Errata

Page

Error and Correction

$"-\frac{1}{j k \Omega_{0} t} e^{j k \Omega_{0} t "}$ should be " $-\frac{1}{j k \Omega_{0} T} e^{-j k \Omega_{0} t}$,
" $\frac{T_{0}}{2} \operatorname{sinc}\left(\frac{\Omega T_{0}}{\pi}\right)$ " should be corrected as " $2 T_{0} \operatorname{sinc}\left(\frac{\Omega T_{0}}{\pi}\right)$ "
$" \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{-j \Omega t} d \Omega$ " should be corrected as " $\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega$ "
" $\frac{1}{T_{p}} \int_{-T / 2}^{T / 2} \delta(t) e^{-j k \Omega_{0} t} d t$ " should be corrected as " $\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j k \Omega_{0} t} d t "$
"range of 0.05 " should be corrected as "range of 0.1 "
" $x_{1}\left[k-n_{0}\right]$ " should be " $x\left[k-n_{0}\right]$ " and " $\sum_{k=-\infty}^{n-n_{0}} x[l]$ " should be " $\sum_{l=-\infty}^{n-n_{0}} x[l]$ "
" $\delta[n]$ " and " $\delta[n-1]$ " should be " $\delta[n-m]$ " and " $\delta[n-1-m]$ ", respectively, in the 3rd to 5th lines of derivation
" n " should be " $n-10$ " in the upper summation index for $y_{2}[n]$
" $y[n]="$ should be " $h[n]="$ in Example 3.10
" $I(\tau)$ " should be " $I(j \tau)$ " in (4.5)
" $H(\Omega)$ " should be " $H(j \Omega)$ " in (4.8) while " $e^{-j \Omega t "}$ "and " $2 \sin (\pi t / T)$ " should be " $e^{j \Omega t ",}$ and " $T \sin (\pi t / T)$ " in (4.10)
"2001 samples of" should be "2000 samples of"
" $x(t)$ " should be " $x_{s}(t)$ " in (5.3) and a " $=$ " is missed in (5.5)
" $N_{-}=0$ " should be " $N_{-}=-1$ "
The second " $-a^{n} u[-n-1]$ " in Table 5.1 should be " $-n a^{n} u[-n-1]$ "
The second " A_{1} " in $X(z)$ should be " A_{2} " and " $h[n]$ " should be " $x[n]$ "
" $\left(a e^{j b}\right)$ " and " $\left(a e^{-j b}\right)$ " should be " $\left(a e^{j b}\right)^{n "}$, and " $\left(a e^{-j b}\right)^{n "}$, respectively " $\left(1+z^{-1}\right)\left(1-2 z^{-1}\right)$ " and " $\left(1-0.5 z^{-1}\right)\left(1+2 z^{-1}\right)$ " should be with $X(z)$ and $Y(z)$, respectively
"continuous and aperiodic" should be "continuous and periodic" in Figure 6.1
" $e^{j \omega n "}$ should be " $e^{-j \omega n "}$ in (6.6)
$" e^{j \omega / 2}-e^{j \omega / 2}$ " should be " $e^{j \omega / 2}-e^{-j \omega / 2}$ "
" $0<\omega<\pi$ " should be " $0<w_{0}<\pi$ "

94
$"-e^{j \omega} \frac{d X\left(e^{j \omega}\right)}{\omega} \cdot\left(\frac{d e^{j \omega}}{\omega}\right)^{-1}=-j \frac{d X\left(e^{j \omega}\right)}{d \omega}$ " should be " $-e^{j \omega} \frac{d X\left(e^{j \omega}\right)}{d \omega} \cdot\left(\frac{d e^{j \omega}}{d \omega}\right)^{-1}=j \frac{d X\left(e^{j \omega}\right) "}{d \omega}$ and " $-j$ " should be " j " in (6.12)

95, 171
" $d \omega$ " should be " $d \tau "$ in (6.18) and (10.15)
$" e^{-\frac{j 2 \pi k}{5}}+1+e^{-\frac{j 2 \pi k}{5} "}$ should be " $e^{\frac{j 2 \pi k}{5}}+1+e^{-\frac{j 2 \pi k}{5},}$
" $W_{N}^{-k l} \tilde{x}[n-m]$ " should be " $W_{N}^{-n l} \tilde{x}[n]$ " in (7.22)
" $2 \cos (0.7 \pi+1)$ " should be " $2 \cos (0.7 \pi n+1)$ "
" $e^{-j 2 \pi / N "}$ should be " $e^{-j 2 \pi k / N "}$ and " $W_{N}^{k "}$ should be " $W_{N}^{k n "}$ in (7.44)
" $W_{N / 2}^{2 n r ", ~ s h o u l d ~ b e ~ " ~} W_{N / 2}^{n r} "$ in (7.50) and (7.51)
"Discusss" should be corrected as "Discuss"
"Example 10" should be "Example 9"
" $W_{1}[n]$ " and " $W_{2}\left[n\right.$]" should be " $W_{1}(z)$ " and " $W_{2}(z)$ ", respectively " M " should be " N " in (9.27)
"cascade" should be "canonic" in Example 9.3
"express as (9.29)" and " $\beta_{0 k}^{\prime}$ " should be "express (9.29)" and " 1 ", respectively The register number for parallel form should be " $1.5 M$ " instead of " $2 M$ "
$" h[0]=1 "$ should be " $h[0]=2$ "
"($2 M-1)$ " should be " $(2 M+1)$ " and " $h_{d}[n]=-h_{d}[n]$ " should be " $h_{d}[n]=h_{d}[-n]$ " "Barlett" should be "Bartlett" "the extract the" should be "extract the"
" $\sum_{n=0}^{9} h[n] \cos ((10-n) \omega) "$ should be " $2 \sum_{n=0}^{9} h[n] \cos ((10-n) \omega) "$ and " $\omega_{p}=0.5453 \pi$ " should be " $\omega_{s}=0.5453 \pi$ "
$" \omega=\frac{j 2 \pi k "}{N}$, should be " $\omega=\frac{2 \pi k "}{N}$ in (10.31) and (10.35)
" $1 \cdot e^{-j \omega \tau "}$ " should be " $1 \cdot e^{-j(\omega-2 \pi) \tau "}$ for " $2 \pi-\omega_{c}<\omega<2 \pi$ "
" $\omega_{p}=0.525 \pi$ " should be " $\omega_{s}=0.525 \pi$ "
" $\left.H_{a}(j \Omega)\right|_{\Omega=s / j} ^{2}$ " and " $(j \Omega)^{2 N}$ " should be " $\left.\left|H_{a}(j \Omega)\right|^{2}\right|_{\Omega=s / j}$ " and " $\left(j \Omega_{c}\right)^{2 N}$ " in (11.10), respectively
"sufficiently large" should be "sufficiently small"
" σ " should be " σT " in (11.27)
" ω_{c} " should be " $\omega_{c_{o}}$ " in Table 11.1
"truncation" should be "time shifting"

