Class Exercises for Chapter 8

1. Consider the following frequency responses:

$$
H_{1}\left(e^{j \omega}\right)=\frac{1}{1-0.1 e^{-j \omega}}
$$

and

$$
H_{2}\left(e^{j \omega}\right)=\frac{1}{1-10 e^{-j \omega}}
$$

Discuss the causality of the systems which correspond to the two spectra.
2. Consider a causal linear time-invariant system with system function

$$
H(z)=\frac{1-a^{-1} z^{-1}}{1-a z^{-1}}, \quad a \text { is real }
$$

(a) Write the difference equation that relates the input $x[n]$ and output $y[n]$ of this system.
(b) For what range of values of a is the system stable?
(c) Find the impulse response of the system.
(d) Is the system a finite impulse response (FIR) or infinite impulse response (IIR) filter?
(e) Assume $|a|<1$. Show that the system is an all-pass system, i.e., the magnitude of the frequency response is a constant. Also, specify the value of this constant.
3. Consider a discrete-time signal $x[n]$ is passed through a system with transfer function $H(z)$ to produce an output $y[n]$.

Given $y[n]$, is it possible to get back $x[n]$?
This is referred to as an equalization or deconvolution problem which arises in many applications such as communications. For example, the transmitter sends out information $x[n]$. After passing through the transmission channel (telephone line, air, etc.), the receiver obtains $y[n]$ which is a filtered version of $x[n]$.
(Hint: consider a simple case of $H(z)=1-a z^{-1}$)

Can we get back $x[n]$?
If yes, what is $G(z)$?
Under what conditions?

