Z Transform

Chapter Intended Learning Outcomes:

(i) Understanding the relationship between z transform and the Fourier transform for discrete-time signals

(ii) Understanding the characteristics and properties of z transform

(iii) Ability to compute z transform and inverse z transform

(iv) Ability to apply z transform for analyzing linear time-invariant (LTI) systems
Definition

The z transform of $x[n]$, denoted by $X(z)$, is defined as:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$ \hspace{1cm} (5.1)

where z is a continuous complex variable.

Is $X(z)$ real-valued or complex-valued?

Relationship with Fourier Transform

Employing (4.2), we construct the continuous-time sampled signal $x_s(t)$ with a sampling interval of T from $x[n]$:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT)$$ \hspace{1cm} (5.2)
Taking Fourier transform of $x_s(t)$ with using properties of $\delta(t)$:

\[X_s(j\Omega) = \int_{-\infty}^{\infty} x_s(t)e^{-j\Omega t} dt = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \delta(t - nT)e^{-j\Omega t} dt \]

\[= \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega nT} \tag{5.3} \]

Defining $\omega = \Omega T$ as the discrete-time frequency parameter and writing $X_s(j\Omega)$ as $X(e^{j\omega})$, (5.3) becomes

\[X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \tag{5.4} \]

which is known as discrete-time Fourier transform (DTFT) or Fourier transform of discrete-time signals.
$X(e^{j\omega})$ is periodic with period 2π:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+2k\pi)n} = X(e^{j(\omega+2k\pi)}) \quad (5.5)$$

where k is any integer. Since z is a continuous complex variable, we can write

$$z = re^{j\omega} \quad (5.6)$$

where $r = |z| > 0$ is magnitude and $\omega = \angle(z)$ is angle of z. Employing (5.6), the z transform is:

$$X(z)|_{z=re^{j\omega}} = X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} (x[n]r^{-n}) e^{-j\omega n} \quad (5.7)$$

which is equal to the DTFT of $x[n]r^{-n}$. When $r = 1$ or $z = e^{j\omega}$, (5.7) and (5.4) are identical:
\[X(z) \big|_{z=e^{j\omega}} = X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \] (5.8)

Fig. 5.1: Relationship between \(X(z) \) and \(X(e^{j\omega}) \) on the \(z \)-plane
Region of Convergence (ROC)

ROC indicates when z transform of a sequence converges

Generally there exists some z such that

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x[n]z^{-n} \right| \to \infty$$ \hspace{1cm} (5.9)

where the z transform does not converge

The set of values of z for which $X(z)$ converges or

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x[n]z^{-n} \right| \leq \sum_{n=-\infty}^{\infty} |x[n]z^{-n}| < \infty$$ \hspace{1cm} (5.10)

is called the ROC, which must be specified along with $X(z)$ in order for the z transform to be complete
Assuming that $x[n]$ is of infinite length, we decompose $X(z)$:

$$X(z) = X_- (z) + X_+ (z)$$ \hspace{1cm} (5.11)

where

$$X_- (z) = \sum_{n=\infty}^{-1} x[n] z^{-n} = \sum_{m=1}^{\infty} x[-m] z^{m}$$ \hspace{1cm} (5.12)

and

$$X_+ (z) = \sum_{n=0}^{\infty} x[n] z^{-n}$$ \hspace{1cm} (5.13)

Let $f_n(z) = x[n] z^{-n}$, $X_+(z)$ is expanded as:

$$X_+(z) = x[0]z^{-0} + x[1]z^{-1} + \cdots + x[n]z^{-n} + \cdots$$

$$= f_0(z) + f_1(z) + \cdots + f_n(z) + \cdots$$ \hspace{1cm} (5.14)
According to the ratio test, convergence of $X_+(z)$ requires

$$\lim_{n\to\infty} \left| \frac{f_{n+1}(z)}{f_n(z)} \right| < 1$$ (5.15)

Let $\lim_{n\to\infty} \left| \frac{x[n+1]}{x[n]} \right| = R_+ > 0$. $X_+(z)$ converges if

$$\lim_{n\to\infty} \left| \frac{x[n+1]z^{-n-1}}{x[n]z^{-n}} \right| = \lim_{n\to\infty} \left| \frac{x[n+1]}{x[n]} \right| |z^{-1}| < 1$$

$$\Rightarrow |z| > \lim_{n\to\infty} \left| \frac{x[n+1]}{x[n]} \right| = R_+$$ (5.16)

That is, the ROC for $X_+(z)$ is $|z| > R_+$.
Let \(\lim_{m \to \infty} \left| \frac{x[-m]}{x[-m-1]} \right| = R_- > 0 \). \(X_-(z) \) converges if

\[
\lim_{m \to \infty} \left| \frac{x[-m-1]z^{m+1}}{x[-m]z^m} \right| = \lim_{m \to \infty} \left| \frac{x[-m-1]}{x[-m]} \right| |z| < 1
\]

\[
\Rightarrow |z| < \lim_{m \to \infty} \left| \frac{x[-m]}{x[-m-1]} \right| = R_-
\]

(5.17)

As a result, the ROC for \(X_-(z) \) is \(|z| < R_- \)

