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Abstract

Finding the position of a radiative source based on time-difference-of-arrival (TDOA) measurements from spatially

separated receivers has important applications in sonar, radar, mobile communications and sensor networks. Each TDOA

defines a hyperbolic locus on which the source must lie and the position estimate can then be determined with the

knowledge of the sensor array geometry. While extensive research works have been performed on algorithm development

for TDOA estimation and TDOA-based localization, limited attention has been paid in sensor array geometry design. In this

paper, an optimum two-dimensional sensor placement strategy is derived with the use of optimum TDOA measurements,

assuming that each sensor receives a white signal source in the presence of additive white noise. The minimum achievable

Cramér-Rao lower bound is also produced.

I. INTRODUCTION

Passive source localization using measurements from an array of spatially separated sensors is an important problem

in radar, sonar, mobile communications and wireless sensor networks. The time-difference-of-arrival (TDOA) method is

a popular strategy for source localization and it usually proceeds in a two-step fashion as follows. TDOA measurements

of the source signal received at the sensor array are first obtained. In the second step, the TDOA information is utilized

to construct a set of hyperbolic equations that are highly nonlinear, from which the source position can be determined

with the knowledge of the sensor array geometry.

Although extensive research has been performed in TDOA estimation [1]- [2] as well as TDOA-based localization [3]-

[6], most of them do not consider the impact of the sensor array geometry on the localization accuracy. Nevertheless,

Yang et al. [7]- [9] have recently pioneered the theoretical study for sensor array placement strategies. In [7], the

properties of the Cramér-Rao lower bound (CRLB) for TDOA-based positioning [3]- [4] and optimum sensor arrays

are derived. It is proved that for two-dimensional (2D) source localization, uniform angular arrays (UAAs) and

its superpositions can attain the minimum CRLB. Works in [8] and [9] are extensions to [7]. The former studies

the performance loss for UAAs with reduced angular apertures while the latter develops the relationship between

several sensor placement schemes. In spite of the elegant and rigorous mathematical treatment, it is invalid to assume
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uncorrelated TDOA measurements as they should be correlated [10]. In this paper, we will study the array geometry

based on the correlated TDOA estimates, which are optimally computed using the sensor outputs where each of them

receives an uncorrelated signal source in the presence of additive white Gaussian noise.

The rest of the paper is organized as follows. In Section II, we first develop the Fisher information matrices (FIMs)

for the TDOA and 2D position estimates in the case of white signal source and noise. By minimizing the trace of the

CRLB for positioning, it is shown that UAAs and its superpositions correspond to an optimum sensor placement and

this is in agreement with [7]. The minimum achievable CRLB for positioning is also derived. Numerical examples are

provided in Section III to validate our research findings. Finally, conclusions are drawn in Section IV.

II. DEVELOPMENT OF OPTIMUM SENSOR PLACEMENT

Suppose there are L ≥ 3 sensors and the signal received at the lth sensor is modeled as

zl(n) = s(n − Dl) + ql(n), l = 1, 2, · · · , L, n = 0, 1, · · · , N − 1 (1)

where s(n) is the white source signal, ql(n) and Dl are the additive white Gaussian noise and signal propagation delay,

respectively, at the lth sensor, and N is the number of samples available at each sensor. Without loss of generality,

we assign the first sensor as the reference and define the TDOA parameter vector as d = [d 21, d31, · · · dL1]T where T

denotes the transpose operator and di1 = Di − D1, i = 2, 3, · · · , L. The FIM for d, denoted by F(d), is [10]:

F(d) =
N

2π

∫ π

−π

ω2 S2(ω)

1 +
∑L

l=1 S(ω)/Ql(ω)

[
tr(Q−1(ω))Q−1

p (ω) − Q−1
p (ω)1L−11T

L−1Q
−1
p (ω)

