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Perceptron 
 
 

Chapter Intended Learning Outcomes: 
 
(i) Understand perceptron and its properties 
 
(ii) Study linear model for classification and its relation with 

least squares, maximum likelihood estimation, and 
maximum a posteriori estimation 

 
(iii) Study iterative methods and their properties as well as 

application in classification 
 

(iv) Understand least-mean-square algorithm and its relation 
with perceptron 
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Classification 
 

Classification refers to assigning a class or label to given input 
data:  
 

 Recognize a handwritten digit from the set of {0, 1, …, 9}. 
 Recognize a person from an image database. 
 Assign an input image as either ‘cat’  or ‘dog’. This is called 

binary classification. 
 Determine if an email is spam or non-spam. This can also 

be viewed as a binary hypothesis testing problem with null 
hypothesis (non-spam) and alternative hypothesis (spam). 
 

This corresponds to supervised learning as pairs of inputs and 
outputs (labels) are required. 
 

This is different from clustering where we divide the data into 
different unlabeled groups according to similarities in their 
features. 
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Brief Historical Development of Perceptron 
 

McCulloch and Pitts proposed the first artificial neuron in 
1940s as computing machine, e.g.: 

 
 

Input:  
 

Output:  
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Rosenblatt’s perceptron generalized McCulloch-Pitts in 1950s 
which was the first supervised learning model. 
 

Now the inputs are not restricted to be 0 or 1, but can be any 
real values, together with a bias term: 
 

 
Perceptron which is a single artificial neuron, is able to 
perform the task of classifying 2 classes if they are linearly 
separable, i.e., they lie on the opposite sides of a hyperplane. 



H. C. So                                                                                       Page 5                                          Semester A 2021/22 

Properties and Algorithms for Perceptron 
 

To perform classification, we need to determine  and  
using a set of training data of input-output pairs. 
 

Given an input vector  to be classified, we first 
compute the linear combination: 
 

           (1) 

 

then apply the activation function which is a sign function: 
 

         (2) 

 

That is, if  is positive, it corresponds to one class while it 
belongs to the other class if  is negative. 
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Hence the hyperplane, which is a subspace of one dimension 
less than its ambient space, is the decision boundary: 
 

           (3) 

 

For 2-D input point , hyperplane is a line:   

 
         Linearly separable    Non-linearly separable 
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We can see that the bias provides a shift to the hyperplane, 
e.g., for 2-D case,  moves the straight line up or down 
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Geometrically,  is perpendicular to the hyperplane. If 
we consider , the hyperplane must pass through the 
origin as . 
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It is more convenient to include the bias as a weight: 
 

 
That is: 

                (4) 
where 
 

 and   
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With the addition of extra dimension of , now the 
hyperplane must pass through the origin, e.g., 
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Given a set of training vectors , , with known 
labels, say, Classes  ( ) and  ( ), the basic idea 
to update  is: 
 

If the th input  is correctly classified by the weight vector 
at the th iteration , no update for  in next iteration: 
 

 
 

if  and  belongs to  or if  and  belongs to 
. 

 

Otherwise, we update  in next iteration: 
 

if  and  belongs to :   
  

if  and  belongs to :   
 

Here,  is the learning rate parameter which controls the 
adjustment at each iteration, and can be function of . 



H. C. So                                                                                       Page 12                                          Semester A 2021/22 

Geometric intuition when an update is needed with : 

 
Initializing , we use  in a cyclic manner, i.e.,  
 

 
 
to update  until all training samples are correctly classified. 
When a complete set of  goes through the 
algorithm, we refer it to as an epoch. 
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When  is correctly classified, this is equivalent to: 
 

          (5)  
 

This implies when  is incorrectly classified: 
 

       (6) 

 
The perceptron algorithm can be written in compact form as: 
 

1. Initialize  
2. For  
  

 Update the weight vector as: 
 

        (7) 
 

 until there is no change in  for all training samples. 
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As long as the two classes are linearly separable,  must 
converge after finite number of iterations. 
 

Note that the algorithm can also be implemented in different 
forms, e.g., updating  if . 

 
Can perceptron realize OR function? How about AND 
function? And how about XOR function? Why? 
Is the hyperplane in perceptron unique? 
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Convergence Proof of Perceptron 
 
When the dataset is linearly separable, the perceptron will 
find a separating hyperplane in a finite number of updates. 
Otherwise,  will not converge. 
 
Suppose a hyperplane characterized by  exists. This means 
that  for the entire dataset. 
 
Without loss of generality, we assume: 
 

 
 

 
and  

 
We also define: 
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Under the above settings, the perceptron algorithm makes at 
most  mistakes. 
 
