\end{equation*}
$$

Example 11.1

The magnitude square response of a Butterworth lowpass filter has the form of:

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+0.000001 \Omega^{6}}
$$

Determine the filter transfer function $H_{a}(s)$.
Expressing $\left|H_{a}(j \Omega)\right|^{2}$ as:

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\left(\frac{\Omega}{10}\right)^{2 \cdot 3}}
$$

From (11.8), $\Omega_{c}=10$ and $N=3$.

From (11.11):

$$
c_{k}=10 e^{j k \pi / 3}, \quad k=2,3,4
$$

Finally, we apply (11.12) to obtain:

$$
\begin{aligned}
H_{a}(s) & =\frac{\Omega_{c}^{3}}{\left(s-c_{2}\right)\left(s-c_{3}\right)\left(s-c_{4}\right)} \\
& =\frac{1000}{\left(s-10 e^{j 2 \pi / 3}\right)(s+10)\left(s-10 e^{j 4 \pi / 3}\right)} \\
& =\frac{1000}{(s+10)\left(s^{2}+10 s+100\right)}
\end{aligned}
$$

To find Ω_{c} and N given the passband and stopband requirements in terms of $\Omega_{p}, \Omega_{s,}, R_{p}$ and $A_{s,}$ we exploit (11.4)(11.5) together with (11.6)-(11.7) to obtain

$$
\begin{equation*}
-10 \log _{10}\left(\frac{1}{1+\left(\frac{\Omega_{p}}{\Omega_{c}}\right)^{2 N}}\right)=R_{p} \tag{11.13}
\end{equation*}
$$

and

$$
\begin{equation*}
-10 \log _{10}\left(\frac{1}{1+\left(\frac{\Omega_{s}}{\Omega_{c}}\right)^{2 N}}\right)=A_{s} \tag{11.14}
\end{equation*}
$$

Solving (11.13)-(11.14) and noting that N should be an integer, we get

$$
\begin{equation*}
N=\left\lceil\frac{\log _{10}\left[\left(10^{R_{p} / 10}-1\right) /\left(10^{A_{s} / 10}-1\right)\right]}{2 \log _{10}\left(\Omega_{p} / \Omega_{s}\right)}\right\rceil \tag{11.15}
\end{equation*}
$$

where $\lceil u\rceil$ rounds up u to the nearest integer.
The Ω_{c} is then obtained from (11.13) or (11.14) so that the specification can be exactly met at Ω_{p} or $\Omega_{s,}$ respectively.

From (11.13), Ω_{c} is computed as:

$$
\begin{equation*}
\Omega_{c}=\frac{\Omega_{p}}{\left(10^{R_{p} / 10}-1\right)^{1 /(2 N)}} \tag{11.16}
\end{equation*}
$$

From (11.14), Ω_{c} is computed as:

$$
\begin{equation*}
\Omega_{c}=\frac{\Omega_{s}}{\left(10^{A_{s} / 10}-1\right)^{1 /(2 N)}} \tag{11.17}
\end{equation*}
$$

As a result, the admissible range of Ω_{c} is:

$$
\begin{equation*}
\Omega_{c} \in\left[\frac{\Omega_{p}}{\left(10^{R_{p} / 10}-1\right)^{1 /(2 N)}}, \frac{\Omega_{s}}{\left(10^{A_{s} / 10}-1\right)^{1 /(2 N)}}\right] \tag{11.18}
\end{equation*}
$$

Example 11.2
Determine the transfer function of a Butterworth lowpass filter whose magnitude requirements are $\Omega_{p}=4 \pi \mathrm{rads}^{-1}$, $\Omega_{s}=6 \pi \mathrm{rads}^{-1}, R_{p}=8 \mathrm{~dB}$ and $A_{s}=16 \mathrm{~dB}$.