]
dω (2)

where tr is the trace operator, 1i is the i × 1 vector with all elements 1, S(ω) and Ql(ω) represent the

power spectra of s(n) and ql(n), respectively, while Q(ω) = diag(Q1(ω), Q2(ω), · · · , QL(ω)) and Qp(ω) =

diag(Q2(ω), Q3(ω), · · · , QL(ω)) where diag(a1, a2, · · · , an) is a diagonal matrix whose diagonal entries are

a1, a2, · · · , an. It is clear from (2) that the optimum TDOA estimates are correlated. Assuming that s(n) and {q l(n)}
are uncorrelated white Gaussian processes with variances σ 2

s and σ2
q , respectively, we have S(ω) = σ2

s , Ql(ω) = σ2
q ,

l = 1, 2, · · · , L, Q(ω) = σ2
qIL and Qp(ω) = σ2

qIL−1 where Ii represents the i × i identity matrix. Under the white

signal and noise assumption, (2) can be simplified to [11]:

F(d) =
π2NΛ2

(
LIL−1 − 1L−11T

L−1

)
3 (1 + LΛ)

(3)

where Λ = σ2
s/σ2

q is the signal-to-noise ratio (SNR). The covariance matrix of the optimum estimate for d when

N → ∞ is equal to the inverse of F(d), which has the form of [11]:

F−1(d) =
3(1 + LΛ)
π2NΛ2

[
IL−1 + 1L−11T

L−1

]
(4)
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Let the position of the source and sensors be x = [x, y]T and xl = [xl, yl]T , l = 1, 2, · · · , L, respectively. The FIM

for x using the optimum TDOA estimates, denoted by F(x), is [5]:

F(x) =
GF(d)GT

c2
(5)

where

G = [g21,g32, · · ·gL1]

gl1 = gl − g1

gl =

⎡
⎢⎣ gx,l

gy,l

⎤
⎥⎦ =

⎡
⎢⎣

x−xl√
(x−xl)2+(y−yl)2

y−yl√
(x−xl)2+(y−yl)2

⎤
⎥⎦ =

⎡
⎢⎣ cos(θl)

sin(θl)

⎤
⎥⎦

and c and θl denote the known signal propagation speed and the incline angle from the source to the lth sensor,

respectively. With the use of (3), (5) becomes

F(x) =
π2NΛ2

3c2(1 + LΛ)
×⎡

⎢⎢⎢⎢⎢⎣
(L − 1)

L∑
l=1

cos2(θl) −
L∑

i�=j

cos(θi) cos(θj) L

L∑
l=1

cos(θl) sin(θl) −
L∑

l=1

cos(θl)
L∑

l=1

sin(θl)

L

L∑
l=1

cos(θl) sin(θl) −
L∑

l=1

cos(θl)
L∑

l=1

sin(θl) (L − 1)
L∑

l=1

sin2(θl) −
L∑

i�=j

sin(θi) sin(θj)

⎤
⎥⎥⎥⎥⎥⎦ (6)

The optimum sensor placement strategy is obtained by minimizing the trace of the CRLB for positioning, that is,

tr(F−1(x)). In Appendix A, we have proved that tr(F−1(x)) can be expressed as f(θ) where θ = [θ1, θ2, · · · , θL]T ,

and f(θ) is of the form:

f(θ) =

L(L − 1) − 2
L∑

i>j

cos(θi − θj)

L(L − 2)
L∑

i>j

sin2(θl − θj) + 2L

L∑
l=1

L∑
i>j

sin(θl − θj) sin(θi − θl)

(7)

Let the numerator and denominator of f(θ) be u(θ) and v(θ), respectively. As f(θ) > 0 because tr(F−1(x))

should be positive and u(θ) is obviously larger than 0, we have v(θ) > 0. Differentiating (7) with respect to θ l,

l = 1, 2, · · · , L, and setting the resultant expressions to zero yield:

∂u(θ)
∂θl

∣∣∣∣
θl=θ̂l

= f(θ)
∂v(θ)
∂θl

∣∣∣∣
θl=θ̂l

, l = 1, 2, · · · , L (8)

where the components of [θ̂1, θ̂2, · · · , θ̂L]T are the optimum sensor directions with respect to the source. We have

shown in Appendix B that (8) can be simplified to:

