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ABSTRACT

In this paper, frequency estimation of a two-
dimensional (2D) cisoid in the presence of additive
white Gaussian noise is addressed. By utilizing the
rank-one property of the 2D noise-free data matrix, the
frequencies are estimated in a separable manner from
the principal left and right singular vectors according to
an iterative weighted least squares procedure. We have
also derived the mean and variance expressions for the
frequency estimates, which show that they are approx-
imately unbiased and their accuracy achieves Cramér-
Rao lower bound (CRLB) at sufficiently high signal-
to-noise ratio conditions. Computer simulation results
are included to corroborate the theoretical development
as well as to contrast the performance of the proposed
algorithm with the weighted phase averager and itera-
tive quadratic maximum likelihood method as well as
CRLB.

Index Terms – frequency estimation, two-
dimensional parameter estimation

1 Introduction

The problem of two-dimensional (2D) frequency estima-
tion from a 2D data set has received considerable atten-
tion in the literature [1]–[3] because it has applications
in many areas such as sonar, radar, wireless communi-
cations and biomedical engineering. In this paper, 2D
frequency estimation of a complex sinusoid in additive
noise is addressed. The observed 2D data set is

rm,n = sm,n + qm,n,

m = 1, 2, · · · , M, n = 1, 2, · · · , N (1)

where

sm,n = γej(μm+νn) (2)

is the noise-free cisoid. The γ is the unknown complex
amplitude and μ ∈ (−π, π) and ν ∈ (−π, π) are the un-
known frequencies, while qm,n is a zero-mean complex
white Gaussian noise, that is, its real and imaginary
parts are white processes with identical but unknown
variances of σ2/2 and uncorrelated with each other.

The task is to find μ and ν from the MN samples of
{rm,n}.

Maximum likelihood (ML) frequency estimates for
a complex tone can be obtained from the 2D peri-
odogram maximum [1]. However, the ML estimator
requires extensive computations and thus is unsuitable
for real-time applications. To avoid high computational
cost, phase-based [4] and linear prediction (LP) [5] ap-
proaches are two possible choices. As an example of
the former methodology, Kay and Nekovei [2] have ex-
tended the weighted phase averager (WPA) [6], which
utilizes the differenced phase data for one-dimensional
(1D) frequency estimation, to 2D. While for the latter,
an iterative quadratic maximum likelihood (IQML) es-
timator [3] which makes use of the LP property and
weighted least squares (WLS) is devised recently. The
IQML method can also be considered as the 1D exten-
sion of the generalized weighted linear predictor (WLP)
[7]. In this work, we exploit the principal singular vec-
tors of the 2D data matrix constructed from {rm,n} to
achieve efficient frequency estimation.

The rest of the paper is organized as follows. The al-
gorithm development is presented in Section 2. Based
on the rank-one property of the 2D noise-free data ma-
trix, we propose to find μ and ν from the principal
left and right singular vectors, respectively, in a sepa-
rable manner, according to an iterative WLS procedure
which is similar to [7]. Mean and variance analysis of
the proposed estimator is provided in Section 3. Numer-
ical examples are included in Section 4 to corroborate
the theoretical development and to evaluate the perfor-
mance of our developed scheme by comparing with the
WPA [2] and IQML [3] method as well as Cramér-Rao
lower bound (CRLB). Finally, conclusions are drawn in
Section 5.

2 Algorithm Development

We first express (1)–(2) in matrix form as:

R = S + Q (3)

where R ∈ CM×N , S ∈ CM×N and Q ∈ CM×N .
Denoting the (m, n) entry of R by [R]m,n, we have
[R]m,n = rm,n, [S]m,n = sm,n and [Q]m,n = qm,n.
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From the regular structure of S, it is clear that the
noise-free data matrix can be represented as

S = γghT (4)

where

g = [ejμ ej2μ · · · ejMμ]T (5)

and

h = [ejν ej2ν · · · ejNν ]T (6)

are complex vectors of unity-magnitude tones with fre-
quencies μ and ν, respectively. Thus g and h satisfy
the LP property:

[g]m = ejμ[g]m−1, m = 2, 3, · · · , M (7)

and

[h]n = ejν [h]n−1, n = 2, 3, · · · , N (8)

where [ ]m represents the mth element in the vector.
On the other hand, R can be decomposed using sin-

gular value decomposition (SVD) as

R = UΛVH (9)

where Λ = diag(λ1, λ2, . . . , λN ) is the diagonal ma-
trix of singular values of R with λ1 ≥ λ2 ≥ · · · =
λN ≥ 0 while U = [u1 u2 · · · uN ] ∈ CM×N and
Ṽ = [v1 v2 · · · vN ] ∈ CN×N are orthonormal matrices
whose columns are the corresponding left and right sin-
gular vectors, respectively. From the decomposition in
(4)–(6), it is obvious that rank(S) = 1 and thus the best
rank-one approximation of S according to (9), denoted
by Ŝ, is