 



H. C. So                                                                                       Page 17                                          Semester A 2021/22 

Proof: 
 

To ease the presentation, all subscripts are removed.  
 

Recall 
 

 

When an update is needed, i.e., , we know 
. 

 

Now we consider this effect on two terms:  and . 
 

For , the effect is: 
 

 
because 

 
 

This means that for each update,  grows by at least . 
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For , the effect is: 
 

 

because 
, ,   

 
This means that for each update,  grows by at most 1. 
 
Hence after certain number of updates, say, , the following 
two inequalities must hold: 
 

               (8) 
 

                 (9) 
 
With the use of (8)-(9), we complete the proof as follows: 
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In practice,  and  do not hold, but we can see 
the algorithm will converge in finite number of iterations. 
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A Python code “perceptron” is provided and you can alter 
parameters including training sample number and learning 
rate, and choose visualizing per iteration or epoch: 
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Perceptron can perform AND operator. Training data are: 
X=np.array([[1,1],[1,-1],[-1,1],[-1, -1]]) 
y=np.array([1,-1,-1,-1]) 
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Perceptron can classify flowers.  
 

 “Iris” a well-known dataset in the pattern recognition 
literature, which contains samples of 3 iris classes, Setosa, 
Versicolour and Virginica.  

 
Source: IRIS Flower Prediction Using Machine Learning Algorithms (machinelearningsol.com) 
 
We just use two linearly separable classes Setosa and 
Versicolour, and two features, namely, sepal length and petal 
length, as input training data. 
UCI Machine Learning Repository: Iris Data Set 

https://machinelearningsol.com/iris-flower-dataset/
https://archive.ics.uci.edu/ml/datasets/iris


H. C. So                                                                                       Page 23                                          Semester A 2021/22 
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For XOR, weights cannot converge. 
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Batch Perceptron 
 
Perceptron can be viewed as online learning as weight update 
is done each iteration using a single training input-output pair. 
 
Batch perceptron performs weight update based on the entire 
training dataset at each iteration. 
  
Its derivation is based on including all training data in a cost 
function  to be minimized:  
 

              (10) 

 
Here,  represents the set of misclassified samples. Recall 
that if  is misclassified, then . Note that  is 
not a linear function of  and gradient descent can be applied. 
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What is the minimum value of ? 
 
The gradient is simply: 
 

   (11) 

 
The gradient descent algorithm is then: 
 

            (12) 

 
Note that the misclassified samples  change during each 
iteration. Upon convergence, . 
 
Under what condition convergence is guaranteed? 
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A MATLAB example for classifying data in 2 “moons” is also 
provided, where moon radius , moon width , separation 
between 2 moons , number of training data, can be adjusted.  
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Try Demo.m 
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Required epochs for online and batch modes are 3 and 12. 

  
 
Note that the number of required epochs changes each time 
as the training data are randomly generated. 
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Try N=100: 
Required epochs for online and batch modes are 6 and 5. 

  
We see that both standard and batch perceptrons work 
properly although their decision boundaries are different. 
 
From the results, it is difficult to tell which scheme involves 
smaller number of iterations/epochs.  
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When , the 2 classes are not linearly separable. The 
weights will not converge, and the boundary is changing. 
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Linear Model for Classification 
 

This approach basically corresponds to a linear neuron, and 
there are no nonlinear operations in weight update. 

 

From (5)-(7), error 
function is nonlinear: 
 

 
 
 
 
Error function is 
linear: 
 

 

Source: What is the difference between a Perceptron, Adaline, and neural network model? (sebastianraschka.com) 

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html
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Following (4), we model the training input and output as: 
 

           (13) 
where 

 and   
 
This is also called linear regression model where  
is known as regressor, while  is called parameter vector. 
 
As  will not be exactly zero even for correct 
classification,  accounts for this difference. 
 
We first apply the probability viewpoints based on Bayes’ rule 
to find .  
 
The basic setup is that  (ignore the first element),  and  
are considered as random variables, with , 
i.e.,  and  are independent. 
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Batch Mode Solutions for Linear Model 
We first investigate the joint probability distribution function 
(PDF) of  and  conditional on , denoted by . 
 

Applying Bayes’ rule and independence of  and : 
 

 
 

We get: 

           (14) 
 

  is called observation density or likelihood function. 
  is called prior, i.e., it is our prior knowledge 

about  before observing .   
  is called the posterior density is the conditional 

PDF after observing . 
  is called evidence. 
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The maximum likelihood (ML) estimate of  is: 
 

          (15) 

 
The maximum a posteriori (MAP) estimate of  is: 
 

          (16) 

 
We also see that: 

             (17) 
 
and  is not required in the calculation. 
 
