## **Overview of Digital Signal Processing (DSP)**

### Signal:

- Anything that conveys information, e.g.,
  - Speech
  - Electrocardiogram (ECG) (心電圖)
  - Radar pulse
  - DNA sequence
  - Stock price
  - Code division multiple access (CDMA) signal
  - Image
  - Video







Fig.1.3: Transmitted & received radar waveforms

Radar transceiver sends a 1-D sinusoidal pulse at time 0

It then receives echo reflected by an object at a range of R

Reflected signal is noisy and has a time delay of  $\tau$  which corresponds to round trip propagation time of radar pulse

Given the signal propagation speed, denoted by c,  $\tau$  is simply related to R as:

$$\tau = \frac{2R}{c} \tag{1.1}$$

As a result, the radar pulse contains the object range information

Can be a function of one, two or three independent

variables, e.g., speech is 1-D signal, function of time; image is 2-D, function of space; wind is 3-D, function of latitude, longitude and elevation

- 3 types of signals that are functions of time:
  - Continuous-time (analog) x(t): defined on a continuous range of time t, amplitude can be any value
  - Discrete-time x(nT): defined only at discrete instants of time  $t = \cdots T, 0, T, 2T, \cdots$ , amplitude can be any value
  - Digital (quantized)  $x_Q(nT)$ : both time and amplitude are discrete, i.e., it is defined only at  $t = \cdots T, 0, T, 2T, \cdots$  and amplitude is confined to a finite set of numbers



x(nT) at n = 0 is close to 2 and  $x_Q(0) = 2$ 

 $x(nT) \in (3,4)$  at n = 1 and  $x_Q(T) = 3$ 

Using 4-bit representation,  $x_Q(0) = 0010$  and  $x_Q(T) = 0011$ , and in general, the value of  $x_Q(nT)$  is restricted to be an integer between -8 and 7 according to the two's complement representation.

In DSP, we deal with  $x_Q(nT)$  as it corresponds to computerbased processing. Throughout the course, it is assumed that discrete-time signal = digital signal, or the quantizer has infinite resolution

### System:

- Mathematical model or abstraction of a physical process that relates input to output, e.g.,
  - Grading system: inputs are coursework and examination marks, output is grade
  - Squaring system: input is 5, then the output is 25
  - Amplifier: input is  $cos(\omega t)$ , then output is  $10cos(\omega t)$
  - Communication system: input to mobile phone is voice, output from mobile phone is CDMA signal
  - Noise reduction system: input is a noisy speech, output is a noise-reduced speech
  - Feature extraction system: input is  $cos(\omega t)$ , output is  $\omega$
- Any system that processes digital signals is called a digital system, digital filter or digital (signal) processor

#### Processing:

 Perform a particular function by passing a signal through system



Fig.1.5: Analog processing of analog signal



Fig.1.6: Digital processing of analog signal

# Can you identify the systems in Fig.1.4 and Fig.1.6? What are they?

Advantages of DSP over Analog Signal Processing

- Allow development with the use of PC, e.g., MATLAB
- Allow flexibility in reconfiguring the DSP operations simply by changing the program
- Reliable: processing of 0 and 1 is almost immune to noise and data are easily stored without deterioration
- Lower cost due to advancement of VLSI technology
- Security can be introduced by encrypting/scrambling
- Simple: additions and multiplications are main operations

### **DSP** Application Areas

### Speech

- Compression (e.g, LPC is a coding standard for compression of speech data)
- Synthesis (computer production of speech signals, e.g., text-to-speech engine by Microsoft <sup>(\*)</sup>)
- Recognition (e.g., PCCW's 1083 telephone number enquiry system)
- Enhancement (e.g., noise reduction for a noisy speech)

### Audio

 Compression (e.g., MP3 is a coding standard for compression of audio data)

- Generation of music by different musical instruments such as piano, cello, guitar and flute using computer <sup>®</sup>
- Song with low-cost electronic piano keyboard quality
- Automatic music transcription (writing a piece of music down from a recording)

### Image and Video

- Compression (e.g., JPEG and MPEG is are coding standards for image and video compression, respectively)
- Recognition such as face, palm and fingerprint

Enhancement



- Construction of 3-D objects from 2-D images
- Animation, e.g., "Avatar (阿凡達)"

- Communications: encoding and decoding of digital communication signals
- Astronomy: finding the periods of orbits
- Biomedical Engineering: medical care and diagnosis, analysis of ECG, electroencephalogram (EEG), nuclear magnetic resonance (NMR) data
- Bioinformatics: DNA sequence analysis
- Finance: algorithmic trading system design