Ŝ = λ1u1vH
1 (10)

Comparing (4) and (10), it is obvious that λ1, u1 and
v∗

1 , correspond to α, g and h, up to an unknown mul-
tiplying constant, respectively. This means that the
noise-free versions of u1 and v1, denoted by ū1 and v̄1,
possess the same LP property as in (7)–(8). Define

x1 = [[u1]1 [u1]2 · · · [u1]M−1]T (11)
x2 = [[u1]2 [u1]3 · · · [u1]M ]T (12)

and let a = ejμ, we then have:

x1a ≈ x2 (13)

Following [7], the WLS estimate of a is computed as:

â = arg min
ã

(x1ã− x2)HWM (a)(x1ã− x2)

=
xH

1 WM (a)x2

xH
1 WM (a)x1

(14)

The optimum weighting
matrix, WM (a) ∈ C(M−1)×(M−1), is constructed from
the residual error of x1a − x2 = Δx1a − Δx2 where
Δ denotes the perturbation, and hence a function of a,
which is commonly known as the Markov estimate [8].

With the use of (11)–(12), the inverse of WM (a) is

W−1
M (a) = E

{
(Δx1a−Δx2)(Δx1a−Δx2)H

}

= AE
{
Δu1ΔuH

1

}
AH (15)

where

A =

⎡

⎢⎢
⎢
⎣

1 a 0 · · · 0
0 1 a · · · 0
. . . . . . . . . . . .
0 0 · · · 1 a

⎤

⎥⎥
⎥
⎦
∈ C(M−1)×M (16)

and E denotes the expectation operator. Employing
[9], Δu1 is approximated as:

Δu1 ≈ λ̄−1
1 ŪnŪH

n Qv̄1

= λ̄−1
1 (v̄T

1 ⊗ ŪnŪH
n )vec(Q) (17)

where Ūn = [ū2 ū3 · · · ūN ] corresponds to the noise-
free noise subspace and ⊗ and vec represent Kronecker
product and vectorization, respectively. Employing
(17), E

{
Δu1ΔuH

1

}
is derived as:

E
{
Δu1ΔuH

1

}

= λ̄−2
1 (v̄T

1 ⊗ ŪnŪH
n )E

{
vec(Q)vec(Q)H

}×
(v̄∗

1 ⊗ ŪnŪH
n )

= λ̄−2
1 (v̄T

1 ⊗ ŪnŪH
n )(σ2I)(v̄∗

1 ⊗ ŪnŪH
n )

= λ̄−2
1 σ2(v̄T

1 v̄∗
1)⊗ (ŪnŪH

n ŪnŪH
n )

= λ̄−2
1 σ2ŪnŪH

n (18)

where I is the identity matrix. Note that the values
of λ̄1 and σ2 are not required as they will be canceled
out in (14), that is, we only need to know WM (a) up
to a multiplying scalar. Substituting (18) into (15) and
with the use of Aū1 = 0 where 0 is the zero vector, and
ŪnŪH

n = I− ū1ūH
1 , WM (a) is simplified as

WM (a) = (AŪnŪH
n AH)−1

= (AAH)−1 (19)

Changing the variable from a back to μ with a = ejμ

yields a closed-form expression for WM (a) = WM (μ)
with elements [7]:

[WM (μ)]m,n =
M min(m, n)−mn

M
ej(n−m)μ (20)
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where min(m, n) = m if m < n and it is equal to n
otherwise. As xH

1 WM (μ)x1 is real and positive [7], we
simplify (14) to obtain the WLS estimate of μ, denoted
by μ̂, as:

μ̂ = �
(
xH

1 WM (μ)x2

)
(21)

As WM (μ) is characterized by the unknown parame-
ter μ, we follow [7] to estimate μ in an iterative manner
as follows.

(i) Obtain an initial frequency estimate using (21)
with [WM (μ)]m,n = 0 for m �= n, which is in fact
the WLP estimate [6].

(ii) Use μ̂ = μ to construct WM (μ) according to (20).

(iii) Compute an updated μ̂ using (21).

(iv) Repeat Steps (ii)-(iii) until a stopping criterion is
reached.

In a similar manner, ν is estimated independently
from v1 according to

ν̂ = − �
(
yH

1 WN(ν)y2

)
(22)

where

y1 = [[v1]1 [v1]2 · · · [v1]N−1]T (23)

and

y2 = [[v1]2 [v1]3 · · · [v1]N ]T (24)

3 Performance Analysis

The means and variances of μ̂ and ν̂ upon parameter
convergence are now analyzed. To simplify the deriva-
tion, it is assumed that the signal-to-noise ratio (SNR)
is sufficiently high such that μ̂ → μ and ν̂ → ν and we
substitute the true frequencies for the estimates in the
weighting matrices of WM (μ) and WN (ν).