Employing (11.15) yields:

$$
N=\left\lceil\frac{\log _{10}\left[\left(10^{8 / 10}-1\right) /\left(10^{16 / 10}-1\right)\right]}{2 \log _{10}(4 \pi /(6 \pi))}\right\rceil=\lceil 2.45\rceil=3
$$

Putting $N=3$ in (11.18), the cutoff frequency is:

$$
\Omega_{c} \in\left[\frac{4 \pi}{\left(10^{8 / 10}-1\right)^{1 /(2 \cdot 3)}}, \frac{6 \pi}{\left(10^{16 / 10}-1\right)^{1 /(2 \cdot 3)}}\right]=[9.5141,10.2441]
$$

For simplicity, we select $\Omega_{c}=10$. Using Example 11.1, the filter transfer function $H_{a}(s)$ is:

$$
H_{a}(s)=\frac{1000}{(s+10)\left(s^{2}+10 s+100\right)}=\frac{1000}{s^{3}+20 s^{2}+200 s+1000}
$$

Fig.11.5: Magnitude square response of Butterworth lowpass filter

The MATLAB program is provided as ex11_2.m where the command freqs, which is analogous to freqz, is used to plot $\left|H_{a}(j \Omega)\right|^{2}$.

Analog-to-Digital Filter Transformation

Typical methods include impulse invariance, bilinear transformation, backward difference approximation and matched- z transformation.

Their common feature is that a stable analog filter will transform to a stable system with transfer function $H_{L P}(z)$.

Left half of s-plane maps into inside of unit circle in z-plane.
Each has its pros and cons and thus optimal transformation does not exist.

- Impulse Invariance

The idea is simply to sample impulse response of the analog filter $h_{a}(t)$ to obtain the digital lowpass filter impulse response $h_{L P}[n]$.

The relationship between $h_{L P}[n]$ and $h_{a}(t)$ is

$$
\begin{equation*}
h_{L P}[n]=T \cdot h_{a}(n T), \quad n=\cdots-1,0,1,2, \cdots \tag{11.19}
\end{equation*}
$$

where T is the sampling interval.
Why there is a scaling of \boldsymbol{T} ?

With the use of (4.5) and (5.3)-(5.4), $H_{L P}\left(e^{j \omega}\right)$ is:

$$
\begin{equation*}
H_{L P}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} H_{a}\left(j\left(\frac{\omega}{T}-\frac{2 \pi k}{T}\right)\right) \tag{11.20}
\end{equation*}
$$

where the analog and digital frequencies are related as:

$$
\begin{equation*}
\omega=\Omega T \tag{11.21}
\end{equation*}
$$

The impulse response of the resultant IIR filter is similar to that of the analog filter.

Aliasing due to the overlapping of $\left\{H_{a}(j(\omega-2 \pi k) / T)\right\}$ which are not bandlimited. However, $H_{a}(j \Omega)$ corresponds to a lowpass filter and thus aliasing effect is negligibly small.

To derive the IIR filter transfer function $H_{L P}(z)$ from $H_{a}(s)$, we first obtain the partial fraction expansion:

$$
\begin{equation*}
H_{a}(s)=\sum_{k=1}^{N} \frac{A_{k}}{s-s_{k}} \tag{11.22}
\end{equation*}
$$

where $\left\{s_{k}\right\}$ are the poles on the left half of the s-plane.
The inverse Laplace transform of (11.22) is given as:

$$
h_{a}(t)= \begin{cases}\sum_{k=1}^{N} A_{k} e^{s_{k} t}, & t \geq 0 \tag{11.23}\\ 0, & t<0\end{cases}
$$

Substituting (11.23) into (11.19), we have:

$$
\begin{equation*}
h_{L P}[n]=\sum_{k=1}^{N} T A_{k} e^{s_{k} n T} u[n] \tag{11.24}
\end{equation*}
$$

