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ABSTRACT noise subspaces via eigenvalue decomposition of the sam-

In this paper, the problem of estimating the damping factoPle covariance matrix or the_ singular va_lue decomposition
and freZul?ancy paloameters from multiple cisoids ?n noise iéSVD) of Fhe_ raw data matrix. Conventlona!ly, a Hanke_l—
addressed. We first propose a data matrix which generalizégyle. matrix is constructed for parameter estimation, whic
the commonly used Hankel-style matrices so that the numbémp“es a large data redundancy. In this work, we propose
of repeated entries can be reduced. A new computational reduce the data reuse and employ the ESPRIT methodol-

efficient ESPRIT estimator that makes use of the right singu-gy."’ls an |IIustrat!on. AIthoygh our primary obJec.t|ve Is to
lar vectors is then devised. Algorithm modification for un_ach|eve_computat|on re(_duct|on, the proposed estimator can
damped sinusoids and complexity are also discussed. CorR£a (_:I_ohnS|de;edf ?hgenerallz_ed SUbSPa%e miﬂ;fd' Th b
puter simulations are included to compare the proposed ap- € rest of this paper Is organized as follows. 1he prob-
proach with the conventional ESPRIT methods and Cramé?—em formulation for sinusoidal parameter estimation isegiv
Rao lower bound in Section 2. The proposed estimator for damping factor and
' frequency parameters are derived in Section 3. Its compara-

Index Terms— frequency estimation, subspace methodtive computational complexity and forward-backward agera

singular value decomposition ing modification for undamped cisoids are also provided. In
Section 4, simulation results are included to evaluate ére p
1. INTRODUCTION formance of the proposed approach by comparing with the

ESPRIT algorithms [4] as well as Cramér-Rao lower bound
The topic of sinusoidal parameter estimation from a finite( CRLB). Finally, conclusions are drawn in Section 5.
number of noisy discrete-time measurements has attracted a
great deal of attention because of its wide applicationsiin s 2. PROBLEM STATEMENT
ence and engineering. Basically, estimating the dampioig fa

tor and frequency parameters is the crucial step becauge thghroughout this paper, bold upper case symbols denote ma-

are non-linear functions in the observed data, and computgrices, and bold lower case symbols denote column vectors.

tion of the remaining parameters can then reduce to a leagfe denoteV; x N, zero matrix,N x N identity matrix and

squares (LS) fit. N x N matrix with ones in its anti-diagonal and zeros else-
Generally speaking, spectral estimation can be achieveghere, by0y, « n,, Iy andIly, respectively. The Kronecker

by means of either nonparametric or parametric approachegoduct and the 1-norm operator are representec tand

[1]. The nonparametric methods are simply based on thg ||,, and superscript§, 7, *, ~! andt denote transpose,

Fourier transform but their ability to resolve closely-spd  Hermitian transpose, complex conjugation, matrix invarsi

frequencies is fundamentally limited by the length of theand pseudo-inverse, respectively. Moreover, weAissd A

data available. On the other hand, the parametric approaciy represent the noise-free counterpart and estimate of

which assumes that the signal satisfies a generating model The observed noisy sinusoidal signal is modeled as:
with known functional form, can attain a higher resolution.

Among the parametric techniques, the subspace methodssuch ~ @n = $p +&n, n=1,2,--- N (1)

as multiple signal classification (MUSIC) [2] and estimatio where K n_i(winton)

of signal parameters via rotational invariance techniques Sn = Z%ake s k=12, K (2)
k=1

(ESPRIT) [3] have received considerable interest because
they are attractive alternatives to maximum-likelihcodém  The,, ~ 0, o € (0,1], wi € [~m,7) andgy, € [—, ) are

methodology which requires extensive computations. Theife sinusoidal amplitudes, damping factors, frequenaies a
underlying principle is to separate the data into signal a”‘ﬂ)hases whild &, } are white complex Gaussian noises of zero
The work described in this paper was supported by a grant €y~ Mean and unknown varianeé. The number of sinusoids,

(Project no. 7002570). denoted byK, is assumed knowa priori.