Suppose there are  pairs of training samples : 
 

         (18) 
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A zero-mean Gaussian environment is considered with: 
 

Assumption 1 
Independence and identical distribution: The  training data 
are independent and identically distributed (IID). 
 

Assumption 2 
Gaussianity: All  are IID zero-mean Gaussian 
distributed with variance , i.e., , and the PDF is: 

           (19) 

Assumption 3 
Stationarity: Among this set of ,  is fixed. We 
further assume that all elements in  are IID and zero-mean 
Gaussian distributed, i.e., : 

      (20) 
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For a given  and fixed ,  is characterized by 
: 

 

            (21) 
 

Together with the IID Assumption 1, we obtain: 
 

     (22) 
 

Similarly, from Assumption 3: 
 

        (23) 
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To obtain the ML solution, we see that maximizing (22) is 
equivalent to minimizing the least squares (LS): 
 

 

 

which can be compactly expressed as: 
 

    (24) 
  

by defining 

   and   

 

That is, the ML solution is the same as the LS solution: 
 

                               (25) 
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Is the ML solution always equal to the LS solution? 
 

According to (17), the MAP solution maximizes: 
 

 

 
which is equivalent to minimizing regularized LS (RLS): 
 

     (26) 
 

where  is known as regularization parameter. Differentiating 
(26) w.r.t.  and then setting the resultant expression to , 
we get: 
 

 
       (27) 
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Which solution is better? ML or MAP? Why? 
 
Consider a limiting case of  such that , i.e., 
we have no prior information about . 
 
This results in  which is the same as the ML or LS solution. 
 
On the other hand, the smaller the , the larger the , 
indicating that the second component  increases its 
importance in the RLS cost function. 
 
Since we may not have the prior information of  and even 
the probability distributions of the training data, only the 
performance of the LS solution  is examined further. 
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Even 2 iris classes are not linearly separable, LS provides a 
reasonable boundary: 
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>>LM_w = LM(X,Y); 
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Comparing the perceptron and LS solution, we may conclude: 
 
 Both algorithms construct linear and distinct decision 

boundaries. 
 
 Even for the linearly separable scenario, the LS solution 

cannot achieve classification error of 0 while the 
perceptron approach will provide perfect classification in 
this case. 

 
 The LS solution provides the solution in one step for both 

linearly and non-linearly separable scenarios, and thus 
there is no convergence problem as in the perceptron 
applied in the non-linearly separable case. 
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Iterative Solutions for Linear Model 
 

Minimization of the ML/LS cost function can also be achieved 
using iterative techniques such as Newton’s method and 
gradient descent: 
 

      (28) 
and 

           (29) 
 
The gradient vector of (24) is: 
 

    (30) 
 
Differentiating (30) once w.r.t.  yields the Hessian matrix: 
 

           (31) 
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Using (30)-(31), the adjustment term in (28) is: 
 

 
 
To obtain better insight and ease the convergence proof, we 
introduce a step size  in (28): 
 

 
or 

             (32) 
 
 

… 
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Adding all these  equations yields: 
 

 
 
Hence we easily see that when ,  if 
 

 
 
In particular, when , corresponding to the Newton’s 
method, the algorithm converges in one step for any choices 
of   in theory. 
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An example of the contour of  using the Newton’s 
method with  and 2 weights is illustrated below. 
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On the other hand, using (30), (29) becomes: 
 

        (33) 
 
To study convergence, we rewrite (33) as: 
 

 
 
Let . Then: 
 

         (34) 
 
Applying eigenvalue decomposition (EVD) on  yields 
 

         (35) 
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As  is symmetric, the EVD has 3 additional properties: 
 

 
 

 
 

 

 
Utilizing the results and let , we obtain: 
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The solution is: 
 

We expect: 
 

 
 

 
 
The convergence requirement is then: 
 

 

or 
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Denote the maximum eigenvalue as , the algorithm 
converges if 

 

 
That is, the convergence condition is governed by the largest 
eigenvalue of . 
 
Since  may not be available, in practice a sufficiently 
small value of  is chosen, and the steepest descent 
algorithm converges in multiple steps for any choices of . 
 
It is clear that for a larger ,  approaches 0 faster, 
indicating faster convergence. Nevertheless, the overall 
convergence is hindered by  where  denotes the 
minimum eigenvalue. 
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An example of the contour of  using the steepest 
descent with 2 weights is illustrated below. 
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We examine the sum of squared error  of (24) 
versus number of iterations for different values of . 

