
IMPROVEMENT TO ESPRIT-TYPE FREQUENCY ESTIMATORS
VIA REDUCING DATA REDUNDANCY

Weize Sun and H.C. So

Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China

ABSTRACT

In this paper, the problem of estimating the damping factor
and frequency parameters from multiple cisoids in noise is
addressed. We first propose a data matrix which generalizes
the commonly used Hankel-style matrices so that the number
of repeated entries can be reduced. A new computationally
efficient ESPRIT estimator that makes use of the right singu-
lar vectors is then devised. Algorithm modification for un-
damped sinusoids and complexity are also discussed. Com-
puter simulations are included to compare the proposed ap-
proach with the conventional ESPRIT methods and Cramér-
Rao lower bound.

Index Terms— frequency estimation, subspace method,
singular value decomposition

1. INTRODUCTION

The topic of sinusoidal parameter estimation from a finite
number of noisy discrete-time measurements has attracted a
great deal of attention because of its wide applications in sci-
ence and engineering. Basically, estimating the damping fac-
tor and frequency parameters is the crucial step because they
are non-linear functions in the observed data, and computa-
tion of the remaining parameters can then reduce to a least
squares (LS) fit.

Generally speaking, spectral estimation can be achieved
by means of either nonparametric or parametric approaches
[1]. The nonparametric methods are simply based on the
Fourier transform but their ability to resolve closely-spaced
frequencies is fundamentally limited by the length of the
data available. On the other hand, the parametric approach,
which assumes that the signal satisfies a generating model
with known functional form, can attain a higher resolution.
Among the parametric techniques, the subspace methods such
as multiple signal classification (MUSIC) [2] and estimation
of signal parameters via rotational invariance techniques
(ESPRIT) [3] have received considerable interest because
they are attractive alternatives to maximum-likelihood based
methodology which requires extensive computations. Their
underlying principle is to separate the data into signal and
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noise subspaces via eigenvalue decomposition of the sam-
ple covariance matrix or the singular value decomposition
(SVD) of the raw data matrix. Conventionally, a Hankel-
style matrix is constructed for parameter estimation, which
implies a large data redundancy. In this work, we propose
to reduce the data reuse and employ the ESPRIT methodol-
ogy as an illustration. Although our primary objective is to
achieve computation reduction, the proposed estimator can
be considered a generalized subspace method.

The rest of this paper is organized as follows. The prob-
lem formulation for sinusoidal parameter estimation is given
in Section 2. The proposed estimator for damping factor and
frequency parameters are derived in Section 3. Its compara-
tive computational complexity and forward-backward averag-
ing modification for undamped cisoids are also provided. In
Section 4, simulation results are included to evaluate the per-
formance of the proposed approach by comparing with the
ESPRIT algorithms [4] as well as Cramér-Rao lower bound
(CRLB). Finally, conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

Throughout this paper, bold upper case symbols denote ma-
trices, and bold lower case symbols denote column vectors.
We denoteN1 ×N2 zero matrix,N ×N identity matrix and
N × N matrix with ones in its anti-diagonal and zeros else-
where, by0N1×N2

, IN andΠN , respectively. The Kronecker
product and the 1-norm operator are represented by⊗ and
|| ||1, and superscriptsT , H , ∗, −1 and † denote transpose,
Hermitian transpose, complex conjugation, matrix inversion
and pseudo-inverse, respectively. Moreover, we useÃ andÂ
to represent the noise-free counterpart and estimate ofA.

The observed noisy sinusoidal signal is modeled as:

xn = sn + ξn, n = 1, 2, · · · , N (1)

where
sn =

K
∑

k=1

γkα
n
ke

i(ωkn+ϕk), k = 1, 2, · · · ,K (2)

Theγk > 0, αk ∈ (0, 1], ωk ∈ [−π, π) andϕk ∈ [−π, π) are
the sinusoidal amplitudes, damping factors, frequencies and
phases while{ξn} are white complex Gaussian noises of zero
mean and unknown varianceσ2. The number of sinusoids,
denoted byK, is assumed knowna priori.



We use a matrixX ∈ CN1×N2 to represent (1), which has
the form of:

X = S+Ξ (3)

where

S =
[

s1 s2 · · · sN2

]

(4)

sn2
=

[

s(n2−1)M+1 s(n2−1)M+2 · · · s(n2−1)M+N1

]T

n2 = 1, 2, · · · , N2

TheΞ contains{ξn} accordingly andM ∈ [1, N1] is an in-
teger which controls the data reuse. With proper selection of
integersM , N1 andN2, (N2 − 1)M + N1 = N is satis-
fied, which means that all elements of{xn} in (3) appear at
least once. WhenM = 1, X corresponds to a Hankel matrix
which involves the maximum number of repeated entries. On
the other hand, there is no repeated element when assigning
M = N1. As a result,X can be considered as a generalized
data matrix for the subspace methodology.