First we consider μ̂. Our strategy is to decompose
μ̂ as μ̂ = μ + Δμ where Δμ = �

(
e−jμxH

1 WM (μ)x2

)

is the estimation error in μ̂, and then compute E{Δμ}
and E{(Δμ)2}. Following the results in [7], it is shown
that E{Δμ} ≈ 0 which implies that E{μ̂} ≈ μ, while
its variance or mean square error (MSE), denoted by
var(μ̂), is

var(μ̂) =
σ2

2λ̄2
1x̄

H
1 WM (μ)x̄1

(25)

Furthermore, x̄1 can be expressed as x̄1 =
g1 exp(jϕg)/|g| where ϕg is an unknown phase and
g1 = [ejμ ej2μ · · · ej(M−1)μ]T . With the use of
|g| =

√
M , |h| =

√
N , λ̄1 = |g||h||γ| =

√
MN |γ| and

gH
1 WM (μ)g1 = M(M2 − 1)/12 [7], (25) can be simpli-

fied as:

var(μ̂) ≈ 6
SNRNM (M2 − 1)

(26)

with SNR = |γ2|/σ2, which is the CRLB for μ. Like-
wise, the estimate of ν is also approximately unbiased
and its variance, denoted by var(ν̂), is:

var(ν̂) ≈ 6
SNRMN (N2 − 1)

(27)

which is the CRLB for ν. That is, the 2D frequency
estimator can attain ML performance when the SNR is
high enough.
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Figure 1: Mean square error of μ versus SNR
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Figure 2: Mean square error of ν versus SNR

4 Numerical Examples

Computer simulations have been carried out to assess
the estimation performance of the proposed SVD-based
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Figure 3: Mean square error of μ versus μ

algorithm for a single 2D cisoid in white Gaussian noise.
We compare its MSE performance with that of the
WPA [2] and IQML [3] method as well as CRLB. We
choose the stopping criterion of 3 iterations in both pro-
posed and IQML schemes as no obvious improvement
is observed for more iterations. The tone amplitude
is γ = 1 and M = N = 8 while different SNRs are
obtained by proper scaling the noise variance σ2. All
results are based on averages of 500 independent runs.

Figures 1 and 2 show the MSEs of μ and ν at
μ = ν = 0.1π, respectively, for the WPA, IQML and
proposed estimators as well CRLB versus SNR. Al-
though all methods provide optimum accuracy at suffi-
ciently high SNRs, the IQML and proposed estimators
perform similarly and are superior to the WPA in terms
of threshold SNR. That is, the former have a threshold
SNR of −2 dB while that of the latter is 8 dB. The MSE
performance of μ versus μ ∈ (−π, π) with ν = 0.1π is
investigated in Figure 3. We see that both IQML and
proposed estimators can achieve CRLB when μ is not
approaching −π or π, indicating their uniform estima-
tion performance. While the WPA is suboptimal and
cannot give uniform accuracy, which agrees with the
study in [10]. From Figures 1 to 3, we also see that
(26) and (27) are validated for sufficiently high SNR
conditions.

Regarding computational load, the complexities of
WPA and IQML method are O(MN) and O(M2N2),
respectively, while the proposed method requires
O(M3) operations, assuming that M ≥ N , due to the
SVD and WLS procedures. As a result, the computa-
tional requirement of our scheme is in between those of
WPA and IQML estimator when M and N are com-

parable. The average computation times of the WPA,
IQML and proposed estimators for a single trial are
measured as 5.65×10−5s, 1.15×10−3s and 5.73×10−4s,
respectively, which agree with our complexity analysis.

5 Conclusion

An efficient frequency estimation approach for a two-
dimensional (2D) single complex tone in additive white
Gaussian noise has been devised. The key ideas are to
make use of the rank-one property of the 2D noise-free
data matrix and find the two frequency parameters from
the principal left and right singular vectors in a sepa-
rable manner according to an iterative weighted least
squares procedure. Mean and variance expressions for
the frequency parameters are also produced and veri-
fied via computer simulations, which illustrate that they
are approximately unbiased and their variance achieves
Cramér-Rao lower bound at sufficiently large signal-to-
noise ratio (SNR). Regarding comparative performance,
the proposed scheme is superior to [2] in terms of thresh-
old SNR at the expense of higher complexity. On the
other hand, it has the same threshold behavior with [3]
but the former is computationally less demanding.
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