Discrete Fourier Series \& Discrete Fourier Transform

Chapter Intended Learning Outcomes
(i) Understanding the relationships between the z transform, discrete-time Fourier transform (DTFT), discrete Fourier series (DFS) and discrete Fourier transform (DFT)
(ii) Understanding the characteristics and properties of DFS and DFT
(iii) Ability to perform discrete-time signal conversion between the time and frequency domains using DFS and DFT and their inverse transforms

Discrete Fourier Series

DTFT may not be practical for analyzing $x[n]$ because $X\left(e^{j \omega}\right)$ is a function of the continuous frequency variable ω and we cannot use a digital computer to calculate a continuum of functional values

DFS is a frequency analysis tool for periodic infinite-duration discrete-time signals which is practical because it is discrete in frequency

The DFS is derived from the Fourier series as follows.
Let $\tilde{x}[n]$ be a periodic sequence with fundamental period N where N is a positive integer. Analogous to (2.2), we have:

$$
\begin{equation*}
\tilde{x}[n]=\tilde{x}[n+r N] \tag{7.1}
\end{equation*}
$$

for any integer value of r.

Let $x(t)$ be the continuous-time counterpart of $\tilde{x}[n]$. According to Fourier series expansion, $x(t)$ is:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j 2 \pi k t}{T_{p}}} \tag{7.2}
\end{equation*}
$$

which has frequency components at $\Omega=0, \pm \Omega_{0}, \pm 2 \Omega_{0}, \cdots$. Substituting $x(t)=\tilde{x}[n], T_{p}=N$ and $t=n$:

$$
\begin{equation*}
\tilde{x}[n]=\sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j 2 \pi k n}{N}} \tag{7.3}
\end{equation*}
$$

Note that (7.3) is valid for discrete-time signals as only the sample points of $x(t)$ are considered.

It is seen that $\tilde{x}[n]$ has frequency components at $\omega=0, \pm 2 \pi / N, \pm(2 \pi / N)(2), \cdots$, and the respective complex exponentials are $e^{j(2 \pi / N(0))}, e^{ \pm j(2 \pi / N(1))}, e^{ \pm j(2 \pi / N(2))}, \cdots$.

Nevertheless, there are only N distinct frequencies in $\tilde{x}[n]$ due to the periodicity of $e^{j 2 \pi k / N}$.

Without loss of generality, we select the following N distinct complex exponentials, $e^{j(2 \pi / N(0))}, e^{j(2 \pi / N(1))}, \cdots, e^{j(2 \pi / N(N-1))}$, and thus the infinite summation in (7.3) is reduced to:

$$
\begin{equation*}
\tilde{x}[n]=\sum_{k=0}^{N-1} a_{k} e^{\frac{j 2 \pi k n}{N}} \tag{7.4}
\end{equation*}
$$

Defining $\tilde{X}[k]=N a_{k}, k=0,1, \cdots, N-1$, as the DFS coefficients, the inverse DFS formula is given as:

$$
\begin{equation*}
\tilde{x}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{\frac{j 2 \pi k n}{N}} \tag{7.5}
\end{equation*}
$$

The formula for converting $\tilde{x}[n]$ to $\tilde{X}[k]$ is derived as follows.
Multiplying both sides of (7.5) by $e^{-j(2 \pi / N) r n}$ and summing from $n=0$ to $n=N-1$:

$$
\begin{align*}
\sum_{n=0}^{N-1} \tilde{x}[n] e^{\frac{-j 2 \pi r n}{N}} & =\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{\frac{j 2 \pi k n}{N}}\right) e^{\frac{-j 2 \pi r n}{N}} \\
& =\sum_{n=0}^{N-1} \frac{1}{N}\left(\sum_{k=0}^{N-1} \tilde{X}[k] e^{\frac{j 2 \pi(k-r) n}{N}}\right) \\
& =\sum_{k=0}^{N-1} \tilde{X}[k]\left[\frac{1}{N} \sum_{n=0}^{N-1} e^{\frac{j 2 \pi(k-r) n}{N}}\right] \tag{7.6}
\end{align*}
$$

Using the orthogonality identity of complex exponentials:

$$
\frac{1}{N} \sum_{n=0}^{N-1} e^{\frac{j 2 \pi(k-r) n}{N}}=\left\{\begin{array}{l}
1, k-r=m N, \quad m \quad \text { is an integer } \tag{7.7}\\
0, \text { otherwise }
\end{array}\right.
$$

(7.6) is reduced to

$$
\begin{equation*}
\sum_{n=0}^{N-1} \tilde{x}[n] e^{-\frac{j 2 \pi r n}{N}}=\tilde{X}[r] \tag{7.8}
\end{equation*}
$$

which is also periodic with period N.
Let

$$
\begin{equation*}
W_{N}=e^{-\frac{i 2 \pi}{N}} \tag{7.9}
\end{equation*}
$$

The DFS analysis and synthesis pair can be written as:
and

$$
\begin{equation*}
\tilde{x}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_{N}^{-k n} \tag{7.11}
\end{equation*}
$$

time domain	frequency domain
$\tilde{X}[k]=\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{k n},$	$=\tilde{x}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_{N}^{-k n}$
discrete and periodic	discrete and periodic