∂u(θ)
∂θl

∣∣∣∣
θl=θ̂l

= 0 and
∂v(θ)
∂θl

∣∣∣∣
θl=θ̂l

= 0, l = 1, 2, · · · , L (9)
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which are only satisfied by the following conditions (See Appendix B):

L∑
l=1

cos(θ̂l) = 0,

L∑
l=1

sin(θ̂l) = 0,

L∑
l=1

cos(2θ̂l) = 0 and
L∑

l=1

sin(2θ̂l) = 0 (10)

An obvious solution for (10) is

θ̂l =
2π

L
(l − 1) + φ, l = 1, 2, · · · , L (11)

where φ ∈ (0, 2π) which corresponds to an UAA. As an illustration, let L = 3 and the first incline angle is fixed at

θ̂1 = 0. After simple trigonometric manipulations, (10) is reduced to

1 + cos(2θ̂2) + cos(2θ̂3) = 0 ⇒ sin2(θ̂2) + sin2(θ̂3) =
3
4

(12)

0 + sin(2θ̂2) + sin(2θ̂3) = 0 ⇒ cos(θ̂2) sin(θ̂2) + cos(θ̂3) sin(θ̂3) = 0 (13)

1 + cos(θ̂2) + cos(θ̂3) = 0 (14)

0 + sin(θ̂2) + sin(θ̂3) = 0 ⇒ sin(θ̂2) = − sin(θ̂3) (15)

Solving (12) to (15) gives θ̂2 = 2π/3 and θ̂3 = 4π/3, which agree with (11). Nevertheless, a generalized solution is

θ̂m,i =
2π

Lm
(lm − 1) + φm, i = 1, 2, · · · , Lm, m = 1, 2, · · · , M (16)

where the optimal direction vector, θ̂m,i = [θ̂1,1, θ̂1,2, · · · , θ̂1,L1, θ̂2,1, · · · θ̂2,L2 , · · · , θ̂M,LM ]T with L1+L2+· · ·+LM =

L, φm ∈ [0, 2π) and lm is the index of Lm. It is noteworthy that these findings agree with [7], although the latter

assumes uncorrelated TDOA information.

With the use of (10), F(x) with optimum array geometry is easily shown to be:

F(x) =
π2NL2Λ2

6c2(1 + LSNR)
I2 (17)

According to Appendix C, the minimum achievable trace of the CRLB for TDOA-based positioning is then:

tr(F−1(x)) =
12c2(1 + LΛ)

π2NL2Λ

=
12c2

π2NL2Λ2
+

12c2

π2NLΛ

(18)

where we see that the CRLB decreases linearly with N . Moreover, the bound is inversely proportional to L 2Λ2 for

Λ << 1 while its value decreases linearly with L and Λ for Λ >> 1. It is worthy to point out that the result of (18)

is essentially identical to [7] up to a scaling factor.

III. NUMERICAL EXAMPLES

Simulation results are presented in this Section to validate our analytical findings. The source position is fixed at

x = [0, 0]T . First the superiority of the UAA over other typical geometries, namely, nonuniform angular array (NAA),

corners, L-shape and uniform linear array (ULA), in terms of mean square position error (MSPE) performance, is

demonstrated in Figure 1. We consider a rectangular area of dimension 20m × 10m with four sensors whose coordinates
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for different placement strategies are tabulated in Table 1. As optimum TDOA measurements are assumed, all the MSPEs

are computed using tr(F−1(x)) with c = 360ms−1. It is observed in Figure 1 that the UAA strategy has 2dB to 7dB

improvement over other standard placement schemes for different SNR conditions.

Second, we study the optimum angular separation by considering an angular array with L = 3 where the first sensor

position is fixed at x1 = [5 cos(0), 5 sin(0)]T . To avoid duplication, θ3 > θ2 is assigned. Figure 2 shows the MSPE

versus different θ2 and θ3 at Λ = 50dB. We see that the MSPE is minimized when θ2 = 2π/3 and θ3 = 4π/3, which

conform to our analytical calculations in (12) – (15).

