Sampling and Reconstruction of Analog Signals

Chapter Intended Learning Outcomes:

(i) Ability to convert an analog signal to a discrete-time sequence via sampling

(ii) Ability to construct an analog signal from a discrete-time sequence

(iii) Understanding the conditions when a sampled signal can uniquely present its analog counterpart
Sampling

- Process of converting a continuous-time signal $x(t)$ into a discrete-time sequence $x[n]$
- $x[n]$ is obtained by extracting $x(t)$ every T s where T is known as the sampling period or interval

![Diagram of sampling process]

\[x[n] = x(t)|_{t=nT} = x(nT), \quad n = \cdots -1, 0, 1, 2, \cdots \]

Fig. 4.1: Conversion of analog signal to discrete-time sequence

- Relationship between $x(t)$ and $x[n]$ is:
- Conceptually, conversion of $x(t)$ to $x[n]$ is achieved by a continuous-time to discrete-time (CD) converter:

Fig. 4.2: Block diagram of CD converter
A fundamental question is whether $x[n]$ can uniquely represent $x(t)$ or if we can use $x[n]$ to reconstruct $x(t)$.

Fig. 4.3: Different analog signals map to same sequence.
But, the answer is yes when:

(1) \(x(t) \) is bandlimited such that its Fourier transform \(X(j\Omega) = 0 \) for \(|\Omega| \geq \Omega_b\) where \(\Omega_b \) is called the bandwidth

(2) Sampling period \(T \) is sufficiently small

Example 4.1
The continuous-time signal \(x(t) = \cos(200\pi t) \) is used as the input for a CD converter with the sampling period \(1/300 \) s. Determine the resultant discrete-time signal \(x[n] \).

According to (4.1), \(x[n] \) is

\[
x[n] = x(nT) = \cos(200n\pi T) = \cos\left(\frac{2\pi n}{3}\right), \quad n = \cdots -1, 0, 1, 2, \cdots
\]

The frequency in \(x(t) \) is \(200\pi \) rad/s while that of \(x[n] \) is \(2\pi/3 \)
Frequency Domain Representation of Sampled Signal

In the time domain, \(x_s(t) \) is obtained by multiplying \(x(t) \) by the impulse train \(i(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT) \):

\[
x_s(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - kT)
\] (4.2)

with the use of the sifting property of (2.12)

Let the sampling frequency in radian be \(\Omega_s = 2\pi/T \) (or \(F_s = 1/T = \Omega_s/(2\pi) \) in Hz). From Example 2.8:

\[
I(j\Omega) = \Omega_s \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)
\] (4.3)
Using multiplication property of Fourier transform:

\[x_1(t) \cdot x_2(t) \leftrightarrow \frac{1}{2\pi} X_1(j\Omega) \otimes X_2(j\Omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(j\tau) X_2(j(\Omega - \tau)) d\tau \tag{4.4} \]

where the convolution operation corresponds to continuous-time signals

Using (4.2)-(4.4) and properties of \(\delta(t) \), \(X_{\delta}(j\Omega) \) is:
\[
X_s(j\Omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} I(j\tau)X(j(\Omega - \tau))d\tau
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\Omega_s \sum_{k=-\infty}^{\infty} \delta(\tau - k\Omega_s) \right) X(j(\Omega - \tau))d\tau
\]

\[
= \frac{1}{T} \sum_{k=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} X(j(\Omega - \tau))\delta(\tau - k\Omega_s)d\tau \right)
\]

\[
= \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s)) \left(\int_{-\infty}^{\infty} \delta(\tau - k\Omega_s)d\tau \right)
\]

\[
= \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s))
\]

(4.5)

which is the sum of infinite copies of $X(j\Omega)$ scaled by $1/T$
When Ω_s is chosen sufficiently large such that all copies of $X(j\Omega)/T$ do not overlap, that is, $\Omega_s - \Omega_b > \Omega_b$ or $\Omega_s > 2\Omega_b$, we can get $X(j\Omega)$ from $X_s(j\Omega)$.

Fig. 4.4: $X_s(j\Omega) = X(j\Omega) \otimes I(j\Omega)$ for sufficiently large Ω_s.