Fig.7.1: Illustration of DFS

Example 7.1

Find the DFS coefficients of the periodic sequence $\tilde{x}[n]$ with a period of $N=5$. Plot the magnitudes and phases of $\tilde{X}[k]$. Within one period, $\tilde{x}[n]$ has the form of:

$$
\tilde{x}[n]=\left\{\begin{array}{l}
1, n=0,1,2 \\
0, n=3,4
\end{array}\right.
$$

Using (7.10), we have

$$
\begin{aligned}
\tilde{X}[k] & =\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{k n} \\
& =W_{5}^{0}+W_{5}^{k}+W_{5}^{2 k} \\
& =1+e^{-\frac{i 2 \pi k}{5}}+e^{-\frac{i 4 \pi k}{5}} \\
& =e^{-\frac{j 2 \pi k}{5}}\left(e^{\frac{j 2 \pi k}{5}}+1+e^{-\frac{j 2 \pi k}{5}}\right) \\
& =e^{-\frac{j 2 \pi k}{5}}\left[1+2 \cos \left(\frac{2 \pi k}{5}\right)\right]
\end{aligned}
$$

Similar to Example 6.2, we get:

$$
|\tilde{X}[k]|=\left|1+2 \cos \left(\frac{2 \pi k}{5}\right)\right|
$$

and

$$
\angle(\tilde{X}[k])=-\frac{2 \pi k}{5}+\angle\left(1+2 \cos \left(\frac{2 \pi k}{5}\right)\right)
$$

The key MATLAB code for plotting DFS coefficients is
$\mathrm{N}=5$;
$\mathrm{x}=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right]$;
$\mathrm{k}=-\mathrm{N}: 2 * \mathrm{~N}$; \quad oplot for 3 periods
Xm=abs $(1+2 . * \cos (2 * p i . * k / N)) ; \% m a g n i t u d e ~ c o m p u t a t i o n$
Xa=angle (exp (-2*j*pi.*k/5).*(1+2.*cos (2*pi.*k/N)));
\%phase computation
The MATLAB program is provided as ex7_1.m.

Fig.7.2: DFS plots

Relationship with DTFT

Let $x[n]$ be a finite-duration sequence which is extracted from a periodic sequence $\tilde{x}[n]$ of period N :

$$
x[n]= \begin{cases}\tilde{x}[n], & 0 \leq n \leq N-1 \tag{7.12}\\ 0, & \text { otherwise }\end{cases}
$$

Recall (6.1), the DTFT of $x[n]$ is:

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{7.13}
\end{equation*}
$$

With the use of (7.12), (7.13) becomes

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j \omega n} \tag{7.14}
\end{equation*}
$$

Comparing the DFS and DTFT in (7.8) and (7.14), we have:

$$
\begin{equation*}
\tilde{X}[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \pi k}{N}} \tag{7.15}
\end{equation*}
$$

That is, $\tilde{X}[k]$ is equal to $X\left(e^{j \omega}\right)$ sampled at N distinct frequencies between $\omega \in[0,2 \pi]$ with a uniform frequency spacing of $2 \pi / N$.

Samples of $X\left(e^{j \omega}\right)$ or DTFT of a finite-duration sequence $x[n]$ can be computed using the DFS of an infinite-duration periodic sequence $\tilde{x}[n]$, which is a periodic extension of $x[n]$.

Relationship with z Transform

$X\left(e^{j \omega}\right)$ is also related to z transform of $x[n]$ according to (5.8):

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}} \tag{7.16}
\end{equation*}
$$

Combining (7.15) and (7.16), $\tilde{X}[k]$ is related to $X(z)$ as:

$$
\begin{equation*}
\tilde{X}[k]=\left.X(z)\right|_{z=e^{\frac{j 2 \pi k}{N}}}=X\left(e^{\frac{j 2 \pi k}{N}}\right) \tag{7.17}
\end{equation*}
$$

That is, $\tilde{X}[k]$ is equal to $X(z)$ evaluated at N equally-spaced points on the unit circle, namely, $1, e^{j 2 \pi / N}, \cdots, e^{j 2(N-1) \pi / N}$.

Fig.7.3: Relationship between $\tilde{X}[k], X\left(e^{j \omega}\right)$ and $X(z)$

Example 7.2

Determine the DTFT of a finite-duration sequence $x[n]$:

$$
x[n]=\left\{\begin{array}{l}
1, n=0,1,2 \\
0, \text { otherwise }
\end{array}\right.
$$

Then compare the results with those in Example 7.1.
Using (6.1), the DTFT of $x[n]$ is computed as:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =1+e^{-j \omega}+e^{-j 2 \omega} \\
& =e^{-j \omega}\left(e^{j \omega}+1+e^{-j \omega}\right) \\
& =e^{-j \omega}[1+2 \cos (\omega)]
\end{aligned}
$$

Fig.7.4: DTFT plots

Fig.7.5: DFS and DTFT plots with $N=5$

Suppose $\tilde{x}[n]$ in Example 7.1 is modified as:

$$
\tilde{x}[n]=\left\{\begin{array}{l}
1, n=0,1,2 \\
0, n=3,4, \cdots, 9
\end{array}\right.
$$

Via appending 5 zeros in each period, now we have $N=10$.

What is the period of the DFS?

What is its relationship with that of Example 7.2?
How about iff infinite zeros are appended?
The MATLAB programs are provided as ex7_2.m, ex7_2_2.m and ex7_2_3.m.