IV. CONCLUSION

Via optimum time-difference-of-arrival (TDOA) estimation in an sensor array where each sensor receives a white

source signal in the presence of white noise, we have found that uniform angular arrays and its superpositions correspond

to an optimum sensor placement strategy in the two-dimensional scenarios. The minimum achievable Cramér-Rao lower

bound is also produced. Our future works include extension of our development to arbitrary TDOA covariance matrices

and/or three-dimensional positioning.

APPENDIX A

In this Appendix, we show that tr(F−1(x)) can be expressed as f(θ). Denoting the (i, j) entry of

3 c2 (1 + L Λ)F−1(x)/(π2NΛ2) by fij , F−1(x) is

F−1(x) =
3c2(1 + LΛ)

π2NΛ2
× 1

f11f22 − f12f21

⎡
⎢⎣ f22 −f12

−f21 f11

⎤
⎥⎦ (A.1)

The trace of F−1(x) is then

tr(F−1(x)) =
3c2(1 + LΛ)

π2NΛ2
× f11 + f22

f11f22 − f12f21
(A.2)

With the use of (6), we have:

f11 + f22 = (L − 1)
L∑

l=1

cos2(θl) −
L∑

i�=j

cos(θi) cos(θj) + (L − 1)
L∑

l=1

sin2(θl) −
L∑

i�=j

sin(θi) sin(θj)

= L(L − 1) −
L∑

i�=j

cos(θi − θj) = L(L − 1) − 2
L∑

i>j

cos(θi − θj) (A.3)
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f11f22 =

⎡
⎣(L − 1)

L∑
l=1

cos2(θl) −
L∑

i�=j

cos(θi) cos(θj)

⎤
⎦×

⎡
⎣(L − 1)

L∑
l=1

sin2(θl) −
L∑

i�=j

sin(θi) sin(θj)

⎤
⎦

=

⎡
⎣L

L∑
l=1

cos2(θl) −
(

L∑
l=1

cos(θl)

)2
⎤
⎦×

⎡
⎣L

L∑
l=1

sin2(θl) −
(

L∑
l=1

sin(θl)

)2
⎤
⎦

= L2
L∑

l=1

cos2(θl)
L∑

l=1

sin2(θl) +

(
L∑

l=1

cos(θl)

)2( L∑
l=1

sin(θl)

)2

− L
L∑

l=1

cos2(θl)

(
L∑

l=1

sin(θl)

)2

− L
L∑

l=1

sin2(θl)

(
L∑

l=1

cos(θl)

)2

(A.4)

and

f12f21 = f2
12 =

[
L

L∑
l=1

cos(θl) sin(θl) −
L∑

l=1

cos(θl)
L∑

l=1

sin(θl)

]2

= L2

(
L∑

l=1

cos(θl) sin(θl)

)2

+

(
L∑

l=1

cos(θl)

)2( L∑
l=1

sin(θl)

)2

− 2L

L∑
l=1

cos(θl) sin(θl)
L∑

l=1

cos(θl)
L∑

l=1

sin(θl) (A.5)

From (A.4) and (A.5), we obtain:

f11f22 − f2
12 = L2

L∑
l=1

cos2(θl)
L∑

l=1

sin2(θl) − L2

(
L∑

l=1

cos(θl) sin(θl)

)2

− L

L∑
l=1

sin2(θl)

(
L∑

l=1

cos(θl)

)2

− L

L∑
l=1

cos2(θl)

(
L∑

l=1

sin(θl)

)2

+ 2L

L∑
l=1

cos(θl) sin(θl)
L∑

l=1

cos(θl)
L∑

l=1

sin(θl) (A.6)

The five terms in (A.6) are computed as

L2
L∑

l=1

cos2(θl)
L∑

l=1

sin2(θl) = L2
L∑

l=1

cos2(θl) sin2(θl) + L2
L∑

i>j

cos2(θi) sin2(θj) + sin2(θi) cos2(θj) (A.7)

L2

(
L∑

l=1

cos(θl) sin(θl)

)2

= L2
L∑

l=1

cos2(θl) sin2(θl) + 2L2
L∑

i>j

cos(θi) sin(θi) cos(θj) sin(θj) (A.8)