Combining the results, the ROC for \(X(z) \) is \(R_+ < |z| < R_- \):

- ROC is a ring when \(R_+ < R_- \)
- No ROC if \(R_- < R_+ \) and \(X(z) \) does not exist
Fig. 5.2: ROCs for $X_+(z)$, $X_-(z)$ and $X(z)$

Poles and Zeros

Values of z for which $X(z) = 0$ are the zeros of $X(z)$

Values of z for which $X(z) = \infty$ are the poles of $X(z)$
In many real-world applications, $X(z)$ is represented as a rational function:

$$X(z) = \frac{P(z)}{Q(z)} = \frac{\sum_{k=0}^{M} b_k z^k}{\sum_{k=0}^{N} a_k z^k} \quad (5.18)$$

Factorizing $P(z)$ and $Q(z)$, (5.18) can be written as

$$X(z) = \frac{b_0(z - d_1)(z - d_2) \cdots (z - d_M)}{a_0(z - c_1)(z - c_2) \cdots (z - c_N)} \quad (5.19)$$

How many poles and zeros in (5.18)? What are they?
Example 5.1
Determine the z transform of $x[n] = a^n u[n]$ where $u[n]$ is the unit step function. Then determine the condition when the DTFT of $x[n]$ exists.

Using (5.1) and (3.3), we have

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n$$

According to (5.10), $X(z)$ converges if

$$\sum_{n=0}^{\infty} |az^{-1}|^n < \infty$$

Applying the ratio test, the convergence condition is

$$|az^{-1}| < 1 \iff |z| > |a|$$
Note that we cannot write $|z| > a$ because a may be complex

For $|z| > |a|$, $X(z)$ is computed as

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1 - (az^{-1})^\infty}{1 - az^{-1}} = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

Together with the ROC, the z transform of $x[n] = a^n u[n]$ is:

$$X(z) = \frac{z}{z - a}, \quad |z| > |a|$$

It is clear that $X(z)$ has a zero at $z = 0$ and a pole at $z = a$. Using (5.8), we substitute $z = e^{j\omega}$ to obtain

$$X(e^{j\omega}) = \frac{e^{j\omega}}{e^{j\omega} - a}, \quad |e^{j\omega}| = 1 > |a|$$

As a result, the existence condition for DTFT of $x[n]$ is $|a| < 1$.
Otherwise, its DTFT does not exist. In general, the DTFT $X(e^{j\omega})$ exists if its ROC includes the unit circle. If $|z| > |a|$ includes $|z| = 1$, $|a| < 1$ is required.

![ROC diagrams for $|a| < 1$ and $|a| > 1$](image)

Fig.5.3: ROCs for $|a| < 1$ and $|a| > 1$ when $x[n] = a^n u[n]$
Example 5.2
Determine the z transform of $x[n] = -a^n u[-n - 1]$. Then determine the condition when the DTFT of $x[n]$ exists.

Using (5.1) and (3.3), we have

$$X(z) = \sum_{n=-\infty}^{-1} -a^n z^{-n} = - \sum_{m=1}^{\infty} a^{-m} z^m = - \sum_{m=1}^{\infty} (a^{-1} z)^m$$

Similar to Example 5.1, $X(z)$ converges if $|a^{-1} z| < 1$ or $|z| < |a|$, which aligns with the ROC for $X_{-}(z)$ in (5.17). This gives

$$X(z) = - \sum_{m=1}^{\infty} (a^{-1} z)^m = - \frac{a^{-1} z \left(1 - (a^{-1} z)^\infty\right)}{1 - a^{-1} z} = - \frac{a^{-1} z}{1 - a^{-1} z} = \frac{z}{z - a}$$

Together with ROC, the z transform of $x[n] = -a^n u[-n - 1]$ is:

$$X(z) = \frac{z}{z - a}, \quad |z| < |a|$$
Using (5.8), we substitute $z = e^{j\omega}$ to obtain

$$X(e^{j\omega}) = \frac{e^{j\omega}}{e^{j\omega} - a}, \quad |e^{j\omega}| = 1 < |a|$$

As a result, the existence condition for DTFT of $x[n]$ is $|a| > 1$.

Fig.5.4: ROCs for $|a| < 1$ and $|a| > 1$ when $x[n] = -a^n u[-n-1]$
Example 5.3
Determine the z transform of $x[n] = a^n u[n] + b^n u[-n - 1]$ where $|a| < |b|$.

Employing the results in Examples 5.1 and 5.2, we have

$$X(z) = \frac{1}{1 - az^{-1}} + \left(-\frac{1}{1 - bz^{-1}}\right), \quad |z| > |a| \quad \text{and} \quad |z| < |b|$$

$$= \frac{(a - b)z^{-1}}{(1 - az^{-1})(1 - bz^{-1})}$$

$$= \frac{(a - b)z}{(z - a)(z - b)}, \quad |a| < |z| < |b|$$

Note that its ROC agrees with Fig.5.2.

What are the pole(s) and zero(s) of $X(z)$?
Example 5.4
Determine the z transform of $x[n] = \delta[n + 1]$.