Fig.7.6: DFS and DTFT plots with $N=10$

Properties of DFS

1. Periodicity

If $\tilde{x}[n]$ is a periodic sequence with period N, its DFS $\tilde{X}[k]$ is also periodic with period N :

$$
\begin{equation*}
\tilde{x}[n]=\tilde{x}[n+r N] \leftrightarrow \tilde{X}[k]=\tilde{X}[k+r N] \tag{7.18}
\end{equation*}
$$

where r is any integer. The proof is obtained with the use of (7.10) and $W_{N}^{r N}=e^{-j 2 \pi r}=1$ as follows:

$$
\begin{align*}
\tilde{X}[k+r N] & =\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{(k+r N) n}=\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{n k} W_{N}^{n(r N)} \\
& =\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{n k}=\tilde{X}[k] \tag{7.19}
\end{align*}
$$

2. Linearity

Let $\left(\tilde{x}_{1}[n], \tilde{X}_{1}[k]\right)$ and $\left(\tilde{x}_{2}[n], \tilde{X}_{2}[k]\right)$ be two DFS pairs with the same period of N. We have:

$$
\begin{equation*}
a \tilde{x}_{1}[n]+b \tilde{x}_{2}[n] \leftrightarrow a \tilde{X}_{1}[k]+b \tilde{X}_{2}[k] \tag{7.20}
\end{equation*}
$$

3. Shift of Sequence

If $\tilde{x}[n] \leftrightarrow \tilde{X}[k]$, then

$$
\begin{equation*}
\tilde{x}[n-m] \leftrightarrow W_{N}^{k m} \tilde{X}[k] \tag{7.21}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{N}^{-n l} \tilde{x}[n] \leftrightarrow \tilde{X}[k-l] \tag{7.22}
\end{equation*}
$$

where N is the period while m and l are any integers. Note that (7.21) follows (6.10) by putting $\omega=2 \pi k / N$ and (7.22) follows (6.11) via the substitution of $\omega_{0}=2 \pi l / N$.

4. Duality

If $\tilde{x}[n] \leftrightarrow \tilde{X}[k]$, then

$$
\begin{equation*}
\tilde{X}[n] \leftrightarrow N \tilde{x}[-k] \tag{7.23}
\end{equation*}
$$

5. Symmetry

If $\tilde{x}[n] \leftrightarrow \tilde{X}[k]$, then

$$
\begin{equation*}
\tilde{x}^{*}[n] \leftrightarrow \tilde{X}^{*}[-k] \tag{7.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{x}^{*}[-n] \leftrightarrow \tilde{X}^{*}[k] \tag{7.25}
\end{equation*}
$$

Note that (7.24) corresponds to the DTFT conjugation property in (6.14) while (7.25) is similar to the time reversal property in (6.15).

6. Periodic Convolution

Let $\left(\tilde{x}_{1}[n], \tilde{X}_{1}[k]\right)$ and $\left(\tilde{x}_{2}[n], \tilde{X}_{2}[k]\right)$ be two DFS pairs with the same period of N. We have

$$
\begin{equation*}
\tilde{x}_{1}[n] \tilde{\otimes} \tilde{x}_{2}[n]=\sum_{m=0}^{N-1} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m] \leftrightarrow \tilde{X}_{1}[k] \tilde{X}_{2}[k] \tag{7.26}
\end{equation*}
$$

Analogous to (6.18), $\tilde{\otimes}$ denotes discrete-time convolution within one period.

With the use of (7.11) and (7.21), the proof is given as follows:

$$
\begin{align*}
\sum_{n=0}^{N-1}\left[\sum_{m=0}^{N-1} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m]\right] W_{N}^{n k} & =\sum_{m=0}^{N-1} \tilde{x}_{1}[m]\left[\sum_{n=0}^{N-1} \tilde{x}_{2}[n-m] W_{N}^{n k}\right] \\
& =\sum_{m=0}^{N-1} \tilde{x}_{1}[m] \tilde{X}_{2}[k] W_{N}^{m k} \\
& =\tilde{X}_{2}[k]\left[\sum_{m=0}^{N-1} \tilde{x}_{1}[m] W_{N}^{m k}\right] \\
& =\tilde{X}_{1}[k] \tilde{X}_{2}[k] \tag{7.27}
\end{align*}
$$

To compute $\tilde{x}[n] \tilde{\otimes} \tilde{y}[n]$ where both $\tilde{x}[n]$ and $\tilde{y}[n]$ are of period N, we indeed only need the samples with $n=0,1, \cdots, N-1$.

Let $\tilde{z}[n]=\tilde{x}[n] \tilde{\otimes} \tilde{y}[n]$. Expanding (7.26), we have:

$$
\tilde{z}[n]=\tilde{x}[00 \tilde{y}[n]+\cdots+\tilde{x}[N-2] \tilde{y}[n-(N-2)]+\tilde{x}[N-1] \tilde{y}[n-(N-1)](7.28)
$$

For $n=0$:

$$
\begin{align*}
\tilde{z}[0] & =\tilde{x}[0] \tilde{y}[0]+\cdots+\tilde{x}[N-2] \tilde{y}[0-(N-2)]+\tilde{x}[N-1] \tilde{y}[0-(N-1)] \\
& =\tilde{x}[0] \tilde{y}[0]+\cdots+\tilde{x}[N-2] \tilde{y}[0-(N-2)+N]+\tilde{x}[N-1] \tilde{y}[0-(N-1)+N] \\
& =\tilde{x}[0] \tilde{y}[0]+\cdots+\tilde{x}[N-2] \tilde{y}[2]+\tilde{x}[N-1] \tilde{y}[1] \tag{7.29}
\end{align*}
$$

