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ABSTRACT
The problem of node localization in a wireless sensor network
(WSN) with the use of the incomplete and noisy distance mea-
surements between nodes as well as anchor position information
is currently an an important yet challenging research topic. Most
WSN localization studies at present have assumed that the anchor
positions are perfectly known which is not valid in the underwater
and underground scenarios. In this paper, semi-definite program-
ming (SDP) algorithms are devised for finding the localizations
of unknown-position nodes in the presence of anchor position
uncertainty. Computer simulations are included to contrast the
performance of the proposed algorithms with the conventional SDP
method and Cramér-Rao lower bound.

Index Terms— sensor networks, node localization, range mea-
surements, semi-definite programming

I. INTRODUCTION
A wireless sensor network (WSN) consists of a number of small

spatially distributed wireless devices or devices which can perform
computation, communication, sensing and control tasks. They are
able to take environmental measurements, such as temperature,
light, sound pressure and humidity for a wide range of monitoring
and control applications in the military, environmental, health and
commercial aspects [5]– [8]. Due to the mostly arbitrary node
deployment, the sensor locations are often unknown. As a result,
determining the physical positions of the sensor nodes is an
important problem in the WSNs.
In this paper we consider determining the absolute positions of

sensor nodes in a network given incomplete and noisy pairwise
distance measurements [5]– [8], which are constructed from the
received signal strength or time-of-arrival information acquired by
the sensors during communications with their neighbors. A standard
assumption is that the positions of some nodes, called anchors,
are known exactly. In the presence of Gaussian disturbance, the
maximum-likelihood estimator (MLE) for WSN location estimation
is devised in [5] which corresponds to a multi-variable non-linear
optimization problem and is hard to implement in practice. The
MLE can be realized by stochastic optimization methods such as
genetic algorithm and simulated annealing [6] but they involve
intensive computations with no guarantee of attaining the global
optimum point. Alternatively, it is possible to relax the MLE
formulation to a semi-definite programming (SDP) problem [7]–
[8] in order to provide a high-fidelity approximate solution that
can be obtained in a globally optimum fashion with reduced
computational efforts. However, most WSN localization studies
[5]– [8] concentrate on the case when the anchor positions are
perfectly known. In this paper, we devise novel SDP algorithms
for node localization using noisy pairwise distance measurements

in the presence of this uncertainty. A representative application
scenario is an underwater WSN [9] where there are three types
of nodes, namely, surface buoys, anchors and unknown-position
nodes. Surface buoys drift on the water surface and they can
get their absolute locations from global positioning system (GPS)
or by other means. The anchors estimate their positions through
communications with the buoys and this implies the presence of
anchor position uncertainty. As in conventional WSNs, the ordinary
nodes communicate with each other as well as the anchors to
estimate their positions as they do not have wireless connections
with the buoys. Note that even GPS-based positioning cannot give
error-free location solutions as well. It is noteworthy that [10] has
recently studied the impact of anchor position uncertainty in node
localization but the suggested convex optimization approach is not
derived from the MLE.
The rest of the paper is organized as follows. Assuming that

both the distance errors and anchor position errors are Gaussian
distributed, the MLE for node localization with anchor location
uncertainty is first developed in Section II. In addition, further
approximation on the developed algorithm based on the edge-
based semi-definite programming (ESDP) [11] which allows a more
computationally efficient realization is suggested. The proposed
WSN positioning algorithms are evaluated by comparing with
the standard SDP approach as well as Cramér-Rao lower bound
(CRLB) in Section III. Finally, conclusions are drawn in Section
IV.

II. PROPOSED METHOD

To start with, we would like to introduce the notations used in
this paper. Bold upper case symbols denote matrices and bold lower
case symbols denote vectors. We use {·}o to represent the true value
while its variable is {·} and its estimate is {̂·}. The 0m×n ∈ R

m×n

and 0n ∈ R
n×n are zero matrices and In ∈ R

n×n is the identity
matrix. For two symmetric matrices A and B, A � B is equal to
A−B � 0 which indicates that A−B is positive semi-definite.
Trace operator of matrix A is denoted by Tr(A). The T and −1

denote matrix transpose and inverse operators, respectively, and
‖x‖2 represents the 2-norm of a vector x. Consider a network of
m sensors in a two-dimensional space. Let xo

i = [xo
i , y

o
i ]T , i =

1, 2, · · · , m, be the true position of the ith node. Without loss of
generality, we assume that the first k of them, xo

1,x
o
2, · · · ,xo

k, are
the anchor positions while xo

k+1,x
o
k+2, · · · ,xo

m, correspond to the
unknown-position sensors. For absolute positioning, it required that
k ≥ 3. In this Section, we consider that there is position uncertainty
in the anchor information and our task is to find better estimates
of the k anchor positions as well as the n = (m − k) unknown-
sensor locations, or to estimate Xo = [xo

1,x
o
2, · · · ,xo

m] ∈ R
2×m.