L

L∑
l=1

sin2(θl)

(
L∑

l=1

cos(θl)

)2

= L

L∑
l=1

cos2(θl)
L∑

l=1

sin2(θl) + 2L

L∑
l=1

sin2(θl)
L∑

i>j

cos(θi) cos(θj) (A.9)

L

L∑
l=1

cos2(θl)

(
L∑

l=1

sin(θl)

)2

= L

L∑
l=1

cos2(θl)
L∑

l=1

sin2(θl) + 2L

L∑
l=1

cos2(θl)
L∑

i>j

sin(θi) sin(θj) (A.10)
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and

2L

L∑
l=1

cos(θl) sin(θl)
L∑

l=1

cos(θl)
L∑

l=1

sin(θl)

=2L

L∑
l=1

cos(θl) sin(θl)

⎛
⎝ L∑

l=1

cos(θl) sin(θl) +
L∑

i>j

cos(θi) sin(θj) + sin(θi) cos(θj)

⎞
⎠

=2L

(
L∑

l=1

cos(θl) sin(θl)

)2

+ 2L

L∑
l=1

cos(θl) sin(θl)
L∑

i>j

cos(θi) sin(θj) + sin(θi) cos(θj) (A.11)

Subtracting (A.8) from (A.7) yields

L2
L∑

l=1

cos2(θl)
L∑

l=1

sin2(θl) − L2

(
L∑

l=1

cos(θl) sin(θl)

)2

=L2
L∑

i>j

cos2(θi) sin2(θj) + L2 sin2(θi) cos2(θj) − 2L2
L∑

i>j

cos(θi) sin(θi) cos(θj) sin(θj)

=L2
L∑

i>j

(
cos(θi) sin(θj) − L2 sin(θi) cos(θj)

)2
= L2

L∑
i>j

sin2(θi − θj) (A.12)

Substituting (A.9)-(A.12) into (A.6) and with the use of (A.12), we get

f11f22 − f2
12

= L2
L∑

i>j

sin2(θi − θj) − 2L

⎡
⎣ L∑

l=1

cos2(θl)
L∑

l=1

sin2(θl) −
(

L∑
l=1

cos(θl) sin(θl)

)2
⎤
⎦

+ 2L

L∑
l=1

cos(θl) sin(θl)
L∑

i>j

cos(θi) sin(θj) + sin(θi) cos(θj)

− 2L

L∑
l=1

cos2(θl)
L∑

i>j

sin(θi) sin(θj) − 2L

L∑
l=1

sin2(θl)
L∑

i>j

cos(θi) cos(θj)

= (L2 − 2L)
L∑

i>j

sin2(θi − θj) + 2L

L∑
l=1

L∑
i>j

cos(θl) sin(θl) [cos(θi) sin(θj) + cos(θj) sin(θi)]

− 2L
L∑

l=1

L∑
i>j

sin2(θl) cos(θi) cos(θj) − 2L
L∑

l=1

L∑
i>j

cos2(θl) sin(θi) sin(θj)

= (L2 − 2L)
L∑

i>j

sin2(θi − θj) + 2L

L∑
l=1

L∑
i>j

sin(θl − θj) sin(θi − θl) (A.13)

Putting (A.3) and (A.13) into (A.2) yields (7).
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APPENDIX B

In Appendix B, we first prove that (8) can be simplified to (9) and then derives (10). For an arbitrary index of θ,

say, s = 1, 2, · · · , L, the derivatives of u(θ) and v(θ) with respect to θs are

∂ (u(θ))
∂θs

= − 2

∂

⎛
⎝ L∑

i>j

cos(θi − θj)

⎞
⎠

∂θs

=2
L∑

l=1

sin(θs − θl) = 2 sin(θs)
L∑

l=1

cos(θl) − 2 cos(θs)
L∑

l=1

sin(θl) (B.1)

and

∂ (v(θ))
∂θs

= L(L − 2)

∂

⎛
⎝ L∑

i>j

sin2(θi − θj)