For $n=1$:

$$
\begin{align*}
\tilde{z}[1] & =\tilde{x}[0] \tilde{y}[1]+\cdots+\tilde{x}[N-2] \tilde{y}[1-(N-2)]+\tilde{x}[N-1] \tilde{y}[1-(N-1)] \\
& =\tilde{x}[0] \tilde{y}[1]+\cdots+\tilde{x}[N-2] \tilde{y}[1-(N-2)+N]+\tilde{x}[N-1] \tilde{y}[1-(N-1)+N] \\
& =\tilde{x}[0] \tilde{y}[1]+\cdots+\tilde{x}[N-2] \tilde{y}[3]+\tilde{x}[N-1] \tilde{y}[2] \tag{7.30}
\end{align*}
$$

A period of $\tilde{z}[n]$ can be computed in matrix form as:

$$
\left[\begin{array}{c}
\tilde{z}[0] \\
\tilde{z}[1] \\
\vdots \\
\tilde{z}[N-2] \\
\tilde{z}[N-1]
\end{array}\right]=\left[\begin{array}{ccccc}
\tilde{y}[0] & \tilde{y}[N-1] & \cdots & \tilde{y}[2] & \tilde{y}[1] \\
\tilde{y}[1] & \tilde{y}[0] & \cdots & \tilde{y}[3] & \tilde{y}[2] \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
\tilde{y}[N-2] & \tilde{y}[N-3] & \cdots & \tilde{y}[0] & \tilde{y}[N-1] \\
\tilde{y}[N-1] & \tilde{y}[N-2] & \cdots & \tilde{y}[1] & \tilde{y}[0]
\end{array}\right]\left[\begin{array}{c}
\tilde{x}[0] \\
\tilde{x}[1] \\
\vdots \\
\tilde{x}[N-2] \\
\tilde{x}[N-1]
\end{array}\right] \text { (7.31) }
$$

Example 7.3
Given two periodic sequences $\tilde{x}[n]$ and $\tilde{y}[n]$ with period 4 :

$$
[\tilde{x}[0] \tilde{x}[1] \tilde{x}[2] \tilde{x}[3]]=[4-32-1]
$$

and

$$
[\tilde{y}[0] \tilde{y}[1] \tilde{y}[2] \tilde{y}[3]]=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]
$$

Compute $\tilde{z}[n]=\tilde{x}[n] \tilde{\otimes} \tilde{y}[n]$.

Using (7.31), $\tilde{z}[n]$ is computed as:

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{z}[0] \\
\tilde{z}[1] \\
\tilde{z}[2] \\
\tilde{z}[3]
\end{array}\right]=} & {\left[\begin{array}{llll}
\tilde{y}[0] & \tilde{y}[3] & \tilde{y}[2] & \tilde{y}[1] \\
\tilde{y}[1] & \tilde{y}[0] & \tilde{y}[3] & \tilde{y}[2] \\
\tilde{y}[2] & \tilde{y}[1] & \tilde{y}[0] & \tilde{y}[3] \\
\tilde{y}[3] & \tilde{y}[2] & \tilde{y}[1] & \tilde{y}[0]
\end{array}\right] }
\end{aligned}\left[\begin{array}{c}
\tilde{x}[0] \\
\tilde{x}[1] \\
\tilde{x}[2] \\
\tilde{x}[3]
\end{array}\right]
$$

The square matrix can be determined using the MATLAB command toeplitz([1,2,3,4],[1,4,3,2]). That is, we only need to know its first row and first column.

Periodic convolution can be utilized to compute convolution of finite-duration sequences in (3.19) as follows.

Let $x[n]$ and $y[n]$ be finite-duration sequences with lengths M and N, respectively, and $z[n]=x[n] \otimes y[n]$ which has a length of ($M+N-1$)

We append $(N-1)$ and $(M-1)$ zeros at the ends of $x[n]$ and $y[n]$ for constructing periodic $\tilde{x}[n]$ and $\tilde{y}[n]$ where both are of period ($M+N-1$)
$z[n]$ is then obtained from one period of $\tilde{x}[n] \tilde{\otimes} \tilde{y}[n]$.
Example 7.4
Compute the convolution of $x[n]$ and $y[n]$ with the use of periodic convolution. The lengths of $x[n]$ and $y[n]$ are 2 and 3 with $x[0]=2, x[1]=3, y[0]=1, y[1]=-4$ and $y[2]=5$.

The length of $x[n] \otimes y[n]$ is 4 . As a result, we append two zeros and one zero in $x[n]$ and $y[n]$, respectively. According to (7.31), the MATLAB code is:
toeplitz ([1,-4,5,0],[1,0,5,-4])*[2;3;0;0]
which gives
$\begin{array}{llll}2 & -5 & -2 & 15\end{array}$
Note that the command conv([2,3],[1,-4,5]) also produces the same result.