The z transform of $h_{L P}[n]$ is:

$$
\begin{equation*}
H_{L P}(z)=\sum_{k=1}^{N} \frac{T A_{k}}{1-e^{s_{k} T} z^{-1}} \tag{11.25}
\end{equation*}
$$

Comparing (11.22) and (11.25), it is seen that a pole of $s=s_{k}$ in the s-plane transforms to a pole at $z=e^{s_{k} T}$ in the z-plane:

$$
\begin{equation*}
z=e^{s T} \tag{11.26}
\end{equation*}
$$

Expressing $s=\sigma+j \Omega$:

$$
\begin{equation*}
z=e^{\sigma T} \cdot e^{j \Omega T}=e^{\sigma T} \cdot e^{j(\Omega+2 \pi k / T) T} \tag{11.27}
\end{equation*}
$$

where k is any integer, indicating a many-to-one mapping.
Each infinite horizontal strip of width $2 \pi / T$ maps into the entire z-plane.
$\sigma=0$ maps to $|z|=1$, that is, $j \Omega$ axis in the s-plane transforms to the unit circle in the z-plane.
$\sigma<0$ maps to $|z|<1$, stable $H_{a}(s)$ produces stable $H_{L P}(z)$.
$\sigma>0$ maps to $|z|>1$, right half of the s-plane maps into the outside of the unit circle in the z-plane.

Fig.11.6: Mapping between s and z in impulse invariance method

Given the magnitude square response specifications of $H_{L P}\left(e^{j \omega}\right)$ in terms of $\omega_{p}, \omega_{s,} R_{p}$ and $A_{s,}$, the design procedure for $H_{L P}(z)$ based on the impulse invariance method is summarized as the following steps:
(i) Select a value for the sampling interval T and then compute the passband and stopband frequencies for the analog lowpass filter according to $\Omega_{p}=\omega_{p} / T$ and $\Omega_{s}=\omega_{s} / T$.
(ii)Design the analog Butterworth filter with transfer function $H_{a}(s)$ according to $\Omega_{p}, \Omega_{s,} R_{p}$ and A_{s}.
(iii)Perform partial fraction expansion on $H_{a}(s)$ as in (11.22).
(iv)Obtain $H_{L P}(z)$ using (11.25).

Example 11.3

The transfer function of an analog filter has the form of

$$
H_{a}(s)=\frac{2 s}{s^{2}+6 s+8}
$$

Use impulse invariance method with sampling interval $T=1$ to transform $H_{a}(s)$ to a digital filter transfer function $H(z)$.

Performing partial fraction expansion on $H_{a}(s)$:

$$
H_{a}(s)=\frac{-2}{s+2}+\frac{4}{s+4}
$$

Applying (11.25) with $T=1$ yields

$$
H(z)=\frac{-2}{1-e^{-2} z^{-1}}+\frac{4}{1-e^{-4} z^{-1}}=\frac{2-0.5047 z^{-1}}{1-0.1537 z^{-1}+0.0025 z^{-2}}
$$

Example 11.4

Determine the transfer function $H_{L P}(z)$ of a digital lowpass filter whose magnitude requirements are $\omega_{p}=0.4 \pi, \omega_{s}=0.6 \pi$, $R_{p}=8 \mathrm{~dB}$ and $A_{s}=16 \mathrm{~dB}$. Use the Butterworth lowpass filter and impulse invariance method in the design.

Selecting the sampling interval as $T=0.1$, the analog frequency parameters are computed as:

$$
\Omega_{p}=\frac{\omega_{p}}{T}=4 \pi
$$

and

$$
\Omega_{s}=\frac{\omega_{s}}{T}=6 \pi
$$

Using Example 11.2, a Butterworth filter which meets the magnitude requirements are:

$$
H_{a}(s)=\frac{1000}{(s+10)\left(s^{2}+10 s+100\right)}=\frac{1000}{s^{3}+20 s^{2}+200 s+1000}
$$

