Digital Signal Processing

Department of Electronic Engineering
City University of Hong Kong

Lecturer: So, Hing Cheung
Office: P6516
Tel.: 3442-7780
Email: hcso@ee.cityu.edu.hk
URL: http://www.ee.cityu.edu.hk/~hcso
Syllabus Outline

- **Foundations of Digital Signal Processing (DSP)**
 DSP Overview, Analog Signal Analysis, Discrete-Time Signals and Systems, Sampling and Reconstruction of Analog Signals

- **Discrete-Time Signal Analysis Tools**
 z-Transform, Discrete-Time Fourier Transform (DTFT), Discrete Fourier Series (DFS), Discrete Fourier Transform (DFT)

- **Digital Filters**
 Realization and Design of Finite Impulse Response (FIR) Filters and Infinite Impulse Response (IIR) Filters

- **Application Case Studies**
 Interference Cancellation, Spectral Analysis
Intended Learning Outcomes

On completion of this course, you will be able to

- Classify discrete-time signals and systems
- Convert signals between continuous-time and discrete-time domains
- Explain the relationship between different discrete-time signal analysis tools
- Analyse discrete-time signals and systems using appropriate transforms
- Design digital filters according to predefined specifications such as filter shapes, passband ripple and frequency as well as stopband attenuation and frequency
- Realize digital filters using different structures
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Jan.</td>
<td>Lecture 1</td>
<td></td>
</tr>
<tr>
<td>20 Jan.</td>
<td>Lecture 2</td>
<td></td>
</tr>
<tr>
<td>27 Jan.</td>
<td>Lecture 3</td>
<td></td>
</tr>
<tr>
<td>3 Feb.</td>
<td>Lecture 4</td>
<td>MATLAB Exercise 1 Due</td>
</tr>
<tr>
<td>17 Feb.</td>
<td>Lecture 5</td>
<td></td>
</tr>
<tr>
<td>24 Feb.</td>
<td>Lecture 6</td>
<td>Assignment 1 Due</td>
</tr>
<tr>
<td>2 Mar.</td>
<td>Lecture 7</td>
<td>Test 1</td>
</tr>
<tr>
<td>9 Mar.</td>
<td>Lecture 8</td>
<td></td>
</tr>
<tr>
<td>16 Mar.</td>
<td>Lecture 9</td>
<td></td>
</tr>
<tr>
<td>23 Mar.</td>
<td>Lecture 10</td>
<td>MATLAB Exercise 2 Due</td>
</tr>
<tr>
<td>30 Mar.</td>
<td>Lecture 10</td>
<td></td>
</tr>
<tr>
<td>9 Mar.</td>
<td>Lecture 11</td>
<td>Assignment 2 Due</td>
</tr>
<tr>
<td>13 Apr.</td>
<td>Lecture 12</td>
<td>Test 2</td>
</tr>
<tr>
<td>20 Apr.</td>
<td>Lecture 13</td>
<td></td>
</tr>
</tbody>
</table>
Assessment

Coursework:
- 2 Assignments: 6%
- 2 MATLAB Exercises: 8%
- 2 Tests: 26%

Examination:
60%

To pass the course, at least 35% of coursework AND examination marks are required. All tests and examination are open book format.

Act of academic dishonesty (e.g., plagiarism, submission for assessment of material that is not your own work) will be liable to disciplinary actions.
Book List

Textbook:

References:
MATLAB Resources

http://www-h.eng.cam.ac.uk/help/tpl/programs/matlab.html