Discrete Fourier Transform

DFT is used for analyzing discrete-time finite-duration signals in the frequency domain

Let $x[n]$ be a finite-duration sequence of length N such that $x[n]=0$ outside $0 \leq n \leq N-1$. The DFT pair of $x[n]$ is:

$$
X[k]= \begin{cases}\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, & 0 \leq k \leq N-1 \tag{7.32}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
x[n]= \begin{cases}\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, & 0 \leq n \leq N-1 \tag{7.33}\\ 0, & \text { otherwise }\end{cases}
$$

If we extend $x[n]$ to a periodic sequence $\tilde{x}[n]$ with period N, the DFS pair for $\tilde{x}[n]$ is given by (7.10)-(7.11). Comparing (7.32) and (7.10), $X[k]=\tilde{X}[k]$ for $0 \leq k \leq N-1$. As a result, DFT and DFS are equivalent within the interval of $[0, N-1]$

That is, we just extract one period of $\tilde{x}[n]$ and $\tilde{X}[k]$ to construct (7.32) and (7.33).

As a result, the DFT pair is not well theoretically justified and we cannot apply (7.32) to produce (7.33) or vice versa as in DFS, DTFT and Fourier transform.

time domain	frequency domain
$X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}$	
discrete and finite	discrete and finite

Fig.7.7: Illustration of DFT

Example 7.5

Find the DFT coefficients of a finite-duration sequence $x[n]$ which has the form of

$$
x[n]=\left\{\begin{array}{l}
1, n=0,1,2 \\
0, \text { otherwise }
\end{array}\right.
$$

Using (7.32) and Example 7.1 with $N=3$, we have:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{2} x[n] W_{N}^{k n}=W_{3}^{0}+W_{3}^{k}+W_{3}^{2 k} \\
& =e^{-\frac{j 2 \pi k}{3}}\left[1+2 \cos \left(\frac{2 \pi k}{3}\right)\right] \\
& =\left\{\begin{array}{l}
3, k=0 \\
0, k=1,2
\end{array}\right.
\end{aligned}
$$

Together with $X[k]$ whose index is outside the interval of $0 \leq k \leq 2$, we finally have:

$$
X[k]=\left\{\begin{array}{l}
3, k=0 \\
0, \text { otherwise }
\end{array}\right.
$$

If the length of $x[n]$ is considered as $N=5$ such that $x[3]=x[4]=0$, then we obtain:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=W_{5}^{0}+W_{5}^{k}+W_{5}^{2 k} \\
& = \begin{cases}e^{-\frac{j 2 \pi k}{5}}\left[1+2 \cos \left(\frac{2 \pi k}{5}\right)\right], & k=0,1, \cdots, 4 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

The MATLAB command for DFT computation is fft. The MATLAB code to produce magnitudes and phases of $X[k]$ is:

```
N=5;
x=[[1 1 1 1 0 0}];; %append 2 zero
subplot(2,1,1);
stem([0:N-1],abs(fft(x))); %plot magnitude response
title('Magnitude Response');
subplot(2,1,2);
stem([0:N-1], angle(fft(x)));%plot phase response
title('Phase Response');
```

According to Example 7.2 and the relationship between DFT and DFS, the DFT will approach the DTFT when we append infinite zeros at the end of $x[n]$

The MATLAB program is provided as ex7_5.m.

Fig.7.8: DFT plots with $N=5$

Example 7.6

Given a discrete-time finite-duration sinusoid:

$$
x[n]=2 \cos (0.7 \pi n+1), \quad n=0,1, \cdots, 20
$$

Estimate the tone frequency using DFT.
Consider the continuous-time case first. According to (2.17), Fourier transform pair for a complex tone of frequency Ω_{0} is:

$$
e^{j \Omega_{0} t} \leftrightarrow 2 \pi \delta\left(\Omega-\Omega_{0}\right)
$$

That is, Ω_{0} can be found by locating the peak of the Fourier transform. Moreover, a real-valued tone $\cos \left(\Omega_{0} t\right)$ is:

$$
\cos \left(\Omega_{0} t\right)=\frac{e^{j \Omega_{0} t}+e^{-j \Omega_{0} t}}{2}
$$

From the Fourier transform of $\cos \left(\Omega_{0} t\right), \Omega_{0}$ and $-\Omega_{0}$ are located from the two impulses.

Analogously, there will be two peaks which correspond to frequencies 0.7π and -0.7π in the DFT for $x[n]$.

The MATLAB code is

```
N=21;
A=2;
w=0.7*pi;
p=1;
n=0:N-1;
x=A* cos (w* n+p);
X=fft(x);
subplot(2,1,1);
stem(n,abs(X));
subplot(2,1,2);
stem(n,angle(X)); %plot phase response
```


Fig.7.9: DFT plots for a real tone

```
X =
\begin{tabular}{lcr}
1.0806 & \(1.0674+0.2939 i\) & \(1.0243+0.6130 i\) \\
\(0.9382+0.9931 i\) & \(0.7756+1.5027 i\) & \(0.4409+2.3159 i\) \\
\(-0.4524+4.1068 i\) & \(-6.7461+15.1792 i\) & \(6.5451-7.2043 i\) \\
\(3.8608-2.1316 i\) & \(3.3521-0.5718 i\) & \(3.3521+0.5718 i\) \\
\(3.8608+2.1316 i\) & \(6.5451+7.2043 i\) & \(-6.7461-15.1792 i\) \\
\(-0.4524-4.1068 i\) & \(0.4409-2.3159 i\) & \(0.7756-1.5027 i\) \\
\(0.9382-0.9931 i\) & \(1.0243-0.6130 i\) & \(1.0674-0.2939 i\)
\end{tabular}
```

Interestingly, we observe that $\Re\{X[k]\}=\Re\{X[N-k]\}$ and $\Im\{X[k]\}=-\Im\{X[N-k]\}$. In fact, all real-valued sequences possess these properties so that we only have to compute around half of the DFT coefficients.