Performing partial fraction expansion on $H_{a}(s)$ with the use of the MATLAB command residue, we get

$$
H_{a}(s)=\frac{10}{s+10}+\frac{-5-j 2.8868}{s+5-j 8.6603}+\frac{-5+j 2.8868}{s+5+j 8.6603}
$$

Applying (11.25) with $T=0.1$ yields

$$
\begin{aligned}
H_{L P}(z)= & \frac{0.1 \cdot 10}{1-e^{-10 \cdot 0.1} z^{-1}}+\frac{0.1 \cdot(-5-j 2.8868)}{1-e^{(-5+j 8.6603) \cdot 0.1} z^{-1}}+\frac{0.1 \cdot(-5+j 2.8868)}{1-e^{(-5-j 8.6603) \cdot 0.1} z^{-1}} \\
= & \frac{1}{1-0.3679 z^{-1}}+\frac{-0.5-j 0.2887}{1-(0.3929+j 0.4620) z^{-1}} \\
& +\frac{-0.5+j 0.2887}{1-(0.3929-j 0.4620) z^{-1}} \\
= & \frac{1}{1-0.3679 z^{-1}}+\frac{-1+0.6597 z^{-1}}{1-0.7859 z^{-1}+0.3679 z^{-2}} \\
= & \frac{0.2417 z^{-1}+0.1262 z^{-2}}{1-1.1538 z^{-1}+0.6570 z^{-2}-0.1354 z^{-3}}
\end{aligned}
$$

The MATLAB program is provided as ex11_4.m.

Fig.11.7: Magnitude and phase responses based on impulse invariance

- Bilinear Transformation

It maps the $j \Omega$ axis of the s-plane into the unit circle of the z -plane only once, implying there is no aliasing problem as in the impulse invariance method.

It is a one-to-one mapping.
The relationship between s and z is:

$$
\begin{equation*}
s=\frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}} \Leftrightarrow z=\frac{1+s T / 2}{1-s T / 2} \tag{11.28}
\end{equation*}
$$

Employing $s=\sigma+j \Omega$, z can be expressed as:

$$
\begin{equation*}
z=\frac{(1+\sigma T / 2)+j \Omega T / 2}{(1-\sigma T / 2)-j \Omega T / 2} \tag{11.29}
\end{equation*}
$$

$\sigma=0$ maps to $|z|=1$, that is, $j \Omega$ axis in the s-plane transforms to the unit circle in the z-plane.
$\sigma<0$ maps to $|z|<1$, stable $H_{a}(s)$ produces a stable $H_{L P}(z)$.
$\sigma>0$ maps to $|z|>1$, right half of the s-plane maps into the outside of the unit circle in the z-plane.

Fig.11.8: Mapping between s and z in bilinear transformation

Although aliasing is avoided, the drawback of the bilinear transformation is that there is no linear relationship between ω and Ω.

Putting $z=e^{j \omega}$ and $s=j \Omega$ in (11.28), ω and Ω are related as:

$$
\begin{align*}
& j \Omega=\frac{2}{T} \cdot \frac{1-e^{-j \omega}}{1+e^{-j \omega}}=\frac{2}{T} \cdot \frac{e^{j \omega / 2}-e^{-j \omega / 2}}{e^{j \omega / 2}+e^{-j \omega / 2}}=j \frac{2}{T} \tan \left(\frac{\omega}{2}\right) \\
& \Rightarrow \Omega=\frac{2}{T} \tan \left(\frac{\omega}{2}\right) \Leftrightarrow \omega=2 \tan ^{-1}\left(\frac{\Omega T}{2}\right) \tag{11.30}
\end{align*}
$$

Given the magnitude square response specifications of $H_{L P}\left(e^{j \omega}\right)$ in terms of $\omega_{p}, \omega_{s,} R_{p}$ and $A_{s,}$, the design procedure for $H_{L P}(z)$ based on the bilinear transformation is summarized as the following steps:
(i) Select a value for T and then compute the passband and stopband frequencies for the analog lowpass filter according $\Omega_{p}=(2 / T) \tan \left(\omega_{p} / 2\right)$ and $\Omega_{s}=(2 / T) \tan \left(\omega_{s} / 2\right)$.
(ii)Design the analog Butterworth filter with transfer function $H_{a}(s)$ according to $\Omega_{p}, \Omega_{s,} R_{p}$ and A_{s}.
(iii)Obtain $H_{L P}(z)$ from $H_{a}(s)$ using the substitution of (11.28).