By further relaxing the constraints in the proposed SDP algorithm,
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we then provide its computationally efficient approximation using
the ESDP.

II-A. SDP algorithm development
Denote ro

ij , i, j = 1, 2, · · · , m, be the distance from the ith node
to jth node. In the absence of measurement error, a simple relation
between them is

ro
ij = ro

ji =
q

(xo
i − xo

j)
2 + (yo − yo

j )2

= ‖xo
i − xo

j‖2, i, j = 1, 2, . . . , m
(1)

In the presence of distance errors and anchor position errors, our
observations are dij = ro

ij + eij , i �= j = 1, 2, . . . , m, and ai =
xo

i +ui, i = 1, 2, . . . , k. Each ai ∈ R
2×1 represents an erroneous

anchor position. The disturbances eij and ui ∈ R
2×1 are assumed

to be independent zero-mean Gaussian processes with variances and
covariance matrices σ2

ij and Φi ∈ R
2×2, respectively. Note that we

only have an incomplete set of {dij} due to limited communication
ranges between nodes. Without loss of generality, we assume that
all the distance measurements between {ai} are not available.
Let X = [x1,x2, · · · ,xm] be the variable matrix for Xo and

A = [a1,a2, · · ·,ak]. Under Gaussian disturbance assumption, the
MLE for Xo is achieved by maximization of the probability of
p({dij},A|X). As {eij} and {ui} are independent, the probability
can be expressed as

p({dij}, A|X) = p({dij}|X)
kY

i=1

p(ai|xi) (2)

Maximizing (2) is equivalent to the nonlinear least squares (NLS)
problem:

min
X∈R2×m

mX
i=k+1

kX
j=1

δij

σ2
ij

|dij − ‖xi − xj‖2|2

+
mX

i,j=k+1

i>j

δij

σ2
ij

|dij − ‖xi − xj‖2|2

+

kX
i=1

(ai − xi)
T Φ−1

i (ai − xi)

(3)

where δij = 1 if the distance measurement is available and 0
otherwise. The first and second terms of (3) correspond to the
distances between the anchors and unknown-position sensors, and
distances among the unknown-position sensors, respectively, while
the last term addresses the anchor position uncertainty. To simplify
the expression, we define gij :

gij =

(
δij/2σ2

ij , i > k and j > k

δij/σ2
ij , otherwise

(4)

Expanding the objective function in (3) and dropping the irrelevant
terms yields an equivalent cost function:

mX
i=k+1

mX
j=1

gij

ˆ‖xi − xj‖22 − 2dij‖xi − xj‖2
˜

+

kX
i=1

xT
i Φ−1

i xi − 2aT
i Φ−1

i xi

(5)

In order to form a tight constraint in the later relaxation procedure,
we introduce two dummy variables γij and rij for the first term
and second term of (5), respectively. Then a constraint which relates

γij and X is

γij = r2
ij = ‖xi − xj‖2 = yii + yjj − yij − yji,

i = k + 1, k + 2, · · · , m, j = 1, 2, · · · , m
(6)

where yij = xT
i xj is the (i, j) entry of the matrix Y which is

defined as

Y :=

»
XT X XT

X I2

–
(7)

Furthermore, we denote Ξi = xix
T
i . The second last term of (5)

will become
kX

i=1

xT
i Φ−1

i xi =
kX

i=1

Tr(Φ−1
i Ξi) (8)

For the sake of establishing a relationship between Ξi and yii, we
utilize Ξi to introduce Tr(Ξi) = xT

i xi = yii, i = 1, 2, · · · , k
as a further constraint. With the use of all developed constraints,
the MLE of (3) is equivalent to the following formulation:

min
X,Y,{Ξi},{γij},{rij}

mX
i=k+1

mX
j=1

gij [γij − 2dijrij ]

+

kX
i=1

h
Tr(Φ−1

i Ξi)− 2aT
i Φ−1

i xi

i
s.t. γij = yii + yjj − yij − yji

r2
ij = γij ,

i = k + 1, k + 2, · · · , m, j = 1, 2, · · · , m

Tr(Ξi) = yii, i = 1, 2, · · · , k

Ξi = xix
T
i , i = 1, 2, · · · , k

Y =

»
XT X XT

X I2

–

(9)

We now relax (9) to a convex optimization problem as follows.
The equality r2

ij = γij in (9) will be replaced by the inequality
r2

ij ≤ γij to meet the convex specification. In fact, rij and γij

will increase and decrease in the minimization, respectively, a
tight constraint is automatically achieved, and thus the inequality
constraint will be forced to an equality. In addition, performing
semi-definite relaxation on (7) and Ξi = xix

T
i , the MLE of (9) is

approximated as a convex optimization problem:

min
X,Y,{Ξi},{γij},{rij}

mX
i=k+1

mX
j=1

gij [γij − 2dijrij ]