⎞
⎠

∂θs
+ 2L

∂

⎛
⎝ L∑

l=1

L∑
i>j

sin(θl − θj) sin(θi − θl)

⎞
⎠

∂θs
(B.2)

with

∂

⎛
⎝ L∑

i>j

sin2(θi − θj)

⎞
⎠

∂θs
=

L∑
s>j

2 sin(θs − θj) cos(θs − θj) −
L∑

i>s

2 sin(θi − θs) cos(θi − θs)

=
L∑

l=1

2 sin(θs − θl) cos(θs − θl)

=
L∑

l=1

sin(2(θs − θl)) = sin(2θs)
L∑

l=1

cos(2θl) − cos(2θs)
L∑

l=1

sin(2θl) (B.3)

and

∂

⎛
⎝ L∑

l=1

L∑
i>j

sin(θl − θj) sin(θi − θl)

⎞
⎠

∂θs

=
L∑

l=1
s�=l

⎛
⎝ ∂

∂θs

L∑
i>j

sin(θl − θj) sin(θi − θl)

⎞
⎠+

∂

∂θs

L∑
i>j

sin(θs − θj) sin(θi − θs)

=
L∑

l=1
s�=l

L∑
l=1

cos(θs − θl) sin(θl − θi) −
L∑

i>j

sin(2θs − θi − θj)

=
L∑

l=1
s�=l

L∑
l=1

cos(θs − θl) sin(θl − θi) − sin(2θs)
L∑

i>j

cos(θi + θj) − cos(2θs)
L∑

i>j

sin(θi + θj) (B.4)
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The three terms in (B.4) can be written as:

L∑
l=1
s�=l

L∑
l=1

cos(θs − θl) sin(θl − θi)

=
L∑

l=1
s�=l

cos(θs − θl)
L∑

i=1

sin(θl) cos(θi) −
L∑

l=1
s�=l

cos(θs − θl)
L∑

i=1

cos(θl) sin(θi)

=
L∑

l=1
s�=l

cos(θs − θl) sin(θl)
L∑

i=1

cos(θi) −
L∑

l=1
s�=l

cos(θs − θl) cos(θl)
L∑

i=1

sin(θi) (B.5)

L∑
i>j

cos(θi + θj) =
L∑

i=1

L∑
j=1

cos(θi + θj) −
L∑

l=1

cos(2θl)

=
L∑

i=1

cos(θi)
L∑

j=1

cos(θj) +
L∑

i=1

sin(θi)
L∑

j=1

sin(θj) −
L∑

l=1

cos(2θl)

=

(
L∑

l=1

cos(θl)

)2

+

(
L∑

l=1

sin(θl)

)2

−
L∑

l=1

cos(2θl) (B.6)

and

L∑
i>j

sin(θi + θj) =
L∑

i=1

L∑
j=1

sin(θi + θj) −
L∑

l=1

sin(2θl)

=
L∑

i=1

sin(θi)
L∑

j=1

cos(θj) +
L∑

i=1

cos(θi)
L∑

j=1

sin(θj) −
L∑

l=1

sin(2θl)

=2
L∑

l=1

cos(θl)
L∑

l=1

sin(θl) −
L∑

l=1

sin(2θl) (B.7)

Using (B.3)−(B.7), (B.2) becomes

∂ (v( θ))
∂θs

=L(L − 1)

[
sin(2θs)

L∑
l=1

cos(2θl) − cos(2θs)
L∑

l=1

sin(2θl)

]
+

2L

⎡
⎢⎢⎣

L∑
k=1
s�=k

cos(θs − θk) sin(θk)
L∑

l=1

cos(θl) −
L∑

k=1
s�=k

cos(θs − θk) cos(θk)
L∑

l=1

sin(θl)

⎤
⎥⎥⎦

− 2L sin(2θs)

⎡
⎣( L∑

l=1

cos(θl)

)2

+

(
L∑

l=1

sin(θl)

)2

−
L∑

l=1

cos(2θl)

⎤
⎦

− 2L cos(2θs)

⎡
⎣2

L∑
l=1

cos(θl)
L∑

j=1

sin(θj) −
L∑

l=1

sin(2θl)