We use a matriX € CN1*M to represent (1), which has Orr=2(gx) and éarx = |kl (15)
the form of: Conventional subspace schemeset= 1 and employ
(14)—(15) [6] or the left singular vectors to estimate the pa

X=8+82 (3) rameters [7]. In this work, we exploit the right singular vec
where tors for parameter estimation. Comparing (5) and (12), we
[S1 e SNQ} (4)  apply the same technique ¥6,:
T Oy = (I V) Iy Vi = TPy Ty (16)
[5 (ne—1)M+1  S(na—1)M42 " °° 5(n271)1V1+N1]
=1,2,---, Ny whereJyy = [In,—1 O(n,—1)x1] @ndJyz = I, —1Jv 11y,
The = contains{¢, } accordingly and\ € [1, N,] is an in- 'Io'fh‘%n tr;(ra]destlmatelsk can be retrieved from the eigenvalues
14

teger which controls the data reuse. With proper selection o R R R .
integersM, Ny and Ny, (N; — 1)M + Ny = N is satis- fu, = Z(hx) and By = |hg] 17)
fied, which means that all elements{f,, } in (3) appear at According to (4), we havé, = gM. Letgy andhy be
least once. When/ = 1, X corresponds to a Hankel matrix the estimated eigenvalue vectors®f; and ¥y, containing
which involves the maximum number of repeated entries. Oall the hi's and gx’s in an unpaired manner. Defi@, =

the other hand, there is no repeated element when assignifgu,: gv> --- &uv.x1] where Gy € CE*E! contains
M = N;. As aresultX can be considered as a generalizedhe all permutations of; arranged one-by-one in rows, it
data matrix for the subspace methodology. is clear thatGM also corresponds to all permutationsiof.
We compute nevgy = gu, ¢ where the indey is determined
as
3. ALGORITHM DEVELOPMENT f=arg_min {1 &1} (18)
.z ~ 1T -
3.1. Proposed Estimator Then we getgy = [91 g2 -+ gx| andhy =
N N N T R ~
Following [4]-[5], S can be factorized as: [hl. hy oo hi] _Wwith elementsg;. and hy correctly
9 [41-[5] paired-up when the signal-to-noise ratio (SNR) is suffitjen
S = GTHT (5) large. Substitutingjx’s and hy's into (15) and (17), the
where T — diag(mei% o2 VKe"'W) (6) correct sets ofw; , &k, fir, B } are obtained.
’ 7 To estimateu;, using .z, we notice thafi, corresponds
G=[g1 & - gk (7)  to2|M/2] +1 possible estimates of,, where| | rounds the
H=[h; hy --- hg] (8) value to the nearest integer towardso, denoted by g 1 ;,
T —|M/2|,—|M/2|+1,---,|M/2]:
gzl o gl o) [M/2), - |M72] [2/2]
.
he= [ B2 - h]” (10) b= T (19)
g = aL,ke““‘ and hg = ﬂke“““ (1) ) )
We obtainwg = Wr k5 Wheref is computed from
Apparently, we haVQJzLJ€ = o, WLk = Wk, Br = ]ICVI ) . .
andyy, = (Mwg) mod (27) for all k. On the other hand, [ =arg, min (Wr,i —wr|  (20)

ie{—|M/2],—|M/2|+1,---,|M/2
decomposing using SVD gives: ozl ) /2y

A 0 And it is straightforward to see that
X =UAV? = [U, U,] [ 0 An] v, v,]" 12 arp =B (21)

As it is shown in [5] that the accuracy afz , andéag,
whereU, € CY*X, A, € CF*K andV, € CM>*® are  is much higher than that @f;, , anday,  whenK = 1 and
the signal subspaces. According to the decomposition i (5)A7 = N, we assign
(11), the best ranks approximation ofS according to (12), G~ Gpr and dy ~ Api (22)
denoted bys, is

S=UA VY (13)  as the final estimates.
According to [6], define the selection matricds,; =
[Ini—1 Ov,—1)x1] andJys = Iy, —1Junlly,, the esti- 3.2 Complexity Analysis

mates ofg;’s, denoted byj,’s, can be retrieved from th& ) .
eigenvalues oft;: To compare the computational complexity of the proposed