Using (5.1) and (3.2), we have

$$X(z) = \sum_{n=-\infty}^{\infty} \delta[n + 1]z^{-n} = z$$

Example 5.5
Determine the z transform of $x[n]$ which has the form of:

$$x[n] = \begin{cases}
a^n, & 0 \leq n \leq N - 1 \\
0, & \text{otherwise}
\end{cases}$$

Using (5.1), we have

$$X(z) = \sum_{n=0}^{N-1} (az^{-1})^n = \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$

What are the ROCs in Examples 5.4 and 5.5?
Finite-Duration and Infinite-Duration Sequences

Finite-duration sequence: values of $x[n]$ are nonzero only for a finite time interval

Otherwise, $x[n]$ is called an infinite-duration sequence:

- **Right-sided**: if $x[n] = 0$ for $n < N_+ < \infty$ where N_+ is an integer (e.g., $x[n] = a^n u[n]$ with $N_+ = 0$; $x[n] = a^n u[n - 10]$ with $N_+ = 10$; $x[n] = a^n u[n + 10]$ with $N_+ = -10$)

- **Left-sided**: if $x[n] = 0$ for $n > N_- > -\infty$ where N_- is an integer (e.g., $x[n] = -a^n u[-n - 1]$ with $N_- = -1$)

- **Two-sided**: neither right-sided nor left-sided (e.g., Example 5.3)
Fig. 5.5: Finite-duration sequences
Figure 5.6: Infinite-duration sequences
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Transform</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta[n]$</td>
<td>1</td>
<td>$\text{All } z$</td>
</tr>
<tr>
<td>$\delta[n-m]$</td>
<td>z^{-m}</td>
<td>$</td>
</tr>
<tr>
<td>$a^n u[n]$</td>
<td>$\frac{1}{1 - az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>$-a^n u[-n-1]$</td>
<td>$\frac{1}{1 - az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>$na^n u[n]$</td>
<td>$\frac{az^{-1}}{(1 - az^{-1})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>$-na^n u[-n-1]$</td>
<td>$\frac{az^{-1}}{(1 - az^{-1})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>$a^n \cos(bn) u[n]$</td>
<td>$\frac{1 - a \cos(b)z^{-1}}{1 - 2a \cos(b)z^{-1} + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>$a^n \sin(bn) u[n]$</td>
<td>$\frac{a \sin(b)z^{-1}}{1 - 2a \cos(b)z^{-1} + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
</tbody>
</table>

Table 5.1: z transforms for common sequences
Eight ROC properties are:

P1. There are four possible shapes for ROC, namely, the entire region except possibly \(z = 0 \) and/or \(z = \infty \), a ring, or inside or outside a circle in the \(z \)-plane centered at the origin (e.g., Figures 5.5 and 5.6)

P2. The DTFT of a sequence \(x[n] \) exists if and only if the ROC of the \(z \) transform of \(x[n] \) includes the unit circle (e.g., Examples 5.1 and 5.2)

P3: The ROC cannot contain any poles (e.g., Examples 5.1 to 5.5)

P4: When \(x[n] \) is a finite-duration sequence, the ROC is the entire \(z \)-plane except possibly \(z = 0 \) and/or \(z = \infty \) (e.g., Examples 5.4 and 5.5)
P5: When \(x[n] \) is a right-sided sequence, the ROC is of the form \(|z| > |p_{\text{max}}|\) where \(p_{\text{max}} \) is the pole with the largest magnitude in \(X(z) \) (e.g., Example 5.1)

P6: When \(x[n] \) is a left-sided sequence, the ROC is of the form \(|z| < |p_{\text{min}}|\) where \(p_{\text{min}} \) is the pole with the smallest magnitude in \(X(z) \) (e.g., Example 5.2)

P7: When \(x[n] \) is a two-sided sequence, the ROC is of the form \(|p_a| < |z| < |p_b|\) where \(p_a \) and \(p_b \) are two poles with the successive magnitudes in \(X(z) \) such that \(|p_a| < |p_b|\) (e.g., Example 5.3)

P8: The ROC must be a connected region

Example 5.6
A \(z \) transform \(X(z) \) contains three poles, namely, \(a, b \) and \(c \) with \(|a| < |b| < |c|\). Determine all possible ROCs.
Fig. 5.7: ROC possibilities for three poles
What are other possible ROCs?

Inverse z Transform

Inverse z transform corresponds to finding $x[n]$ given $X(z)$ and its ROC.

The z transform and inverse z transform are one-to-one mapping provided that the ROC is given:

$$x[n] \leftrightarrow X(z) \quad (5.20)$$

There are 4 commonly used techniques to evaluate the inverse z transform. They are

1. **Inspection**
2. **Partial Fraction Expansion**
3. **Power Series Expansion**
4. **Cauchy Integral Theorem**
Inspection

When we are familiar with certain transform pairs, we can do the inverse \(z \) transform by inspection.

