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Abstract-Wireless sensor networks (WSNs) have been 

proposed for a multitude of location-dependent applications. 
To stamp the collected data and facilitate communication 
protocols, it is necessary to identify the location of each 
sensor. In this paper, we discuss the performance of a novel 
received signal strength indicator (RSSI) positioning scheme, 
which uses a generalized geometrical location algorithm to 
achieve an accurate estimation based on mean received signal 
strength measurements. In order to improve the network 
performance and address limitations of static WSNs position 
estimation, mobile sensors are utilized effectively and an 
attractive movement strategy with mobile elements is 
designed. The effectiveness of our approach is validated and 
compared with the traditional RSSI method by extensive 
simulations.  

Index Terms —RSSI, Geometrical location, Wireless sensor 
networks. 

I.  INTRODUCTION 
Recent advances in wireless communications and micro 

electro-mechanical system (MEMS) technologies have 
enabled the development of low-cost, low-power and small 
size wireless sensor nodes [1]. Wireless sensor networks 
(WSNs) have become the current hot spot of networking area 
and have been used for various applications, such as habitant 
monitoring, environment monitoring, and target tracking. For 
all these applications, it is essential to know the locations of 
the data [2]. 

Many approaches to obtain this per-node location 
knowledge have been explored. Based on the type of 
knowledge used in localization, we can divide these 
localization protocols into two categories: range-based and 
range-free [3]. Range-based protocols estimate absolute point-
to-point distance to calculate the location between neighboring 
sensors. The second class of methods, named range-free 
approach, employs connectivity to find the distances from the 
non-anchor nodes to the anchor nodes [4]. Range-based 
algorithms are typically based-on angle-of-arrival (AOA), 
RSSI [5] [25], time-of-arrival (TOA) or time-difference-of-
arrival (TDOA) measurements [8]. A promising technology is 
the ultra wideband (UWB) technology where precise ranging 
can be embedded into data communication. The typical range-
free localization algorithms include DV-Hop [6], Centroid 
algorithm [12], APIT [4] and Amorphous [7]. However, the 

performance of range-free algorithms is not high. When the 
sensor network is anisotropic or has complex topology, the 
performance of these methods also tends to deteriorate. 
Because the location accuracy of range-based approach is 
relatively higher than that of range-free algorithms, we focus 
on the study of range-based solutions and their applications in 
WSNs in this paper. Received signal strength is comparatively 
much easier and less costly to obtain from the time series 
recordings at each sensor. It is our opinion that radio 
localization can play an active role in several WSN 
applications provided that the accuracy requirement in terms 
of spatial resolution is not too strict. As such, we propose a 
novel received signal strength indicator (RSSI) localization 
algorithm and evaluate it when applied to mobility-assisted 
sensor networks. Unlike the static sensors, which are tightly 
constrained by the energy supplies, mobile sensor’s batteries 
are rechargeable. Efficient collaboration between mobile and 
static nodes can also effectively change anchor densities on 
demand, potentially reducing the number of anchors needed 
comparing to all-static network deployments. Furthermore, 
mobile sensors can cooperate with the static sensors to fix the 
limitation of node localization in the static sensor networks. In 
this paper, mobile anchor node roams through the network and 
broadcasts beacon messages with its position to nodes 
periodically at various locations. Based on the active 
movement of mobile sensor, location performance is improved 
significantly. 

This paper makes the following three main contributions. 
First, we present an effective localization scheme with 
minimum mobile element (ME), thus improving system 
scalability and usage as well as reducing hardware costs.   
Second, a new localization algorithm based on the volume is 
developed to allow any number of ME beacon points, which 
was inspired by the volume method utilized in [23]. Third, an 
attractive movement strategy for ME is proposed to reduce the 
total moving distance and improve moving efficiency of ME 
while satisfying the expected location performance, which can 
efficiently extend lifetime of the ME and optimizes the anchor 
distribution. 