As the DFT coefficients are complex-valued, we search the frequency according to the magnitude plot.

There are two peaks, one at $k=7$ and the other at $k=14$ which correspond to $\omega=0.7 \pi$ and $\omega=-0.7 \pi$, respectively.

From Example 7.2, it is clear that the index k refers to $\omega=2 \pi k / N$. As a result, an estimate of ω_{0} is:

$$
\hat{\omega}_{0}=\frac{2 \pi \cdot 7}{21} \approx 0.6667 \pi
$$

Note that if the negative frequency is to be estimated, we know that $k=14$ corresponds to the range of $(\pi, 2 \pi)$ as indicated in Fig. 6.1. To convert the value into the range of $(-\pi, 0)$, we need subtracting 2π.

Hence the estimate of the negative frequency is:

$$
-\hat{\omega}_{0}=\frac{2 \pi \cdot 14}{21}-2 \pi \approx-0.6667 \pi
$$

To improve the accuracy, we append a large number of zeros to $x[n]$. The MATLAB code for $x[n]$ is now modified as:

$$
x=[A * \cos (w \cdot * n+p) \quad \operatorname{zeros}(1,1980)] ;
$$

where 1980 zeros are appended.
The MATLAB code is provided as ex7_6.m and ex7_6_2.m.

Fig.7.10: DFT plots for a real tone with zero padding

The peak index is found to be $k=702$ with $N=2001$. Thus

$$
\hat{\omega}_{0}=\frac{2 \pi \cdot 702}{2001} \approx 0.7016 \pi
$$

The principle of zero padding can be illustrated as follows. Let $x[n]$ be a finite-duration sequence of length N such that $x[n]=0$ outside $0 \leq n \leq N-1$. Its DFT is:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi k n}{N}}
$$

That is, $X[k]$ are N uniformly-spaced samples of the DTFT of $x[n], \quad X\left(e^{j \omega}\right)$. Suppose now we append M zeros at the back of $x[n]$ to form $x_{1}[n]$ with length $M+N$.

The DFT of $x_{1}[n]$ is

$$
X_{1}[k]=\sum_{n=0}^{M+N-1} x_{1}[n] e^{j \frac{2 \pi k n}{M+N}}=\sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi k n}{M+N}}
$$

Now there are $M+N$ uniformly-spaced samples of $X\left(e^{j \omega}\right)$.
Example 7.7
Find the inverse DFT coefficients for $X[k]$ which has a length of $N=5$ and has the form of

$$
X[k]=\left\{\begin{array}{l}
1, n=0,1,2 \\
0, n=3,4
\end{array}\right.
$$

Plot $x[n]$.

Using (7.33) and Example 7.5, we have:

$$
\begin{aligned}
x[n] & =\frac{1}{N} \sum_{n=0}^{N-1} X[k] W_{N}^{-k n}=\frac{1}{5}\left(W_{5}^{0}+W_{5}^{-n}+W_{5}^{-2 n}\right) \\
& = \begin{cases}\frac{1}{5} e^{j 2 \pi n} 5 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

The main MATLAB code is:
$\mathrm{N}=5$;
$\mathrm{X}=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right]$;
subplot $(2,1,1)$;
stem([0:N-1],abs(ifft(X)));
subplot $(2,1,2)$;
stem([0:N-1], angle(ifft(X)));
The MATLAB program is provided as ex7_7.m.

Fig.7.11: Inverse DFT plots

Properties of DFT

Since DFT pair is equal to DFS pair within $[0, N-1]$, their properties will be identical if we take care of the values of $x[n]$ and $X[k]$ when the indices are outside the interval

1. Linearity

Let $\left(x_{1}[n], X_{1}[k]\right)$ and $\left(x_{2}[n], X_{2}[k]\right)$ be two DFT pairs with the same duration of N. We have:

$$
\begin{equation*}
a x_{1}[n]+b x_{2}[n] \leftrightarrow a X_{1}[k]+b X_{2}[k] \tag{7.34}
\end{equation*}
$$

Note that if $x_{1}[n]$ and $x_{2}[n]$ are of different lengths, we can properly append zero(s) to the shorter sequence to make them with the same duration.
2. Circular Shift of Sequence

If $x[n] \leftrightarrow X[k]$, then

$$
\begin{equation*}
x[(n-m) \bmod (N)] \leftrightarrow W_{N}^{k m} X[k] \tag{7.35}
\end{equation*}
$$

Note that in order to make sure that the resultant time index is within the interval of $[0, N-1]$, we need circular shift, which is defined as

$$
\begin{equation*}
(n-m) \bmod (N)=n-m+r \cdot N \tag{7.36}
\end{equation*}
$$

where the integer r is chosen such that

$$
\begin{equation*}
0 \leq n-m+r \cdot N \leq N-1 \tag{7.37}
\end{equation*}
$$

Example 7.8

Determine $x_{1}[n]=x[(n-2) \bmod (4)]$ where $x[n]$ is of length 4 and has the form of:

$$
x[n]=\left\{\begin{array}{l}
1, n=0 \\
3, n=1 \\
2, n=2 \\
4, n=3
\end{array}\right.
$$