3. ALGORITHM DEVELOPMENT

3.1. Proposed Estimator

Following [4]–[5],S can be factorized as:

S = GΓHT (5)

where Γ = diag(γ1e
iϕ1 , γ2e

iϕ2 , · · · , γKeiϕK ) (6)

G =
[

g1 g2 · · · gK

]

(7)

H =
[

h1 h2 · · · hK

]

(8)

gk =
[

gk g2k · · · gMk
]T

(9)

hk =
[

hk h2
k · · ·hN

k

]T
(10)

gk = αL,ke
iωL,k and hk = βke

iµk (11)

Apparently, we haveαL,k = αk, ωL,k = ωk, βk = αM
k

andµk = (Mωk) mod (2π) for all k. On the other hand,
decomposingX using SVD gives:

X = UΛVH =
[

Us Un

]

[

Λs 0

0 Λn

]

[

Vs Vn

]H
(12)

whereUs ∈ CN1×K , Λs ∈ CK×K andVs ∈ CN2×K are
the signal subspaces. According to the decomposition in (5)–
(11), the best rank-K approximation ofS according to (12),
denoted bŷS, is

Ŝ = UsΛsV
H
s (13)

According to [6], define the selection matricesJU1 =
[

IN1−1 0(N1−1)×1

]

andJU2 = ΠN1−1JU1ΠN1
, the esti-

mates ofgk’s, denoted bŷgk ’s, can be retrieved from theK
eigenvalues ofΨU :

ΨU = (JU1Us)
†
JU2Us = T−1

U FUTU (14)

Onceĝk is obtained, the corresponding frequency and damp-
ing factor estimates are straightforwardly computed as

ω̂L,k = ∠(ĝk) and α̂L,k = |ĝk| (15)
Conventional subspace schemes setM = 1 and employ

(14)–(15) [6] or the left singular vectors to estimate the pa-
rameters [7]. In this work, we exploit the right singular vec-
tors for parameter estimation. Comparing (5) and (12), we
apply the same technique toVs:

ΨV = (JV 1V
∗
s)

†
JV 2V

∗
s = T−1

V FV TV (16)

whereJV 1 =
[

IN2−1 0(N2−1)×1

]

andJV 2 = ΠN2−1JV 1ΠN2
.

Then the estimateŝhk can be retrieved from the eigenvalues
of ΨV and

µ̂k = ∠(ĥk) and β̂k = |ĥk| (17)

According to (4), we havẽhk = g̃Mk . Let ĝU andĥV be
the estimated eigenvalue vectors ofΨU andΨV containing
all the ĥk’s and ĝk ’s in an unpaired manner. DefinêGU =
[

ĝU,1 ĝU,2 · · · ĝU,K!

]

whereĜU ∈ CK×K! contains
the all permutations of̂gU arranged one-by-one in rows, it
is clear thatG̃M

U also corresponds to all permutations ofh̃V .
We compute neŵgU = ĝU,f where the indexf is determined
as

f = arg min
i=1,2,··· ,K!

{||ĥ− ĝM
U,i||1} (18)

Then we getĝU =
[

ĝ1 ĝ2 · · · ĝK
]T

and ĥV =
[

ĥ1 ĥ2 · · · ĥK

]T
with elementsĝk and ĥk correctly

paired-up when the signal-to-noise ratio (SNR) is sufficiently
large. Substitutinĝgk’s and ĥk’s into (15) and (17), the
correct sets of{ω̂l,k, α̂l,k, µ̂k, β̂k} are obtained.

To estimateωk usingµk, we notice that̂µk corresponds
to 2⌊M/2⌋+1 possible estimates ofωk, where⌊ ⌋ rounds the
value to the nearest integer towards−∞, denoted bŷωR,k,i,
i = −⌊M/2⌋,−⌊M/2⌋+ 1, · · · , ⌊M/2⌋:

ω̂R,k,i =
µ̂k + 2πi

M
(19)

We obtainω̂R,k = ω̂R,k,f wheref is computed from

f = arg min
i∈{−⌊M/2⌋,−⌊M/2⌋+1,··· ,⌊M/2⌋}

|ω̂R,i − ω̂L| (20)

And it is straightforward to see that

α̂R,k = β̂
1/M
k (21)

As it is shown in [5] that the accuracy of̂ωR,k andα̂R,k

is much higher than that of̂ωL,k andα̂L,k whenK = 1 and
M = N1, we assign

ω̂k ≈ ω̂R,k and α̂k ≈ α̂R,k (22)

as the final estimates.