The rest of this paper is organized as follows. Section II 
introduces the related works. Section III provides the 
derivation of the proposed localization algorithm. In Section 
IV, simulation results are shown, some considerations about 
the impact of (additive white gauss noise) AWGN and 
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Rayleigh fading are discussed. In Section V, the results of a 
real experiment are discussed. Finally, we present our 
conclusions in Section VI. 

II. RELATED WORKS 
Recent work demonstrated that the sensing performance of 

WSNs can be improved by using mobility capability node. 
Xing et al. [18] study target detection for mobility-assisted 
WSNs. They exploited reactive mobility to improve the target 
detection performance of WSNs. In their approach, mobile 
sensors collaborate with static sensors and move reactively to 
achieve the required detection performance. Wang et al. [19] 
used Voronoi diagrams to detect the coverage holes and 
devised three movement-assisted sensor deployment protocols 
based on the principle of moving sensors from densely 
deployed areas to sparsely deployed areas. Wang et al. [20] 
presented a mobility-assisted network for field coverage which 
can be remarkably improved by integrating a small set of 
mobile sensors. They offered an optimal algorithm to calculate 
the coverage contributions, which explores the potentials of 
the mobile sensors and extends the network lifetime. 

Several studies exploited the effect of mobile nodes on node 
localization for WSNs. In these methods, a small number of 
mobile devices referred to as MEs roam about sensing fields 
and assist to improve localization performance. Luo et al. [9] 
proposed a TDOA localization algorithm for movement-
assisted sensor networks. A mobile beacon is used to measure 
the mobility-differentiated TOA in [9], which will increase 
mobile beacon’s communication cost. Based on the RF-based 
technology, [11] presented three algorithms for tracking 
transceiver-free moving objects in an indoor WSN.  

RSSI has been widely used as a distance measure in the 
context of static WSNs because of its simplicity. The impact 
of a number of parameters, such as the operating frequency, 
the transmitter–receiver distance, the variation of transceivers, 
the antenna orientation, and the environment, on (received 
signal strength) RSS measurements were investigated using 
Tmote Sky nodes in real outdoor environments [12]. The 
results in [13] describe a thorough empirical study of the RSS 
in Mica2 sensor node for indoor environments with 
considering parameters such as operating frequency, antenna 
orientation, battery voltage, temporal and spatial properties of 
environment, and the environmental dynamics. 
Lymberopoulos et al. [14] investigated the RSS variability in 
3-D indoor environment. In their experiments, all the sensor 
nodes are equipped with Chipcon CC2420 radio with 
monopole antennas. Their study is mainly focusing on the 
impact of the antenna orientation over the RSS.  

Complementary to the above studies that deal with the node 
localization based on RSS measurements, we focus on 
improving target localization performance by utilizing the 
mobility of sensors. Different with the former work, our 
method takes advantage of mobility-assisted WSNs can 
efficiently detect the obstacle in the communication range and 
decrease the effect of (non-line of sight) NLOS through the 
active movement of ME. Since the ME is often resource rich 

node attached with better processing ability and longer 
transmission range comparing to the static sensor node, a 
series of beacon messages with its position will be broadcasted 
by the ME in our localization scheme, which will reduce the 
communication cost of static sensors. Thus, the unknown-
position nodes will actively capture RSS measurements and 
initiate localization algorithm after receiving the incoming 
data from the MEs. The positions of MEs are known since 
they are usually equipped with GPS receivers or RFID tags 
[18], which will be acted as mobile anchor nodes in our 
localization system. If obstacles exist in between a sensor and 
certain anchors, static node might not obtain enough and 
accurate RSS measurements to estimate its position. By 
including a ME to replace multiple static anchors, we avoid 
the above disadvantage of static WSNs. However, several 
challenges must be fixed in order to make best use of the 
mobility of WSNs in target estimation. First, considering the 
higher design complexity and manufacturing cost, the number 
of mobile elements available in a network is often limited. 
Therefore, MEs must effectively cooperate with static sensors 
to obtain the maximum utility. Second, the moving trace of 
MEs must be optimized since MEs are only capable of low-
speed and short-distance mobility in real environment due to 
the high power consumption of locomotion. The optimum 
moving scheme for MEs can further increase location 
accuracy for target estimation since the distribution of anchors 
can affect location performance in the static WSNs.  

