Class Exercises for Chapter 6

- 1. Determine the discrete-time Fourier transforms (DTFTs) for $x[n] = (0.5)^n u[n]$ and $y[n] = 2^n u[n]$.
- 2. Let $h_c(t)$ be the impulse response of a linear time-invariant (LTI) continuous-time system and it has the form of:

$$h_c(t) = \begin{cases} e^{-at}, & t \ge 0, & a > 0 \\ 0, & t < 0 \end{cases}$$

- (a) Determine the Fourier transform of $h_c(t)$, $H_c(j\Omega)$.
- (b) The $h_c(t)$ is sampled with a sampling period of T to produce a sequence h[n]. Determine the DTFT of h[n], $H(e^{j\omega})$.
- (c) Find the maximum values for $|H_c(j\Omega)|$ and $|H(e^{j\omega})|$.

- 3. Consider a LTI system with input x[n], output y[n] and impulse response h[n]. Let the DTFT of h[n] be $H(e^{j\omega})$.
 - (a) If $x[n] = e^{j\omega_1 n}$, determine y[n] in terms of $H(e^{j\omega})$.
 - (b) Extend the result of (a) when

$$x[n] = \sum_{k=1}^{K} \alpha_k e^{j\omega_k n}$$

- 4. Let $X(e^{j\omega})$ denote the DTFT of x[n]. Prove the following two properties:
 - (a) The DTFT of x * [n] is $X * (e^{-j\omega})$.
 - (b) The DTFT of x * [-n] is $X * (e^{j\omega})$.