3.2. Complexity Analysis

To compare the computational complexity of the proposed
method and ESPRIT-type methods, we need to know the
SVD complexity. An efficient solution among a large vari-
ety of SVD computation methods is the orthogonal iteration
approach [8] which truncates aN1 × N2 matrix to rankK



using ktN1N2K multiplications, wherekt is an algorithm
dependent factor. For integersM , N1, N2 that satisfies
(N2 − 1)M + N1 = N and definingp = N1

N1+N2

∈ (0, 1),
we have

f(M,p) =
(N −M)

2
p (1− p)

[M(1− p) + p]2
(23)

multiplications for the SVD computation in (12). Apparently,
the computation complexity decreases asM increases.

3.3. Modification for Undamped Cisoids

When the all damping factors are equal to one, we employ the
forward-backward technique to improve the proposed estima-
tor as follows. Define

Z =

[

X

ΠN1
X∗ΠN2

]

(24)

and substitutingZ for X in (12), we get the newUs ∈
C

2N1×K . Applying the same technique as in Section (3.1),
the LS estimate ofgk is obtained from the eigenvalues of

ΨU = ((I2 ⊗ JU1)Us)
†
(I2 ⊗ JU2)Us (25)

Following (15)–(22),ω̂k are obtained for the undamped
scenarios.

4. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
performance of the proposed algorithm for multiple damped
and undamped sinusoids in the presence of white Gaussian
noise. The average mean square error (MSE) is assigned to
evaluate the algorithm performance. All results provided are
averages of 1000 independent runs.

The first test mainly focuses on the different combinations
of N1 and N2 by studying the average MSE for frequen-
cies and damping factors versusp under SNR = 30dB.
The parameters settings areN = 100, (ω1, ω2, ω3) =
(0.1, 0.2, 0.3)π, (α1, α2, α3) = (0.99, 0.98, 0.97), (γ1, γ2, γ3) =
(1, 2, 3), and (ϕ1, ϕ2, ϕ3) are uniformly selected between
[−π, π) in each independent trial. The ’SE’ denotes the stan-
dard ESPRIT method in [6]. Figures 1 and 2 show that for
differentM , although the performance of the proposed es-
timator varies with different combination ofN1 andN2, it
gives a high accuracy ifp is appropriately chosen. Roughly
speaking, it is proposed to choose a combination ofM , N1

andN2 such thatp ≈ 0.7.
In the second test, the main focus is to study the perfor-

mance of the algorithm under differenM . The parameters
are the same as in the first test and we setp ≈ 0.7 for the
proposed approaches. The average computation times of the
proposed method withM = 2, 4, 8 as well as SE scheme
are measured as1 × 10−3s, 6.5 × 10−4s, 4.3 × 10−4s and
2.1 × 10−3s, respectively. It is shown in figures 3 and 4
that the proposed estimator performs as well as ESPRIT with
M = 2and4 but a little worse in the situationM = 8. The

trade off between computation complexity and the estimation
accuracy is clearly shown in this test.

In figures 5 and 6, we deal with the undamped sinu-
soids employing the forward-backward approach for differ-
ent data length. ’UE’ stands for ’Unitary ESPRIT’ [6] as
the forward-backward approach ESPRIT type method. The
frequencies in figure 5 are(ω1, ω2, ω3) = (0.1, 0.2, 0.3)π
while (ω1, ω2, ω3) = (0.1, 0.13, 0.16)π in figure 6, which
indicates a set of close frequencies. All other parameters are
the same as previous except the data lengthN , and we set
M = 2 andp2 = 2N1

2N1+N2

≈ 0.7 for the forward-backward
approach. Both figures 5 and 6 show that the proposed
forward-backward approach performs very well.

5. CONCLUSION

The aim of this paper is to design an algorithm makes benefits
from the matrix structure of a general overlapped form for
matrix (4) under integerM ∈ [1, N1], especiallyM ≥ 2.
Computer simulations show that by taking the advantages of
the data structure of (4), the proposed estimator can achieve
the same performance forM > 1 as ESPRIT type algorithms
(M = 1), with additional benefit of reduced complexity.
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Fig. 1. Average mean square frequency error versusN1
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Fig. 2. Average mean square damping factor error versusN1
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Fig. 3. Average mean square frequency error versus SNR.
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Fig. 4. Average mean square damping factor error versus SNR.
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Fig. 5. Average mean square frequency error versus SNR for differ-
ent N.
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Fig. 6. Average mean square damping factor error versus SNR with
small frequency seperations.