According to (7.36)-(7.37) with $N=4, x_{1}[n]$ is determined as:

$$
\begin{array}{lll}
x_{1}[0]=x[(0-2) & \bmod (4)]=x[2]=2, & r=1 \\
x_{1}[1]=x[(1-2) & \bmod (4)]=x[3]=4, & r=1 \\
x_{1}[2]=x[(2-2) & \bmod (4)]=x[0]=1, & r=0 \\
x_{1}[3]=x[(3-2) & \bmod (4)]=x[1]=3, & r=0
\end{array}
$$

3. Duality

If $x[n] \leftrightarrow X[k]$, then

$$
\begin{equation*}
X[n] \leftrightarrow N x[(-k) \bmod (N)] \tag{7.38}
\end{equation*}
$$

4. Symmetry

If $x[n] \leftrightarrow X[k]$, then

$$
\begin{equation*}
x^{*}[n] \leftrightarrow X^{*}[(-k) \bmod (N)] \tag{7.39}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{*}[(-n) \bmod (N)] \leftrightarrow X^{*}[k] \tag{7.40}
\end{equation*}
$$

5. Circular Convolution

Let $\left(x_{1}[n], X_{1}[k]\right)$ and $\left(x_{2}[n], X_{2}[k]\right)$ be two DFT pairs with the same duration of N. We have

$$
\begin{equation*}
x_{1}[n] \otimes_{N} x_{2}[n]=\sum_{m=0}^{N-1} x_{1}[m] x_{2}[(n-m) \bmod (N)] \leftrightarrow X_{1}[k] X_{2}[k] \tag{7.41}
\end{equation*}
$$

where \otimes_{N} is the circular convolution operator.

Fast Fourier Transform

FFT is a fast algorithm for DFT and inverse DFT computation.
Recall (7.32):

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1 \tag{7.42}
\end{equation*}
$$

Each $X[k]$ involves N and $(N-1)$ complex multiplications and additions, respectively.

Computing all DFT coefficients requires N^{2} complex multiplications and $N(N-1)$ complex additions.

Assuming that $N=2^{v}$, the corresponding computational requirements for FFT are $0.5 N \log _{2}(N)$ complex multiplications and $N \log _{2}(N)$ complex additions.

N	Direct Computation	FFT		
	Multiplication	Addition	Multiplication	Addition
	N^{2}	$N(N-1)$	$0.5 N \log _{2}(N)$	$N \log _{2}(N)$
2	4	2	1	2
8	64	56	12	24
32	1024	922	80	160
64	4096	4022	192	384
2^{10}	1048576	1047552	5120	10240
2^{20}	$\sim 10^{12}$	$\sim 10^{12}$	$\sim 10^{7}$	$\sim 2 \times 10^{7}$

Table 7.1: Complexities of direct DFT computation and FFT

Basically, FFT makes use of two ideas in its development:

- Decompose the DFT computation of a sequence into successively smaller DFTs
- Utilize two properties of $W_{N}^{k}=e^{-j 2 \pi k / N}$:
- complex conjugate symmetry property:

$$
\begin{equation*}
W_{N}^{k(N-n)}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*} \tag{7.43}
\end{equation*}
$$

- periodicity in n and k :

$$
\begin{equation*}
W_{N}^{k n}=W_{N}^{k(n+N)}=W_{N}^{n(k+N)} \tag{7.44}
\end{equation*}
$$

Decimation-in-Time Algorithm

The basic idea is to compute (7.42) according to

$$
\begin{equation*}
X[k]=\sum_{n=\text { even }}^{N-1} x[n] W_{N}^{k n}+\sum_{n=\text { odd }}^{N-1} x[n] W_{N}^{k n} \tag{7.45}
\end{equation*}
$$

Substituting $n=2 r$ and $n=2 r+1$ for the first and second summation terms:

$$
\begin{align*}
X[k] & =\sum_{r=0}^{N / 2-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{N / 2-1} x[2 r+1] W_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{N / 2-1} x[2 r]\left(W_{N}^{2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1]\left(W_{N}^{2}\right)^{r k} \tag{7.46}
\end{align*}
$$

Using $W_{N}^{2}=W_{N / 2}$ since $W_{N}^{2}=e^{-j 2 \pi / N \cdot 2}=e^{-j 2 \pi /(N / 2)}$, we have:

$$
\begin{align*}
X[k] & =\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{r k} \\
& =G[k]+W_{N}^{k} \cdot H[k], \quad k=0,1, \cdots, N-1 \tag{7.47}
\end{align*}
$$

where $G[k]$ and $H[k]$ are the DFTs of the even-index and oddindex elements of $x[n]$, respectively. That is, $X[k]$ can be constructed from two $N / 2$-point DFTs, namely, $G[k]$ and $H[k]$.