H. C. So
Page 9
Semester B, 2011-2012
When \(\Omega_s \) is not chosen sufficiently large such that \(\Omega_s < 2\Omega_b \), copies of \(X(j\Omega)/T \) overlap, we cannot get \(X(j\Omega) \) from \(X_s(j\Omega) \), which is referred to aliasing.

![Diagram showing overlap of frequency components](image)

Fig. 4.5: \(X_s(j\Omega) = X(j\Omega) \otimes I(j\Omega) \) when \(\Omega_s \) is not large enough.
Nyquist Sampling Theorem (1928)

Let \(x(t) \) be a bandlimited continuous-time signal with

\[
X(j\Omega) = 0, \quad |\Omega| \geq \Omega_b
\]

(4.6)

Then \(x(t) \) is uniquely determined by its samples \(x[n] = x(nT) \),
\(n = \cdots -1, 0, 1, 2, \cdots \), if

\[
\Omega_s = \frac{2\pi}{T} > 2\Omega_b
\]

(4.7)

The bandwidth \(\Omega_b \) is also known as the Nyquist frequency while \(2\Omega_b \) is called the Nyquist rate and \(\Omega_s \) must exceed it in order to avoid aliasing
Table 4.1: Typical bandwidths and sampling frequencies in signal processing applications

<table>
<thead>
<tr>
<th>Application</th>
<th>$f_b = \Omega_b/(2\pi)$</th>
<th>$f_s = \Omega_s/(2\pi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical</td>
<td>< 500 Hz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Telephone speech</td>
<td>< 4 kHz</td>
<td>8 kHz</td>
</tr>
<tr>
<td>Music</td>
<td>< 20 kHz</td>
<td>44.1 kHz</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>< 100 kHz</td>
<td>250 kHz</td>
</tr>
<tr>
<td>Radar</td>
<td>< 100 MHz</td>
<td>200 MHz</td>
</tr>
</tbody>
</table>

Example 4.2
Determine the Nyquist frequency and Nyquist rate for the continuous-time signal $x(t)$ which has the form of:

$$x(t) = 1 + \sin(2000\pi t) + \cos(4000\pi t)$$

The frequencies are 0, 2000π and 4000π. The Nyquist frequency is 4000π rads$^{-1}$ and the Nyquist rate is 8000π rads$^{-1}$
Fig. 4.6: Multiplying $X_s(j\Omega)$ and $H(j\Omega)$ to recover $X(j\Omega)$

In frequency domain, we multiply $X_s(j\Omega)$ by $H(j\Omega)$ with amplitude T and bandwidth Ω_c with $\Omega_b < \Omega_c < \Omega_s - \Omega_b$, to obtain $X_r(j\Omega)$, and it corresponds to $x_r(t) = x_s(t) \otimes h(t)$
Reconstruction

- Process of transforming $x[n]$ back to $x(t)$

![Block diagram of DC converter]

From Fig. 4.6, $H(j\Omega)$ is

$$H(j\Omega) = \begin{cases} T, & -\Omega_c < \Omega < \Omega_c \\ 0, & \text{otherwise} \end{cases} \quad (4.8)$$

where $\Omega_b < \Omega_c < \Omega_s - \Omega_b$
For simplicity, we set \(\Omega_c \) as the average of \(\Omega_b \) and \((\Omega_s - \Omega_b) \):

\[
\Omega_c = \frac{\Omega_s}{2} = \frac{\pi}{T} \tag{4.9}
\]

To get \(h(t) \), we take inverse Fourier transform of \(H(j\Omega) \) and use Example 2.5:

\[
h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\Omega)e^{j\Omega t} d\Omega = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} Te^{j\Omega t} d\Omega = \frac{T \sin(\pi t/T)}{\pi t}
\]

\[
= \text{sinc} \left(\frac{t}{T} \right) \tag{4.10}
\]

where \(\text{sinc}(u) = \sin(\pi u)/(\pi u) \)
Using (2.23)-(2.24), (4.2) and (2.11)-(2.12), \(x_r(t) \) is:

\[
x_r(t) = x_s(t) \otimes h(t) \\
= \left(\sum_{k=-\infty}^{\infty} x[k] \delta(t - kT) \right) \otimes h(t) \\
= \int \sum_{k=-\infty}^{\infty} x[k] \delta(\tau - kT) h(t - \tau) d\tau \\
= \sum_{k=-\infty}^{\infty} x[k] h(t - kT) \\
= \sum_{k=-\infty}^{\infty} x[k] \text{sinc} \left(\frac{t - kT}{T} \right)
\]

which holds for all real values of \(t \)
The interpolation formula can be verified at $t = nT$:

$$x_r(nT) = \sum_{k=-\infty}^{\infty} x[k] \text{sinc} (n - k) \quad (4.12)$$

It is easy to see that

$$\text{sinc} (n - k) = \frac{\sin((n - k)\pi)}{(n - k)\pi} = 0, \quad n \neq k \quad (4.13)$$

For $n = k$, we use L'Hôpital's rule to obtain:

$$\text{sinc}(0) = \lim_{m \to 0} \frac{\sin (m\pi)}{m\pi} = \lim_{m \to 0} \frac{d\sin (m\pi)}{dm} = \lim_{m \to 0} \frac{\pi \cos(m\pi)}{\pi} = 1 \quad (4.14)$$

Substituting (4.13)-(4.14) into (4.12) yields:

$$x_r(nT) = x[n] = x(nT) \quad (4.15)$$

which aligns with $x_r(t) = x(t)$
Example 4.3
Given a discrete-time sequence \(x[n] = x(nT) \). Generate its time-delayed version \(y[n] \) which has the form of

\[
y[n] = x(nT - \Delta)
\]

where \(\Delta \neq mT > 0 \) and \(m \) is a positive integer. Applying (4.11) with \(t = nT - \Delta \):

\[
y[n] = x(nT - \Delta) = \sum_{k=-\infty}^{\infty} x[k] \text{sinc} \left(\frac{nT - kT - \Delta}{T} \right)
\]

By employing a change of variable of \(l = n - k \):

\[
y[n] = \sum_{l=-\infty}^{\infty} x[n - l] \text{sinc} \left(\frac{lT - \Delta}{T} \right)
\]

Is it practical to get \(y[n] \)?
Note that when $\Delta = mT$, the time-shifted signal is simply obtained by shifting the sequence $x[n]$ by m samples:

$$y[n] = x(nT - mT) = x[n - m]$$

Sampling and Reconstruction in Digital Signal Processing

![Diagram of digital signal processing](diagram)

Fig. 4.8: Ideal digital processing of analog signal

- CD converter produces a sequence $x[n]$ from $x(t)$
- $x[n]$ is processed in discrete-time domain to give $y[n]$
- DC converter creates $y(t)$ from $y[n]$ according to (4.11):

$$y(t) = \sum_{k=-\infty}^{\infty} y[k] \text{sinc} \left(\frac{t - kT}{T} \right)$$ (4.16)
Fig. 4.9: Practical digital processing of analog signal

- $x(t)$ may not be precisely bandlimited \Rightarrow a lowpass filter or anti-aliasing filter is needed to process $x(t)$
- Ideal CD converter is approximated by AD converter
 - Not practical to generate $\delta(t)$
 - AD converter introduces quantization error
- Ideal DC converter is approximated by DA converter because ideal reconstruction of (4.16) is impossible
 - Not practical to perform infinite summation
 - Not practical to have future data
- $x[n]$ and $y[n]$ are quantized signals
Example 4.4
Suppose a continuous-time signal \(x(t) = \cos(\Omega_0 t) \) is sampled at a sampling frequency of 1000Hz to produce \(x[n] \):

\[
x[n] = \cos \left(\frac{\pi n}{4} \right)
\]

Determine 2 possible positive values of \(\Omega_0 \), say, \(\Omega_1 \) and \(\Omega_2 \). Discuss if \(\cos(\Omega_1 t) \) or \(\cos(\Omega_2 t) \) will be obtained when passing \(x[n] \) through the DC converter.