+

kX
i=1

h
Tr(Φ−1

i Ξi)− 2aT
i Φ−1

i xi

i
(10)

s.t. γij = yii + yjj − yij − yji (11)
r2

ij ≤ γij , (12)
i = k + 1, k + 2, · · · , m, j = 1, 2, · · · , m

Tr(Ξi) = yii, i = 1, 2, · · · , k (13)»
Ξi xi

xT
i 1

–
� 03, i = 1, 2, · · · , k (14)

Y � 0m+2 (15)
xi = [yi m+1, yi m+2]

T , i = 1, 2, · · · , m (16)»
ym+1 m+1 ym+1 m+2

ym+2 m+1 ym+2 m+2

–
= I2 (17)

where all the constraints are tight except (14) and (15) which im-
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pose rank relaxation on the matrices. In the optimization literature,
there are readily available solvers for finding the globally optimum
SDP solution for (10)−(17), such as SEDUMI [12] and SDPT3
[13]-[14]. Although the centralized approach is studied in this work,
the proposed method can be easily extended to the decentralized
scenario by dividing the WSN into clusters of smaller sub-networks
[7] – [8].

II-B. Edge-based SDP
As the arithmetic operation complexity of the SDP is at least

O(m3) [11], it is desirable to have a more computationally efficient
solution particularly when the network size is large. One recent SDP
development which can achieve efficient and accurate estimation
while retaining its key theoretical property is to relax the single
semi-definite matrix cone into a set of small-size cones, and this is
known as ESDP relaxation [11]. The ESDP version of our proposed
algorithm is simply achieved by replacing the single (m + 2)-
dimensional matrix cone Y in (17) with at most m(m − 1)/2
4-dimensional matrix cones:2

4 yii yij xT
i

yji yjj xT
j

xi xj I2

3
5 � 04,

i, j = 1, 2, · · ·m, i > j, δij = 1

(18)

That is, (10)−(17) and (18) correspond to the ESDP relaxation
algorithm for node localization in the presence of anchor position
uncertainty.

III. SIMULATION RESULTS
Computer simulation has been conducted to evaluate the per-

formance of the proposed SDP node positioning approach in the
presence of anchor position error. Comparison with the standard
SDP algorithm based on MLE [7] which assumes perfect anchor
position information and the corresponding CRLB is also made.
We utilize the MATLAB toolbox YALMIP [15] to realize all
SDP algorithms where the solver SDPT3 [13]-[14] is employed.
For the mean square error (MSE) performance evaluation, only
the estimates for the unknown-position nodes are involved in
the computation as the standard algorithm cannot fine tune the
anchor positions, and all the results are based on averages of 500
independent runs. The range errors {eij} are zero-mean white
Gaussian variables with standard deviations {σdro

ij}, which means
that a larger range will correspond to a larger variance, and we
scale the values of σd to obtain different noisy conditions.
We first consider a WSN of 18 sensors with 8 of them are anchors

and its configuration is depicted in Figure 1. In this WSN geometry,
nodes are partially connected and the maximum communication
range between nodes is set to be 25m which corresponds to an
average node degree [16] of 8.67. In the first experiment, we
investigate the performance of the SDP algorithms in the presence
of anchor position uncertainty. All anchor position covariance
matrices are assigned as Φi = κ2

i I2 with κ2
i = −10 dBm2 for

all i. Figure 2 shows the MSEs of the position estimates versus σ2
d

we see the superiority of the proposed SDP and ESDP methods over
the standard one particularly for smaller noise conditions, although
the two SDP algorithms give nearly the same performance when
σ2

d ≥ −30 dBm2. It is also observed that the performance of
our SDP method is close to the CRLB while the ESDP version
only degrades the tighter SDP scheme by less than 0.5 dBm2. The
MSE results versus κ2

i at σ2
d = −50 dBm2 are plotted in Figure

3. Apart from higher estimation performance of the proposed SDP

and ESDP methods, we see that the improvement over the standard
one increases with the anchor position error.
The computation times and MSEs of the proposed SDP and

ESDP algorithms are studied for different number of nodes, and
the results are tabulated in Table I. The number of anchors is
fixed at k = 8 with the same positions as in the above tests. The
unknown-position nodes are placed inside the 40m × 40m area
where the communication range is governed by 0.3(40 × 40)/m
and σ2

d = −20 dBm2 is assigned. It is observed that for a larger
WSN, the EDSP scheme is much more computationally efficient
than the SDP method at the expense of higher MSEs.

IV. CONCLUSION

Assuming Gaussian distributed disturbances, the nonconvex
maximum likelihood estimation for sensor network node local-
ization in the presence of anchor position uncertainty has been
approximated to a convex optimization problems using the semi-
definite programming (SDP) relaxation technique. It is shown that
when the anchor positions are of errors, the proposed SDP and
its edge-based variant algorithms can give very accurate node
localization performance.
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