Example 11.5
The transfer function of an analog filter has the form of

$$
H_{a}(s)=\frac{2 s}{s^{2}+6 s+8}
$$

Use the bilinear transformation with $T=1$ to transform $H_{a}(s)$ to a digital filter with transfer function $H(z)$.

Applying (11.28) with $T=1$ yields

$$
H(z)=\frac{2 \cdot 2 \frac{1-z^{-1}}{1+z^{-1}}}{\left(2 \frac{1-z^{-1}}{1+z^{-1}}\right)^{2}+6 \cdot 2 \frac{1-z^{-1}}{1+z^{-1}}+8}=\frac{4-4 z^{-2}}{15+14 z^{-1}+9 z^{-2}}
$$

Example 11.6
Determine the transfer function $H_{L P}(z)$ of a digital lowpass filter whose magnitude requirements are $\omega_{p}=0.4 \pi, \omega_{s}=0.6 \pi$, $R_{p}=8 \mathrm{~dB}$ and $A_{s}=16 \mathrm{~dB}$. Use the Butterworth lowpass filter and bilinear transformation in the design.

Selecting $T=0.1$, the analog frequency parameters are computed according to (11.30) as:

$$
\Omega_{p}=\frac{2}{T} \tan \left(\frac{\omega_{p}}{2}\right)=14.5309
$$

and

$$
\Omega_{s}=\frac{2}{T} \tan \left(\frac{\omega_{s}}{2}\right)=27.5276
$$

Employing (11.15) yields:

$$
N=\left\lceil\frac{\log _{10}\left[\left(10^{8 / 10}-1\right) /\left(10^{16 / 10}-1\right)\right]}{2 \log _{10}(14.5309 / 27.5276)}\right\rceil=\lceil 1.56\rceil=2
$$

Putting $N=2$ in (11.18), the cutoff frequency is:

$$
\Omega_{c} \in\left[\frac{14.5309}{\left(10^{8 / 10}-1\right)^{1 /(2 \cdot 2)}}, \frac{27.5276}{\left(10^{16 / 10}-1\right)^{1 /(2 \cdot 2)}}\right]=[9.5725,11.0289]
$$

For simplicity, $\Omega_{c}=10$ is employed.
Following (11.11)-(11.12):

$$
H_{a}(s)=\frac{100}{s^{2}+14.1421 s+100}
$$

Finally, we use (11.28) with $T=0.1$ to yield

$$
\begin{aligned}
H_{L P}(z) & =\frac{100}{\left(\frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right)^{2}+14.1421 \cdot \frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}}+100} \\
& =\frac{1+2 z^{-1}+z^{-2}}{7.8284-6 z^{-1}+2.1716 z^{-2}}
\end{aligned}
$$

The MATLAB program is provided as ex11_6.m.

Fig.11.9: Magnitude and phase responses based on bilinear transformation

Frequency Band Transformation

The operations are similar to that of the bilinear transformation but now the mapping is performed only in the z-plane:

$$
\begin{equation*}
z_{o}^{-1}=T\left(z^{-1}\right) \tag{11.31}
\end{equation*}
$$

where z_{o} and z correspond to the lowpass and resultant filters, respectively, and T denotes the transformation operator.

To ensure the transformed filter to be stable and causal, the unit circle and inside of the z_{0}-plane should map into those of the z-plane, respectively.

