Overview of Digital Signal Processing (DSP)

Chapter Intended Learning Outcomes:

(i) Understand basic terminology in DSP

(ii) Differentiate DSP and analog signal processing

(iii) Describe basic DSP application areas
Signal:

- Anything that conveys information, e.g.,
 - Speech
 - Electrocardiogram (ECG) (心電圖)
 - Radar pulse
 - DNA sequence
 - Stock price
 - Code division multiple access (CDMA) signal
 - Image
 - Video
Fig. 1.1: Speech
Fig. 1.2: ECG
Fig.1.3: Transmitted & received radar waveforms
Radar transceiver sends a 1-D sinusoidal pulse at time 0

It then receives echo reflected by an object at a range of \(R \)

Reflected signal is noisy and has a time delay of \(\tau \) which corresponds to round trip propagation time of radar pulse

Given the signal propagation speed, denoted by \(c \), \(\tau \) is simply related to \(R \) as:

\[
\tau = \frac{2R}{c} \quad (1.1)
\]

As a result, the radar pulse contains the object range information
Can be a function of one, two or three independent variables, e.g., speech is 1-D signal, function of time; image is 2-D, function of space; wind is 3-D, function of latitude, longitude and elevation

- 3 types of signals that are functions of time:
 - **Continuous-time** (analog) \(x(t) \): defined on a continuous range of time \(t \), amplitude can be any value
 - **Discrete-time** \(x(nT) \): defined only at discrete instants of time \(t = \cdots - T, 0, T, 2T, \cdots \), amplitude can be any value
 - **Digital** (quantized) \(x_Q(nT) \): both time and amplitude are discrete, i.e., it is defined only at \(t = \cdots - T, 0, T, 2T, \cdots \) and amplitude is confined to a finite set of numbers
Fig. 1.4: Relationships between $x(t)$, $x(nT)$ and $x_Q(nT)$
\(x(nT) \) at \(n = 0 \) is close to 2 and \(x_Q(0) = 2 \)

\(x(nT) \in (3, 4) \) at \(n = 1 \) and \(x_Q(T) = 3 \)

Using 4-bit representation, \(x_Q(0) = 0010 \) and \(x_Q(T) = 0011 \), and in general, the value of \(x_Q(nT) \) is restricted to be an integer between \(-8\) and \(7\) according to the two’s complement representation.

In digital signal processing (DSP), we deal with \(x_Q(nT) \) as it corresponds to computer-based processing. Throughout the course, it is assumed that \textit{discrete-time signal} = \textit{digital signal}, or the quantizer has infinite resolution.
System:

- Mathematical model or abstraction of a physical process that relates **input** to **output**, e.g.,
 - Grading system: inputs are coursework and examination marks, output is grade
 - Squaring system: input is 5, then the output is 25
 - Amplifier: input is $\cos(\omega t)$, then output is $10\cos(\omega t)$
 - Communication system: input to mobile phone is voice, output from mobile phone is CDMA signal
 - Noise reduction system: input is a noisy speech, output is a noise-reduced speech
 - Feature extraction system: input is $\cos(\omega t)$, output is ω
- Any system that processes digital signals is called a digital system, digital filter or digital (signal) processor
Processing:

- Perform a particular function by passing a signal through system

Fig. 1.5: Analog processing of analog signal

Fig. 1.6: Digital processing of analog signal
Advantages of DSP over Analog Signal Processing

- Allow development with the use of PC, e.g., MATLAB
- Allow flexibility in reconfiguring the DSP operations simply by changing the program
- Reliable: processing of 0 and 1 is almost immune to noise and data are easily stored without deterioration
- Lower cost due to advancement of VLSI technology
- Security can be introduced by encrypting/scrambling
- Simple: additions and multiplications are main operations
DSP Application Areas

- **Speech**
 - Compression (e.g., LPC is a coding standard for compression of speech data)
 - Synthesis (computer production of speech signals, e.g., text-to-speech engine by Microsoft)
 - Recognition (e.g., PCCW’s 1083 telephone number enquiry system)
 - Enhancement (e.g., noise reduction for a noisy speech)

- **Audio**
 - Compression (e.g., MP3 is a coding standard for compression of audio data)
- Generation of music by different musical instruments such as piano, cello, guitar and flute using computer
- Song with low-cost electronic piano keyboard quality
- Automatic music transcription (writing a piece of music down from a recording)

Image and Video
- Compression (e.g., JPEG and MPEG are coding standards for image and video compression, respectively)
- Recognition such as face, palm and fingerprint
- Enhancement

- Construction of 3-D objects from 2-D images

- Animation, e.g., “Avatar (阿凡達)”
- **Communications**: encoding and decoding of digital communication signals

- **Astronomy**: finding the periods of orbits

- **Biomedical Engineering**: medical care and diagnosis, analysis of ECG, electroencephalogram (EEG), nuclear magnetic resonance (NMR) data

- **Bioinformatics**: DNA sequence analysis, extracting, processing, and interpreting the information contained in genomic and proteomic data

- **Finance**: market risk management, trading algorithm design, investment portfolio analysis