Further simplifications can be achieved by writing the N equations as 2 groups of $N / 2$ equations as follows:

$$
\begin{equation*}
X[k]=G[k]+W_{N}^{k} \cdot H[k], \quad k=0,1, \cdots, N / 2-1 \tag{7.48}
\end{equation*}
$$

$$
\begin{align*}
X[k+N / 2] & =\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{r(k+N / 2)}+W_{N}^{k+N / 2} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{r(k+N / 2)} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{r k}-W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{r k} \\
& =G[k]-W_{N}^{k} \cdot H[k], \quad k=0,1, \cdots, N / 2-1 \tag{7.49}
\end{align*}
$$

with the use of $W_{N / 2}^{N / 2}=1$ and $W_{N}^{N / 2}=-1$. Equations (7.48) and (7.49) are known as the butterfly merging equations.

Noting that $N / 2$ multiplications are also needed to calculate $W_{N}^{k} H[k]$, the number of multiplications is reduced from N^{2} to $2(N / 2)^{2}+N / 2=N(N+1) / 2$.

The decomposition step of (7.48)-(7.49) is repeated v times until 1-point DFT is reached.

Decimation-in-Frequency Algorithm

The basic idea is to decompose the frequency-domain sequence $X[k]$ into successively smaller subsequences.

Recall (7.42) and employing $W_{N}^{2 r(n+N / 2)}=W_{N}^{2 n r} \cdot W_{N}^{r N}=W_{N}^{2 n r}$ and $W_{N}^{2}=W_{N / 2}$, the even-index DFT coefficients are:

$$
\begin{aligned}
X[2 r] & =\sum_{n=0}^{N-1} x[n] W_{N}^{n(2 r)}=\sum_{n=0}^{N / 2-1} x[n] W_{N}^{2 n r}+\sum_{n=N / 2}^{N-1} x[n] W_{N}^{2 n r} \\
& =\sum_{n=0}^{N / 2-1} x[n] W_{N}^{2 n r}+\sum_{n=0}^{N / 2-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)} \\
& =\sum_{n=0}^{N / 2-1}(x[n]+x[n+N / 2]) \cdot W_{N / 2}^{n r}, \quad r=0,1, \cdots, N / 2-1(7.50)
\end{aligned}
$$

Using $W_{N}^{N r}=1$ and $W_{N}^{N / 2}=-1$, the odd-index coefficients are:

$$
\begin{aligned}
X[2 r+1] & =\sum_{n=0}^{N / 2-1} x[n] W_{N}^{n(2 r+1)}+\sum_{n=N / 2}^{N-1} x[n] W_{N}^{n(2 r+1)} \\
& =\sum_{n=0}^{N / 2-1} x[n] W_{N}^{n} W_{N / 2}^{n r}+\sum_{n=0}^{N / 2-1} x[n+N / 2] W_{N}^{(n+N / 2)(2 r+1)} \\
& =\sum_{n=0}^{N / 2-1} x[n] W_{N}^{n} W_{N / 2}^{n r}+W_{N}^{N / 2(2 r+1)} \sum_{n=0}^{N / 2-1} x[n+N / 2] W_{N}^{n(2 r+1)} \\
& =\sum_{n=0}^{N / 2-1}(x[n]-x[n+N / 2]) W_{N}^{n} \cdot W_{N / 2}^{n r}, \quad r=0,1, \cdots, N / 2-1(7.51)
\end{aligned}
$$

$X[2 r]$ and $X[2 r+1]$ are equal to $N / 2$-point DFTs of $(x[n]+x[n+N / 2])$ and $(x[n]-x[n+N / 2]) W_{N}^{n}$, respectively. The decomposition step of (7.50)-(7.51) is repeated v times until 1-point DFT is reached

Fast Convolution with FFT

The convolution of two finite-duration sequences

$$
y[n]=x_{1}[n] \otimes x_{2}[n]
$$

where $x_{1}[n]$ is of length N_{1} and $x_{2}[n]$ is of length N_{2} requires computation of ($N_{1}+N_{2}-1$) samples which corresponds to $N_{1} N_{2}-\min \left\{N_{1}, N_{2}\right\}$ complex multiplications

An alternative approach is to use FFT:

$$
y[n]=\operatorname{IFFT}\left\{\operatorname{FFT}\left\{x_{1}[n]\right\} \times \operatorname{FFT}\left\{x_{2}[n]\right\}\right\}
$$

In practice:

- Choose the minimum $N \geq N_{1}+N_{2}-1$ and is power of 2
- Zero-pad $x_{1}[n]$ and $x_{2}[n]$ to length N, say, $\breve{x}_{1}[n]$ and $\breve{x}_{2}[n]$
- $\breve{y}[n]=\operatorname{IFFT}\left\{\operatorname{FFT}\left\{\bar{x}_{1}[n]\right\} \times \operatorname{FFT}\left\{\breve{x}_{2}[n]\right\}\right\}$

From (7.33), the inverse DFT has a factor of $1 / N$, the IFFT thus requires $N+(N / 2) \log _{2}(N)$ multiplications. As a result, the total multiplications for $\bar{y}[n]$ is $2 N+(3 N / 2) \log _{2}(N)$

Using FFT is more computationally efficient than direct convolution computation for longer data lengths:

N_{1}	N_{2}	N	$N_{1} N_{2}-\min \left\{N_{1}, N_{2}\right\}$	$2 N+(3 N / 2) \log _{2}(N)$
2	5	8	8	52
10	15	32	140	304
50	80	256	3950	3584
50	1000	2048	49950	37888
512	10000	16384	4119488	376832

MATLAB and C source codes for FFT can be found at: http://www.ece.rutgers.edu/~orfanidi/intro2sp/\#progs