⎤
⎦ (B.8)

From (7), when θs = θ̂s, s = 1, 2, · · · , L, all the derivatives of u(θ) are identical and based on (B.1), we let

2 sin(θ̂s)
L∑

l=1

cos(θ̂l) − 2 cos(θ̂s)
L∑

l=1

sin(θ̂l) = C (B.9)
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where C is a constant to be determined. Summing (B.9) for s = 1, 2, · · · , L, we easily obtain LC = 0 which gives

C = 0. That is, ∂u(θ)/∂θl|θl=θ̂l
= 0. With the use of f(θ) > 0 and (8), we then get ∂v(θ)/∂θ l|θl=θ̂l

= 0. As a result

simplification of (8) to (9) is shown.

To prove the uniqueness of the solutions given in (10), we employ propositional calculus. Based on (B.9), we

construct the following statement:

2 sin(θ̂m)
L∑

l=1

cos(θ̂l) − 2 cos(θ̂m)
L∑

l=1

sin(θ̂l) = 0

2 sin(θ̂n)
L∑

l=1

cos(θ̂l) − 2 cos(θ̂n)
L∑

l=1

sin(θ̂l) = 0, m �= n, m, n = 1, 2, · · · , L

(B.10)

We will prove that (B.10) contradicts with the opposite conditions of (10), namely,
∑L

l=1 cos(θ̂l) = 0 and∑L
l=1 sin(θ̂l) = 0. This means

∑L
l=1 cos(θ̂l) = 0 and

∑L
l=1 sin(θ̂l) = 0 are the only solutions for (B.10). The

existence of θ̂m and θ̂n is given by the following two statements, and the second statement can further divided into

three sub-statements:

1) ∃θ̂m, θ̂n : sin(θ̂m) �= sin(θ̂n) ∧ cos(θ̂m) �= cos(θn)

2) ∀θ̂m, θ̂n : sin(θ̂m) = sin(θ̂n) ∨ cos(θ̂m) = cos(θ̂n)

a) ∀θ̂m, θ̂n : sin(θ̂m) �= sin(θ̂n) ∧ cos(θ̂m) = cos(θ̂n)

b) ∀θ̂m, θ̂n : sin(θ̂m) = sin(θ̂n) ∧ cos(θ̂m) �= cos(θ̂n)

c) ∀θ̂m, θ̂n : sin(θ̂m) = sin(θ̂n) ∧ cos(θ̂m) = cos(θ̂n)

where ∧ and ∨ are conjunction and disjunction operators [12], respectively,

Now the above statements are examined one by one. For ∃ θ̂m, θ̂n : sin(θ̂m) �= sin(θ̂n) ∧ cos(θ̂m) �= cos(θ̂n), we

first assume the opposition of (10):

L∑
l=1

cos(θ̂l) �= 0 ∨
L∑

l=1

sin(θ̂l) �= 0 (B.11)

The assumption of (B.11) corresponds to the following three possibilities:

L∑
l=1

cos(θ̂l) �= 0 ∧
L∑

l=1

sin(θ̂l) = 0

⇒ sin(θ̂1) = sin(θ̂2) = · · · = sin(θ̂L) = 0� sin(θ̂m) �= sin(θ̂n) (B.12)

L∑
l=1

cos(θ̂l) = 0 ∧
L∑

l=1

sin(θ̂l) �= 0

⇒ cos(θ̂1) = cos(θ̂2) = · · · = cos(θ̂L) = 0� cos(θ̂m) �= cos(θ̂n) (B.13)
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or

L∑
l=1

cos(θ̂l) �= 0 ∧
L∑

l=1

sin(θ̂l) �= 0

⇒ sin(θ̂m) cos(θ̂n) = sin(θ̂n) cos(θ̂m) ⇒ sin(θ̂m − θ̂n) = 0�L ≥ 3 (B.14)

where � is contradiction operator [12].