Example 5.7

Determine the inverse \(z \) transform of \(X(z) \) which is expressed as:

\[
X(z) = \frac{z}{2z - 1}, \quad |z| > 0.5
\]

We first rewrite \(X(z) \) as:

\[
X(z) = \frac{0.5}{1 - 0.5z^{-1}}
\]
Making use of the following transform pair in Table 5.1:

\[a^n u[n] \leftrightarrow \frac{1}{1 - az^{-1}}, \quad |z| > |a| \]

and putting \(a = 0.5 \), we have:

\[
\frac{0.5}{1 - 0.5z^{-1}} \leftrightarrow 0.5(0.5)^n u[n]
\]

By inspection, the inverse \(z \) transform is:

\[x[n] = (0.5)^{n+1} u[n] \]
Partial Fraction Expansion

It is useful when \(X(z) \) is a rational function in \(z^{-1} \):

\[
X(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \tag{5.21}
\]

For pole and zero determination, it is advantageous to multiply \(z^{M+N} \) to both numerator and denominator:

\[
X(z) = \frac{z^N \sum_{k=0}^{M} b_k z^{M-k}}{z^M \sum_{k=0}^{N} a_k z^{N-k}} \tag{5.22}
\]
- When \(M > N \), there are \((M - N)\) pole(s) at \(z = 0 \)
- When \(M < N \), there are \((N - M)\) zero(s) at \(z = 0 \)

To obtain the partial fraction expansion from (5.21), the first step is to determine the \(N \) nonzero poles, \(c_1, c_2, \cdots, c_N \)

There are 4 cases to be considered:

Case 1: \(M < N \) and all poles are of **first order**

For first-order poles, all \(\{c_k\} \) are distinct. \(X(z) \) is:

\[
X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - c_k z^{-1}} \tag{5.23}
\]

For each first-order term of \(A_k / (1 - c_k z^{-1}) \), its inverse \(z \) transform can be easily obtained by inspection
Multiplying both sides by \((1 - c_k z^{-1})\) and evaluating for \(z = c_k\)

\[
A_k = (1 - c_k z^{-1}) X(z) \bigg|_{z=c_k} \quad (5.24)
\]

An illustration for computing \(A_1\) with \(N = 2 > M\) is:

\[
X(z) = \frac{A_1}{1 - c_1 z^{-1}} + \frac{A_2}{1 - c_2 z^{-1}}
\]

\[
\Rightarrow (1 - c_1 z^{-1}) X(z) = A_1 + \frac{A_2 (1 - c_1 z^{-1})}{1 - c_2 z^{-1}} \quad (5.25)
\]

Substituting \(z = c_1\), we get \(A_1\)

In summary, three steps are:

- Find poles
- Find \(\{A_k\}\)
- Perform inverse \(z\) transform for the fractions by inspection
Example 5.8
Find the pole and zero locations of $H(z)$:

$$H(z) = -\frac{1 + 0.1z^{-1}}{1 - 2.05z^{-1} + z^{-2}}$$

Then determine the inverse z transform of $H(z)$.

We first multiply z^2 to both numerator and denominator polynomials to obtain:

$$H(z) = -\frac{z(z + 0.1)}{z^2 - 2.05z + 1}$$

Apparently, there are two zeros at $z = 0$ and $z = -0.1$. On the other hand, by solving the quadratic equation at the denominator polynomial, the poles are determined as $z = 0.8$ and $z = 1.25$.
According to (5.23), we have:

\[H(z) = \frac{A_1}{1 - 0.8z^{-1}} + \frac{A_2}{1 - 1.25z^{-1}} \]

Employing (5.24), \(A_1 \) is calculated as:

\[A_1 = (1 - 0.8z^{-1}) H(z) \bigg|_{z=0.8} = -\frac{1 + 0.1z^{-1}}{1 - 1.25z^{-1}} \bigg|_{z=0.8} = 2 \]

Similarly, \(A_2 \) is found to be \(-3\). As a result, the partial fraction expansion for \(H(z) \) is

\[H(z) = \frac{2}{1 - 0.8z^{-1}} - \frac{3}{1 - 1.25z^{-1}} \]

As the ROC is not specified, we investigate all possible scenarios, namely, \(|z| > 1.25 \), \(0.8 < |z| < 1.25 \), and \(|z| < 0.8 \).
For $|z| > 1.25$, we notice that

$$(0.8)^n u[n] \leftrightarrow \frac{1}{1 - 0.8z^{-1}}, \quad |z| > 0.8$$

and

$$(1.25)^n u[n] \leftrightarrow \frac{1}{1 - 1.25z^{-1}}, \quad |z| > 1.25$$

where both ROCs agree with $|z| > 1.25$. Combining the results, the inverse z transform $h[n]$ is:

$$h[n] = (2(0.8)^n - 3(1.25)^n) u[n]$$

which is a right-sided sequence and aligns with P5.

For $0.8 < |z| < 1.25$, we make use of

$$(0.8)^n u[n] \leftrightarrow \frac{1}{1 - 0.8z^{-1}}, \quad |z| > 0.8$$

and
\[-(1.25)^n u[-n - 1] \leftrightarrow \frac{1}{1 - 1.25z^{-1}}, \quad |z| < 1.25\]

where both ROCs agree with \(0.8 < |z| < 1.25\). This implies:

\[h[n] = 2(0.8)^n u[n] + 3(1.25)^n u[-n - 1]\]

which is a two-sided sequence and aligns with P7.