 

 



H. C. So                                                                                       Page 55                                          Semester A 2021/22 
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Feature Standardization 
The convergence rate depends on the eigenvalue spread, 
defined as: 

                         (36) 
 

The fastest rate is attained when , or all 
eigenvalues are identical. In theory, we can transform  to 

 such that , but it is a difficult task. 
 

One simple way which can often increase the convergence 
rate is to shift and scale each feature: 
 

                     (37) 

where  and  are mean and standard deviation of the th 
feature. In doing so, all modified features have zero mean 
and unit variance. 
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All data points are now closer to the origin and we see that 
faster convergence is attained. 
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Online Mode Solution for Linear Model 
 

In the previously discussed iterative techniques, we minimize 
the LS cost function in each step: 
 

                  (38) 

 

Instead we can minimize only one of the  squared terms in 
each step, and only one training sample pair is involved: 
 

            (39) 
 

That is to say, it just removes the sign operator in the 
perceptron algorithm of (7): 
 

                  (40) 
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Using the current notation, this online algorithm is 
summarized as: 
 

1. Initialize  
2. For  ( ) 
  

 Update the weight vector as: 
 

                 (41) 
 

 until  converges. 
 

It can be proved that  upon convergence, which is 
the LS solution. 
 

This iterative rule which updates one sample at each iteration, 
is also referred to as ADALINE (adaptive linear, adaptive 
linear element, or adaptive linear neuron), Widrow-Hoff delta 
rule, and least-mean-square (LMS) algorithm. 
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We also repeat the iris classification problem with feature 
standardization using the LMS algorithm. 

 



H. C. So                                                                                       Page 65                                          Semester A 2021/22 

 
 
Note that there is a simple strategy here: randomize the 
order of the training samples. It is because the data file lists 
the first class and then the second class, i.e., the first half 
labels correspond to  while the second half are , 
hindering the algorithm work properly. 
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Least-Mean-Square Algorithm 
 
LMS algorithm was invented by Widrow and Hoff, and the 
corresponding work was published in 1960: 
 

 Widrow has been a professor at Standard University. His 
research focuses on adaptive signal processing, adaptive 
control systems, adaptive neural networks, human 
memory, and human-like memory for computers. 

 

 Hoff was Widrow’s Ph.D. student. Nevertheless, he is best 
known as the architect of the first microprocessor – Intel’s 
4004 released in 1971. 

 

To clearly present the LMS algorithm, we consider the setting 
of time-series training data ,  is the time index, and 
at time , no future data at , are available, while 

 is not restricted to be . 
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We use the probabilistic model as in (13): 
 

           (42) 
where 

 
 
Here, ,  and  are random while  is the constant vector 
to be determined. 
 
Considering that  is the error term, we can construct the 
mean square error (MSE) cost function : 
 

             (43) 
 

Expanding (43) yields: 
 

 



H. C. So                                                                                       Page 68                                          Semester A 2021/22 

Assuming stationarity such that the statistics of ,  and  
remain unchanged for all , and denoting  and 

, (43) becomes: 
 

            (44) 
 
Differentiating  w.r.t. , and setting the result to 0, we 
obtain the minimum MSE (MMSE) or Wiener solution : 
 

            (45) 
 
which is analogous to the LS solution in (25). Note that  
can be equal to  when . 
 
Although the Wiener solution is optimum, what is the 
problem? 
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To practically realize the minimization of  in a 
computationally simple manner, Widrow and Hoff proposed 
minimizing the instantaneous squared error  where  
 

 
 
instead of  via steepest descent: 
 

            (46) 
 

Comparing with (39), we can explain why the algorithm in 
(40) or (41) is called the LMS algorithm. 
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We use a system identification example to illustrate the 
applicability of (46). 
 

Consider a linear time-invariant system with input  and 
impulse response , the system output  is: 
 

 
 

where  denotes the convolution operator. For a simple finite 
impulse response system, say, , then: 
 

 
 

In the presence of noise , the output is modelled as: 
 

 
 

Given the time sequences of  and , we want to find 
 using . 
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According to (46), the LMS algorithm is: 
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Here, we use zero-mean Gaussian IID  and 
 for data generation. Then we have: 
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Taking the expected value of the first updating rule: 
 

 
 

Investigating : 
 

 
 

Note the independence of  and . Here, we also assume 
that  and  are independent.  
 

Hence we have: 
 

    (47) 
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Following the derivation in (32), (47) can be solved as: 
 

 
 
Similarly, we also have: 
 

 
 
The algorithm converges in the mean sense if 
 

 

 
What is the eigenvalue spread in this problem? 
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