U, = (JU1US)TJU2US _ TglFUTU (14) method and I_ESPRIT—typg method_s, we need to know '_[he
SVD complexity. An efficient solution among a large vari-
Onceygy, is obtained, the corresponding frequency and dampety of SVD computation methods is the orthogonal iteration
ing factor estimates are straightforwardly computed as approach [8] which truncatess; x N, matrix to rank K



using k; N1 No K multiplications, wherek; is an algorithm
dependent factor. For integefd, N;, N» that satisfies

(Nghf 1)M + Ny = N and definingy = 345~ € (0,1),
we have 2
fonp) = E_MPUZD g
[M(1 = p) +p]

multiplications for the SVD computation in (12). Apparemntl
the computation complexity decreased\dsncreases.

3.3. Madification for Undamped Cisoids

trade off between computation complexity and the estimatio
accuracy is clearly shown in this test.

In figures 5 and 6, we deal with the undamped sinu-
soids employing the forward-backward approach for differ-
ent data length. 'UE’ stands for 'Unitary ESPRIT’ [6] as
the forward-backward approach ESPRIT type method. The
frequencies in figure 5 argv;,ws,ws) (0.1,0.2,0.3)w
while (w1, w2, ws) = (0.1,0.13,0.16)x in figure 6, which
indicates a set of close frequencies. All other parameters a
the same as previous except the data lerngthand we set

M = 2 andp, = 2]\,21%]\,2 ~ 0.7 for the forward-backward

When the all damping factors are equal to one, we employ th@PProach.  Both figures 5 and 6 show that the proposed
forward-backward technique to improve the proposed estimdorward-backward approach performs very well.

tor as follows. Define

X
Z= {HMX*HNJ (24)

and substitutingZ for X in (12), we get the newd, €

5. CONCLUSION

The aim of this paper is to design an algorithm makes benefits
from the matrix structure of a general overlapped form for

€Nk Applying the same technique as in Section (3.1)matrix (4) under integed! € [1, Ny], especiallyd > 2.

the LS estimate of, is obtained from the eigenvalues of
Uy = (LeJu)U) Ledy)U,  (25)

Computer simulations show that by taking the advantages of
the data structure of (4), the proposed estimator can aghiev

Following (15)—(22)&, are obtained for the undamped the same performance fa7 > 1 as ESPRIT type algorithms

scenarios.

4. SIMULATION RESULTS

Computer simulations have been carried out to evaluate th

performance of the proposed algorithm for multiple damped
and undamped sinusoids in the presence of white Gaussiafi2]
noise. The average mean square error (MSE) is assigned to

evaluate the algorithm performance. All results provides a
averages of 1000 independent runs.

The first test mainly focuses on the different combinations

of N7 and N by studying the average MSE for frequen-
cies and damping factors verspsunder SNR = 30dB.

The parameters settings aré 100, (w1,ws,ws)
(0.1,0.2,0.3)’/T, (al,ag,()ég) = (099,098,097), (71,72,’73) =
(1,2,3), and (¢1, 2, p3) are uniformly selected between

[—7, ) in each independent trial. The 'SE’ denotes the stan-

dard ESPRIT method in [6]. Figures 1 and 2 show that for
different M, although the performance of the proposed es-
timator varies with different combination d¥; and NV, it
gives a high accuracy b is appropriately chosen. Roughly
speaking, it is proposed to choose a combinatiod/of Ny
andN, such thap =~ 0.7.

In the second test, the main focus is to study the perfor-

mance of the algorithm under differeWi. The parameters
are the same as in the first test and weset 0.7 for the

proposed approaches. The average computation times of the

proposed method with/ = 2,4,8 as well as SE scheme
are measured asx 1073s, 6.5 x 10™%s,4.3 x 10~%s and
2.1 x 1073s, respectively. It is shown in figures 3 and 4

that the proposed estimator performs as well as ESPRIT with

M = 2and! but a little worse in the situation/ = 8. The

(M = 1), with additional benefit of reduced complexity.
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Fig. 3. Average mean square frequency error versus SNR.
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