Finally, for \(|z| < 0.8\):

\[-(0.8)^n u[-n - 1] \leftrightarrow \frac{1}{1 - 0.8z^{-1}}, \quad |z| < 0.8\]

and

\[-(1.25)^n u[-n - 1] \leftrightarrow \frac{1}{1 - 1.25z^{-1}}, \quad |z| < 1.25\]

where both ROCs agree with \(|z| < 0.8\). As a result, we have:

\[h[n] = (-2(0.8)^n + 3(1.25)^n) u[-n - 1]\]

which is a left-sided sequence and aligns with P6.
Suppose $h[n]$ is the impulse response of a discrete-time LTI system. Recall (3.15) and (3.16):

$$h[n] = 0, \quad n < 0$$

and

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

The three possible impulse responses:

- $h[n] = (2(0.8)^n - (1.25)^n) u[n]$ is the impulse response of a causal but unstable system

- $h[n] = 2(0.8)^n u[n] + (1.25)^n u[-n - 1]$ corresponds to a noncausal but stable system

- $h[n] = (-2(0.8)^n + (1.25)^n) u[-n - 1]$ is noncausal and unstable

Which of the $h[n]$ has/have DTFT?
Case 2: $M \geq N$ and all poles are of first order

In this case, $X(z)$ can be expressed as:

$$X(z) = \sum_{l=0}^{M-N} B_l z^{-l} + \sum_{k=1}^{N} \frac{A_k}{1 - c_k z^{-1}}$$ \hspace{2cm} (5.26)

- B_l are obtained by long division of the numerator by the denominator, with the division process terminating when the remainder is of lower degree than the denominator.

- A_k can be obtained using (5.24).

Example 5.9
Determine $x[n]$ which has z transform of the form:

$$X(z) = \frac{4 - 2z^{-1} + z^{-2}}{1 - 1.5z^{-1} + 0.5z^{-2}}, \quad |z| > 1$$
The poles are easily determined as $z = 0.5$ and $z = 1$

According to (5.26) with $M = N = 2$:

$$X(z) = B_0 + \frac{A_1}{1 - 0.5z^{-1}} + \frac{A_2}{1 - z^{-1}}$$

The value of B_0 is found by dividing the numerator polynomial by the denominator polynomial as follows:

$$\frac{2}{0.5z^{-2} - 1.5z^{-1} + 1} \frac{2}{z^{-2} - 2z^{-1} + 4} \frac{1}{z^{-2} - 3z^{-1} + 2} \frac{1}{z^{-1} + 2}$$

That is, $B_0 = 2$. Thus $X(z)$ is expressed as

$$X(z) = 2 + \frac{2 + z^{-1}}{(1 - 0.5z^{-1})(1 - z^{-1})} = 2 + \frac{A_1}{1 - 0.5z^{-1}} + \frac{A_2}{1 - z^{-1}}$$
According to (5.24), A_1 and A_2 are calculated as

$$A_1 = \left. \frac{4 - 2z^{-1} + z^{-2}}{1 - z^{-1}} \right|_{z=0.5} = -4$$

and

$$A_2 = \left. \frac{4 - 2z^{-1} + z^{-2}}{1 - 0.5z^{-1}} \right|_{z=1} = 6$$

With $|z| > 1$:

$$\delta[n] \leftrightarrow 1$$

$$(0.5)^n u[n] \leftrightarrow \frac{1}{1 - 0.5z^{-1}}, \quad |z| > 0.5$$

and

$$u[n] \leftrightarrow \frac{1}{1 - z^{-1}}, \quad |z| > 1$$

the inverse z transform $x[n]$ is:

$$x[n] = 2\delta[n] - 4(0.5)^n u[n] + 6u[n]$$
Case 3: \(M < N \) with multiple-order pole(s)

If \(X(z) \) has a \(s \)-order pole at \(z = c_i \) with \(s \geq 2 \), this means that there are \(s \) repeated poles with the same value of \(c_i \). \(X(z) \) is:

\[
X(z) = \sum_{k=1, k \neq i}^{N} \frac{A_k}{1 - c_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1 - c_i z^{-1})^m} \tag{5.27}
\]

- When there are two or more multiple-order poles, we include a component like the second term for each corresponding pole
- \(A_k \) can be computed according to (5.24)
- \(C_m \) can be calculated from:

\[
C_m = \frac{1}{(s - m)!(-c_i)^{s-m}} \cdot \frac{d^{s-m}}{dw^{s-m}} \bigg|_{w=c_i^{-1}} \left[(1 - c_i w)^s X(w^{-1}) \right] \tag{5.28}
\]
Example 5.10
Determine the partial fraction expansion for $X(z)$:

$$X(z) = \frac{4}{(1 + z^{-1})(1 - z^{-1})^2}$$

It is clear that $X(z)$ corresponds to Case 3 with $N = 3 > M$ and one second-order pole at $z = 1$. Hence $X(z)$ is:

$$X(z) = \frac{A_1}{1 + z^{-1}} + \frac{C_1}{1 - z^{-1}} + \frac{C_2}{(1 - z^{-1})^2}$$

