Class Exercises for Chapter 3

1. Consider a discrete-time system S with input $x[n]$ and output $y[n]$. This system is obtained through a series interconnection of a system S_{1} followed by another system S_{2}. The input and output relationships for S_{1} and S_{2} are:

$$
\begin{aligned}
& S_{1}: y_{1}[n]=2 x_{1}[n]+4 x_{1}[n-1] \\
& S_{2}: y_{2}[n]=x_{2}[n-2]+\frac{1}{2} x_{2}[n-3]
\end{aligned}
$$

where $x_{1}[n]$ and $x_{2}[n]$ denote inputs and $y_{1}[n]$ and $y_{2}[n]$ denote outputs.
(a) Determine the input-output relationship for system S, i.e., find the equation that relates $x[n]$ and $y[n]$.
(b) Does the input-output relationship of system S change if we first pass $x[n]$ through S_{2} and then S_{1} ?

2. Sketch $u[n]-u[2 n]$.
3. Determine whether the following discrete-time system, with input signal $x[n]$ and output signal $y[n]$ is stable, causal, linear, and/or time-invariant:

$$
y[n]=a x[n+1]+b, \quad 0<|a|<\infty, \quad 0<|b|<\infty
$$

4. Consider a linear time-invariant (LTI) discrete-time system with input $x[n]$, output $y[n]$ and impulse response $h[n]$. With the use of the convolution formula, show that the following two statements regarding causality are identical - (i) Output at time n depends on input up to time n, and (ii) $h[n]=0$ for $n<0$.
5. Describe the operation of a LTI discrete-time system whose impulse response is $h[n]=0.58[n]+0.58[n-1]$ by relating the input and output. Is the system stable? Why? Is it causal? Why?
6. Compute $y[n]$ for all values of n :

$$
y[n]=a^{n} u[n] \otimes a^{n} u[n]
$$

7. Determine the convolution of the following two discrete-time signals:

$$
x[n]=\left\{\begin{array}{cc}
n^{2}, & -2 \leq n \leq-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
h[n]=\left\{\begin{array}{cc}
n-1, & 2 \leq n \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