According to (4.1) with \(T = 1/1000 \) s:

\[
\cos \left(\frac{\pi n}{4} \right) = x[n] = x(nT) = \cos \left(\frac{\Omega_0 n}{1000} \right)
\]

\(\Omega_1 \) is easily computed as:

\[
\frac{\pi n}{4} = \frac{\Omega_1 n}{1000} \Rightarrow \Omega_1 = \frac{1000\pi}{4} = 250\pi
\]
\(\Omega_2 \) can be obtained by noting the periodicity of a sinusoid:

\[
\cos \left(\frac{\pi n}{4} \right) = \cos \left(\frac{\pi n}{4} + 2n\pi \right) = \cos \left(\frac{9\pi n}{4} \right) = \cos \left(\frac{\Omega_2 n}{1000} \right)
\]

As a result, we have:

\[
\frac{9\pi n}{4} = \frac{\Omega_2 n}{1000} \Rightarrow \Omega_2 = \frac{9000\pi}{4} = 2250\pi
\]

This is illustrated using the MATLAB code:

```matlab
O1=250*pi; %first frequency
O2=2250*pi; %second frequency
Ts=1/100000; %successive sample separation is 0.01T
T=t=0:Ts:0.02; %observation interval
dx1=cos(O1.*t); %tone from first frequency
dx2=cos(O2.*t); %tone from second frequency
```

There are 2001 samples in 0.02s and interpolating the successive points based on `plot` yields good approximations.
Fig.4.10: Discrete-time sinusoid
Fig.4.11: Continuous-time sinusoids
Passing $x[n]$ through the DC converter only produces $\cos(\Omega_1 t)$ but not $\cos(\Omega_2 t)$.

The Nyquist frequency of $\cos(\Omega_2 t)$ is 2250π rads$^{-1}$ and hence the sampling frequency without aliasing is $\Omega_s > 4500\pi$.

Given $F_s = 1000$ Hz or $\Omega_s = 2000\pi$ rads$^{-1}$, $\cos(\Omega_2 t)$ does not correspond to $x[n]$.

We can recover $x_r(t) = \cos(\Omega_1 t)$ because the Nyquist frequency and Nyquist rate for $\cos(\Omega_1 t)$ are 250π rads$^{-1}$ and 500π rads$^{-1}$.

Based on (4.11), $x_r(t) = \cos(\Omega_1 t)$ is:

$$x_r(t) = \sum_{k=-\infty}^{\infty} x[k]\text{sinc}\left(\frac{t - kT}{T}\right) \approx \sum_{k=-10}^{30} x[k]\text{sinc}\left(\frac{t - kT}{T}\right)$$

with $T = 1/1000$ s.
The MATLAB code for reconstructing \(\cos(\Omega_1 t) \) is:

\[
\begin{align*}
n &= -10:30; & \text{\% add 20 past and future samples} \\
x &= \cos(\pi \cdot n / 4); \\
T &= 1/1000; & \text{\% sampling interval is 1/1000} \\
& \text{for } l = 1:2000 & \text{\% observed interval is } [0, 0.02] \\
t &= (l-1) \cdot T / 100; & \text{\% successive sample separation is } 0.01T \\
h &= \text{sinc}((t-n \cdot T) / T); \\
x_r(l) &= x \cdot h.'; & \text{\% approximate interpolation of (4.11)} \\
\end{align*}
\]

We compute 2000 samples of \(x_r(t) \) in \(t \in [0, 0.02] \)s.

The value of each \(x_r(t) \) at time \(t \) is approximated as \(x \cdot h.' \)
where the sinc vector is updated for each computation.

The MATLAB program is provided as \texttt{ex4_4.m}
Fig. 4.12: Reconstructed continuous-time sinusoid
Example 4.5
Play the sound for a discrete-time tone using MATLAB. The frequency of the corresponding analog signal is 440 Hz which corresponds to the A note in the American Standard pitch. The sampling frequency is 8000 Hz and the signal has a duration of 0.5 s.

The MATLAB code is

\[
A = \sin(2\pi \times 440 \times (0:1/8000:0.5)) \; \% \text{discrete-time A}
\]
\[
sound(A, 8000) \; \% \text{DA conversion and play}
\]

Note that sampling frequency in Hz is assumed for `sound`