Employing (5.24), A_1 is:

$$A_1 = \frac{4}{(1 - z^{-1})^2} \bigg|_{z=-1} = 1$$
Applying (5.28), C_1 is:

\[
C_1 = \frac{1}{(2 - 1)!(-1)^{2-1}} \cdot \frac{d}{dw} \left[(1 - 1 \cdot w)^2 \frac{4}{(1 + w)(1 - w)^2} \right] \bigg|_{w=1}
\]

\[
= - \frac{d}{dw} \frac{4}{1 + w} \bigg|_{w=1}
\]

\[
= \frac{4}{(1 + w)^2} \bigg|_{w=1}
\]

\[
= 1
\]

and

\[
C_2 = \frac{1}{(2 - 2)!(-1)^{2-2}} \cdot \left[(1 - 1 \cdot w)^2 \frac{4}{(1 + w)(1 - w)^2} \right] \bigg|_{w=1}
\]

\[
= \frac{4}{1 + w} \bigg|_{w=1}
\]

\[
= 2
\]
Therefore, the partial fraction expansion for $X(z)$ is

$$X(z) = \frac{1}{1 + z^{-1}} + \frac{1}{1 - z^{-1}} + \frac{2}{(1 - z^{-1})^2}$$

Case 4: $M \geq N$ with multiple-order pole(s)

This is the most general case and the partial fraction expansion of $X(z)$ is

$$X(z) = \sum_{l=0}^{M-N} B_l z^{-l} + \sum_{k=1, k \neq i}^{N} \frac{A_k}{1 - c_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1 - c_i z^{-1})^m} \quad (5.29)$$

assuming that there is only one multiple-order pole of order $s \geq 2$ at $z = c_i$. It is easily extended to the scenarios when there are two or more multiple-order poles as in Case 3. The A_k, B_l and C_m can be calculated as in Cases 1, 2 and 3.
Power Series Expansion

When \(X(z) \) is expanded as power series according to (5.1):

\[
X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \cdots + x[-1]z + x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots \tag{5.30}
\]

any particular value of \(x[n] \) can be determined by finding the coefficient of the appropriate power of \(z^{-1} \)

Example 5.11

Determine \(x[n] \) which has \(z \) transform of the form:

\[
X(z) = 2z^2 (1 - 0.5z^{-1}) (1 + z^{-1}) (1 - z^{-1}), \quad 0 < |z| < \infty
\]

Expanding \(X(z) \) yields

\[
X(z) = 2z^2 - z - 2 + z^{-1}
\]

From (5.30), \(x[n] \) is deduced as:

\[
x[n] = 2\delta[n+2] - \delta[n+1] - 2\delta[n] + \delta[n-1]
\]
Example 5.12

Determine $x[n]$ whose z transform is given as:

$$X(z) = \log(1 + az^{-1}), \quad |z| > |a|$$

With the use of the power series expansion for $\log(1 + \lambda)$:

$$\log(1 + \lambda) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \lambda^n}{n}, \quad |\lambda| < 1$$

$X(z)$ with $|az^{-1}| < 1$ can be expressed as

$$\log(1 + az^{-1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

From (5.30), $x[n]$ is deduced as:

$$x[n] = \frac{(-1)^{n+1} a^n}{n} u[n - 1]$$
Example 5.13
Determine \(x[n] \) whose \(z \) transform has the form of:

\[
X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|
\]

With the use of

\[
\frac{1}{1 - \lambda} = 1 + \lambda + \lambda^2 + \cdots, \quad |
\lambda| < 1
\]

Carrying out long division in \(X(z) \) with \(|az^{-1}| < 1 \):

\[
X(z) = 1 + az^{-1} + (az^{-1})^2 + \cdots
\]

From (5.30), \(x[n] \) is deduced as:

\[
x[n] = a^n u[n]
\]

which agrees with Example 5.1 and Table 5.1
Example 5.14
Determine $x[n]$ whose z transform has the form of:

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| < |a|$$

We first express $X(z)$ as:

$$X(z) = \frac{-a^{-1}z}{-a^{-1}z} \cdot \frac{1}{1 - a^{-1}z} = \frac{-a^{-1}z}{1 - a^{-1}z}$$

Carrying out long division in $X(z)$ with $|a^{-1}z| < 1$:

$$X(z) = -a^{-1}z \left(1 + a^{-1}z + (a^{-1}z)^2 + \cdots\right)$$

From (5.30), $x[n]$ is deduced as:

$$x[n] = -a^n u[-n - 1]$$

which agrees with Example 5.2 and Table 5.1
Properties of z Transform

1. Linearity

Let \((x_1[n], X_1(z))\) and \((x_2[n], X_2(z))\) be two \(z\) transform pairs with ROCs \(\mathcal{R}_{x_1}\) and \(\mathcal{R}_{x_2}\), respectively, we have

\[
a x_1[n] + b x_2[n] \leftrightarrow a X_1(z) + b X_2(z)
\]

(5.31)

Its ROC is denoted by \(\mathcal{R}\), which includes \(\mathcal{R}_{x_1} \cap \mathcal{R}_{x_2}\) where \(\cap\) is the intersection operator. That is, \(\mathcal{R}\) contains at least the intersection of \(\mathcal{R}_{x_1}\) and \(\mathcal{R}_{x_2}\).