For ∀θ̂m, θ̂n : sin(θ̂m) �= sin(θ̂n) ∧ cos(θ̂m) = cos(θ̂n), we have

sin(θ̂s) =
1
L

L∑
l=1

sin(θ̂l), for s = 1, 2, · · · , L� sin(θ̂m) �= sin(θ̂n) (B.15)

For ∀θ̂m, θ̂n : sin(θ̂m) = sin(θ̂n) ∧ cos(θ̂m) �= cos(θ̂n), we have

cos(θ̂s) =
1
L

L∑
l=1

cos(θ̂l), for s = 1, 2, · · · , L� cos(θ̂m) �= cos(θ̂n) (B.16)

For ∀θ̂m, θ̂n : sin(θ̂m) = sin(θ̂n) ∧ cos(θ̂m) = cos(θ̂n), we have

F(x) = 02×2 ⇒ F−1(x) is undefined�F−1(x) is well defined (B.17)

Therefore, there is no solution for (B.10) except

L∑
l=1

cos(θ̂l) = 0 ∧
L∑

l=1

sin(θ̂l) = 0 (B.18)

with ∃θ̂m, θ̂n : sin(θ̂m) �= sin(θ̂n) ∧ cos(θ̂m) �= cos(θ̂n). Substituting (B.18) into (B.8) with θs = θ̂s, s = 1, 2, · · · , L,

yields:

(L + 1) sin(2θ̂s)
L∑

l=1

cos(2θ̂l) − (L − 3) cos(2θ̂s)
L∑

l=1

sin(2θ̂l) = 0 (B.19)

By undergoing a similar procedure of (B.10)-(B.17), we obtain

L∑
l=1

cos(2θ̂l) = 0 ∧
L∑

l=1

sin(2θ̂l) = 0 (B.20)

with ∃θ̂m, θ̂n : sin(2θ̂m) �= sin(2θ̂n) ∧ cos(2θ̂m) �= cos(2θ̂n). Combining (B.18) and (B.20) yields (10).

APPENDIX C

In this Appendix, we produce the minimum value of the CRLB for TDOA-based positioning. Using (A.2) and

f12 = f21, we obtain

f11 + f22

f11f22 − f12f21
≥ f11 + f22

f11f22
(C.1)

Applying the arithmetic mean-geometric mean inequality of f 11 and f22 yields

f11 + f22

2
≥
√

f11f22 ⇒ (f11 + f22)
2

4
≥ f11f22 ≤ L2 (C.2)
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From (C.1) and (C.2), we get (f11 + f22)
2
/4, hence

f11 + f22

f11f22
≥ 4

f11 + f22
(C.3)

On the other hand, (A.3) can be written as

f11 + f22 = L2 − 2

(
L∑

l=1

cos(θl)

)2

− 2

(
L∑

l=1

sin(θl)

)2

≤ L2 (C.4)

Using (C.3) and (C.4), we obtain

f11 + f22

f11f22 − f12f21
≥ 4

L2
(C.5)

Including the scaling term of π2NSNR2/(3c2(1 + LΛ)) in (C.5) yields

tr(F−1(x)) ≥ 12c2(1 + LΛ)
π2NL2Λ2

(C.6)

which proves (18).
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Fig. 1. Mean square position errors of different sensor geometries versus SNR when L = 4

Fig. 2. Mean square position error versus angular separation when L = 3
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Geometry x1 (m) x2 (m) x3 (m) x4 (m)

UAA [5 cos(0), 5 sin(0)]T [5 cos(π/2), 5 sin(π/2)]T [5 cos(π), 5 sin(π)]T [5 cos(3π/2), 5 sin(3π/2)]T

NAA [5 cos(π/3), 5 sin(π/3)]T [5 cos(2π/3), 5 sin(2π/3)]T [5 cos(π), 5 sin(π)]T [5 cos(4π/3), 5 sin(4π/3)]T

Corners [−10, 5]T [10, 5]T [10,−5]T [−10,−5]T

L-shape [−10, 5]T [0,−5]T [10,−5]T [−10,−5]T

ULA [−10,−5]T [10,−5]T [−2.5,−5]T [2.5,−5]T

Table 1. Senors positions for different placement strategies