Filter Type	Transformation Operator	Design Parameter
Lowpass	$z_{o}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}$	$\alpha=\frac{\sin \left(\frac{\omega_{c_{o}}-\omega_{c}}{2}\right)}{\sin \left(\frac{\omega_{c_{o}}+\omega_{c}}{2}\right)}$
Highpass	$z_{o}^{-1}=-\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$	$\alpha=-\frac{\cos \left(\frac{\omega_{c_{o}}+\omega_{c}}{2}\right)}{\cos \left(\frac{\omega_{c_{o}}-\omega_{c}}{2}\right)}$
Bandpass	$z_{o}^{-1}=\frac{z^{-2}-\frac{2 \alpha \beta}{\beta+1} z^{-1}+\frac{\beta-1}{\beta+1}}{\beta+1} z^{-2}-\frac{2 \alpha \beta}{\beta+1} z^{-1}+1$	$\alpha=\frac{\cos \left(\frac{\omega_{c_{2}}+\omega_{c_{1}}}{2}\right)}{\cos \left(\frac{\omega_{c_{2}}-\omega_{c_{1}}}{2}\right)}$

Bandstop	$z_{o}^{-1}=\frac{z^{-2}-\frac{2 \alpha}{1+\beta} z^{-1}+\frac{1-\beta}{1+\beta}}{\frac{1-\beta}{1+\beta} z^{-2}-\frac{2 \alpha}{1+\beta} z^{-1}+1}$	$\alpha=\frac{\cos \left(\frac{\omega_{c_{2}}+\omega_{c_{1}}}{2}\right)}{\cos \left(\frac{\omega_{c_{2}}-\omega_{c_{1}}}{2}\right)}$
$\beta=\cot \left(\frac{\omega_{c_{2}}-\omega_{c_{1}}}{2}\right) \tan \left(\frac{\omega_{c_{o}}}{2}\right)$		

Table 11.1: Frequency band transformation operators

Example 11.7
Determine the transfer function $H(z)$ of a digital highpass filter whose magnitude requirements are $\omega_{p}=0.6 \pi, \omega_{s}=0.4 \pi$, $R_{p}=8 \mathrm{~dB}$ and $A_{s}=16 \mathrm{~dB}$. Use the Butterworth lowpass filter and bilinear transformation in the design.

Using Example 11.6, the corresponding lowpass filter transfer function $H_{L P}\left(z_{o}\right)$ is:

$$
H_{L P}\left(z_{o}\right)=\frac{1+2 z_{o}^{-1}+z_{o}^{-2}}{7.8284-6 z_{o}^{-1}+2.1716 z_{o}^{-2}}
$$

Assigning the cutoff frequencies as the midpoints between the passband and stopband frequencies, we have

$$
\omega_{c_{o}}=\omega_{c}=\frac{0.4 \pi+0.6 \pi}{2}=0.5 \pi
$$

With the use of Table 11.1, the corresponding value of α is:

$$
\alpha=-\frac{\cos \left(\frac{\omega_{c_{o}}+\omega_{c}}{2}\right)}{\cos \left(\frac{\omega_{c_{o}}-\omega_{c}}{2}\right)}=-\frac{\cos (0.5 \pi)}{\cos (0)}=0
$$

which gives the transformation operator:

$$
z_{o}^{-1}=-\frac{z^{-1}+0}{1+0 \cdot z^{-1}}=-z^{-1}
$$

As a result, the digital highpass filter transfer function is:

$$
H(z)=\left.H_{L P}\left(z_{o}\right)\right|_{z_{o}^{-1}=-z^{-1}}=\frac{1-2 z^{-1}+z^{-2}}{7.8284+6 z^{-1}+2.1716 z^{-2}}
$$

The MATLAB program is provided as ex11_7.m.

Fig.11.10: Magnitude and phase responses based on frequency band transformation