Example 5.15
Determine the \(z\) transform of \(y[n]\) which is expressed as:

\[
y[n] = x_1[n] + x_2[n]
\]

where \(x_1[n] = (0.2)^n u[n]\) and \(x_2[n] = (-0.3)^n u[n]\). By inspection,
the z transforms of $x_1[n]$ and $x_2[n]$ are:

$$x_1[n] = (0.2)^n u[n] \leftrightarrow \frac{1}{1 - 0.2z^{-1}}, \quad |z| > 0.2$$

and

$$x_2[n] = (-0.3)^n u[n] \leftrightarrow \frac{1}{1 + 0.3z^{-1}}, \quad |z| > 0.3$$

According to the linearity property, the z transform of $y[n]$ is

$$Y(z) = \frac{1}{1 - 0.2z^{-1}} + \frac{1}{1 + 0.3z^{-1}}, \quad |z| > 0.3$$

2. Time Shifting

A time-shift of n_0 in $x[n]$ causes a multiplication of z^{-n_0} in $X(z)$

$$x[n - n_0] \leftrightarrow z^{-n_0}X(z) \quad (5.32)$$

The ROC for $x[n - n_0]$ is basically identical to that of $X(z)$ except for the possible addition or deletion of $z = 0$ or $z = \infty$
Example 5.16
Find the z transform of $x[n]$ which has the form of:

$$x[n] = a^{n-1}u[n - 1]$$

Employing the time-shifting property with $n_0 = 1$ and:

$$a^n u[n] \leftrightarrow \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

we easily obtain

$$a^{n-1}u[n - 1] \leftrightarrow z^{-1} \cdot \frac{1}{1 - az^{-1}} = \frac{z^{-1}}{1 - az^{-1}}, \quad |z| > |a|$$

Note that using (5.1) with $|z| > |a|$ also produces the same result but this approach is less efficient:

$$X(z) = \sum_{n=1}^{\infty} a^{n-1}z^{-n} = a^{-1} \sum_{n=1}^{\infty} (az^{-1})^n = a^{-1} \frac{az^{-1} \left[1 - (az^{-1})^\infty\right]}{1 - az^{-1}} = \frac{z^{-1}}{1 - az^{-1}}$$
3. Multiplication by an Exponential Sequence (Modulation)

If we multiply $x[n]$ by z_0^n in the time domain, the variable z will be changed to z/z_0 in the z transform domain. That is:

$$z_0^n x[n] \leftrightarrow X(z/z_0) \quad (5.33)$$

If the ROC for $x[n]$ is $R_+ < |z| < R_-$, the ROC for $z_0^n x[n]$ is $|z_0|R_+ < |z| < |z_0|R_-$

Example 5.17

With the use of the following z transform pair:

$$u[n] \leftrightarrow \frac{1}{1 - z^{-1}}, \quad |z| > 1$$

Find the z transform of $x[n]$ which has the form of:

$$x[n] = a^n \cos(bn)u[n]$$
Noting that $\cos(bn) = (e^{jbn} + e^{-jbn})/2$, $x[n]$ can be written as:

$$x[n] = \frac{1}{2} (ae^{j b})^n u[n] + \frac{1}{2} (ae^{-j b})^n u[n]$$

By means of the modulation property of (5.33) with the substitution of $z_0 = ae^{j b}$ and $z_0 = ae^{-j b}$, we obtain:

$$\frac{1}{2} (ae^{j b})^n u[n] \leftrightarrow \frac{1}{21 - (z/(ae^{j b}))^{-1}} = \frac{1}{21 - ae^{j b}z^{-1}}, \quad |z| > |a|$$

and

$$\frac{1}{2} (ae^{-j b})^n u[n] \leftrightarrow \frac{1}{21 - (z/(ae^{-j b}))^{-1}} = \frac{1}{21 - ae^{-j b}z^{-1}}, \quad |z| > |a|$$

By means of the linearity property, it follows that

$$X(z) = \frac{1}{21 - ae^{j b}z^{-1}} + \frac{1}{21 - ae^{-j b}z^{-1}} = \frac{1 - a \cos(b)z^{-1}}{1 - 2a \cos(b)z^{-1} + a^2 z^{-2}}, \quad |z| > |a|$$

which agrees with Table 5.1.
4. Differentiation

Differentiating $X(z)$ with respect to z corresponds to multiplying $x[n]$ by n in the time domain:

$$nx[n] \leftrightarrow -z \frac{dX(z)}{dz} \quad (5.34)$$

The ROC for $nx[n]$ is basically identical to that of $X(z)$ except for the possible addition or deletion of $z = 0$ or $z = \infty$.

Example 5.18
Determine the z transform of $x[n] = na^n u[n]$.

Since

$$a^n u[n] \leftrightarrow \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

and
By means of the differentiation property, we have

\[\frac{d}{dz} \left(\frac{1}{1 - az^{-1}} \right) = \frac{d}{d(1 - az^{-1})} \cdot \frac{d(1 - az^{-1})}{dz} = -\frac{az^{-2}}{(1 - az^{-1})^2} \]

which agrees with Table 5.1.

5. Conjugation

The \(\mathcal{Z} \) transform pair for \(x^*[n] \) is:

\[x^*[n] \leftrightarrow X^*(\bar{z}^*) \quad (5.35) \]

The ROC for \(x^*[n] \) is identical to that of \(x[n] \)
6. Time Reversal

The z transform pair for $x[-n]$ is:

$$x[-n] \leftrightarrow X(z^{-1})$$ \hspace{1cm} (5.36)

If the ROC for $x[n]$ is $R_+ < |z| < R_-$, the ROC for $x[-n]$ is $1/R_- < |z| < 1/R_+$

Example 5.19
Determine the z transform of $x[n] = -na^{-n}u[-n]$

Using Example 5.18:

$$na^n u[n] \leftrightarrow \frac{az^{-1}}{(1 - az^{-1})^2}, \hspace{0.5cm} |z| > |a|$$

and from the time reversal property:

$$X(z) = \frac{az}{(1 - az)^2} = \frac{a^{-1}z^{-1}}{(1 - a^{-1}z^{-1})^2}, \hspace{0.5cm} |z| < |a^{-1}|$$
7. Convolution

Let \((x_1[n], X_1(z))\) and \((x_2[n], X_2(z))\) be two \(z\) transform pairs with ROCs \(\mathcal{R}_{x_1}\) and \(\mathcal{R}_{x_2}\), respectively. Then we have:

\[
x_1[n] \otimes x_2[n] \leftrightarrow X_1(z)X_2(z)
\]
(5.37)

and its ROC includes \(\mathcal{R}_{x_1} \cap \mathcal{R}_{x_2}\).

The proof is given as follows.

Let

\[
y[n] = x_1[n] \otimes x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n - k]
\]
(5.38)

With the use of the time shifting property, \(Y(z)\) is:
Transfer Function of Linear Time-Invariant System

A LTI system can be characterized by the transfer function, which is a z transform expression.
Starting with:

\[\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k] \] \hspace{1cm} (5.40)

Applying \(z \) transform on \((5.40) \) with the use of the linearity and time shifting properties, we have

\[Y(z) \sum_{k=0}^{N} a_k z^{-k} = X(z) \sum_{k=0}^{M} b_k z^{-k} \] \hspace{1cm} (5.41)

The transfer function, denoted by \(H(z) \), is defined as:

\[H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \] \hspace{1cm} (5.42)
The system impulse response $h[n]$ is given by the inverse z transform of $H(z)$ with an appropriate ROC, that is, $h[n] \leftrightarrow H(z)$, such that $y[n] = x[n] \otimes h[n]$. This suggests that we can first take the z transforms for $x[n]$ and $h[n]$, then multiply $X(z)$ by $H(z)$, and finally perform the inverse z transform of $X(z)H(z)$.

Example 5.20
Determine the transfer function for a LTI system whose input $x[n]$ and output $y[n]$ are related by:

$$y[n] = 0.1y[n - 1] + x[n] + x[n - 1]$$

Applying z transform on the difference equation with the use of the linearity and time shifting properties, $H(z)$ is:

$$Y(z) \left(1 - 0.1z^{-1}\right) = X(z) \left(1 + z^{-1}\right) \Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-1}}{1 - 0.1z^{-1}}$$
Note that there are two ROC possibilities, namely, $|z| > 0.1$ and $|z| < 0.1$ and we cannot uniquely determine $h[n]$

Example 5.21
Find the difference equation of a LTI system whose transfer function is given by

$$H(z) = \frac{(1 + z^{-1})(1 - 2z^{-1})}{(1 - 0.5z^{-1})(1 + 2z^{-1})}$$

Let $H(z) = Y(z)/X(z)$. Performing cross-multiplication and inverse z transform, we obtain:

$$(1 - 0.5z^{-1})(1 + 2z^{-1}) Y(z) = (1 + z^{-1})(1 - 2z^{-1}) X(z)$$

$\Rightarrow (1 + 1.5z^{-1} - z^{-2}) Y(z) = (1 - z^{-1} - 2z^{-2}) X(z)$

Examples 5.20 and 5.21 imply the equivalence between the difference equation and transfer function
Example 5.22
Compute the impulse response $h[n]$ for a LTI system which is characterized by the following difference equation:

$$y[n] = x[n] - x[n - 1]$$

Applying z transform on the difference equation with the use of the linearity and time shifting properties, $H(z)$ is:

$$Y(z) = X(z) \left(1 - z^{-1}\right) \Rightarrow H(z) = \frac{Y(z)}{X(z)} = 1 - z^{-1}$$

There is only one ROC possibility, namely, $|z| > 0$. Taking the inverse z transform on $H(z)$, we get:

$$h[n] = \delta[n] - \delta[n - 1]$$

which agrees with Example 3.12
Example 5.23
Determine the output $y[n]$ if the input is $x[n] = u[n]$ and the LTI system impulse response is $h[n] = \delta[n] + 0.5\delta[n - 1]$

The z transforms for $x[n]$ and $h[n]$ are

$$X(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$

and

$$H(z) = 1 + 0.5z^{-1} \quad |z| > 0$$

As a result, we have:

$$Y(z) = X(z)H(z) = \frac{1}{1 - z^{-1}} + 0.5\frac{z^{-1}}{1 - z^{-1}}, \quad |z| > 1$$

Taking the inverse z transform of $Y(z)$ with the use of the time shifting property yields:

$$y[n] = u[n] + 0.5u[n - 1]$$