III. ALGORITHM DEVELOPMENT 
In mobility-assisted WSNs, depending on some emergent 

applications there may be a need to rapidly respond to sensor 
input. For instance, in a fire application, actions should be 
performed on the event area as soon as possible. Moreover, 
the collected and delivered sensor data must still be valid at 
the time of acting. Different with former work on node 
localization for WSNs, the ME movement and coordination 
play an important role to provide accurate and timely 
localization to sensors. We will devise an attractive movement 
strategy for MEs to address this problem later. 

The network proposed in this paper consists of static sensor 
nodes, which are located randomly, and MEs, which have a 
priori knowledge of their own positions with respect to a 
global coordinate system.  

 When an electromagnetic signal propagates, it may be 
diffracted, reflected and scattered. Due to the unique 
characteristics of each environment, most radio propagation 
models use a combination of analytical and empirical 
methods. One of the most common radio propagation models 
is the lognormal shadowing path loss model, which will be 
adopted in our system [15] [16] [25]. This model can be used 
for large and small coverage systems, furthermore, empirical 
studies have shown the lognormal shadowing model provides 
more accurate multi-path channel modeling than that of 
Nakagami and Rayleigh for indoor environments.  The model 
is given by: 

σXddndPLdPL −−= )/lg(10)()( 00                    (1) 
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where d  is the transmitter-receiver separation distance, 

0d  a reference distance, n  the path loss exponent (rate at 

which signal decays), and σX  a zero-mean Gaussian random 
vector (in dB) with standard deviation ó (multi-path effects). 
The )( 0dPL  is the signal power at reference distance 0d  

and )(dPL  is the signal power at distance d . The value of 

)( 0dPL  can either be derived empirically or obtained from 
the WSN hardware specifications. 

  A theoretically accurate model for RSSI is logarithmic 
attenuation over distance. The specifications from our radio 
[17] indicate that the output voltage RSSIV  on the RSSI pin is 
proportional to the received power as 

)(2.493.51 dBmVRSSI RSSI −−=                              (2) 
The ChipCon CC1000 radio generates an analog signal that 

serves as an indication to the strength of the received signal 
[22]. This is the RSSI signal that has a dedicated ADC channel 
(channel 0), and its range varies from 0 to 1.2V. The RSSI 
voltage is calculated as: 

1024/)_( CountsADCVV battRSSI ×=                     (3) 

where battV  is the reference voltage of the A/D converter and 

CountsADC _ is the ADC counts. 
In our localization mechanism, the distance between target 

node and ME is observable using the forward link RSSI of the 
receiver. The procedure for our scheme to obtain RSSI 
measurements works as follows: the ME periodically transmit 
a RF beacon signal to sensor nodes in range. During this 
period, sensor node will constantly sample the received signal 
strength from each ME beacon point orderly and store them 
for later use. 

The triangulation estimation method does not perform well 
using RSSI. Wan et al. [23] proposed a localization algorithm 
for mobile system based on a linear relationship between the 
rectangular and the volume coordinates. However, only four  
(base station) BSs can be utilized in [23]. Inspired by the 
volume method utilized in [23], we develop a new volume 
based localization approach which allows any number of ME 
beacon points. In our localization system, we will not adopt 
traditional RSSI algorithm based on the triangulation but 
propose to use the generalized geometrical location algorithm 
which is inspired by [23]. The proposed generalized 
geometrical location algorithm is based on the volume of the 
tetrahedron which is formed by the target senor node and ME.  

A. Mathematical Procedure for Geometrical Localization   
In this section, we generalize the volume based localization 

approach in [23] with any number of anchor nodes. The linear 
relationship between the rectangular and the volume 
coordinates can be found in [23]. The detailed derivation 
procedure for our generalized volume based localization 
method will be described in this subsection. 

    Lemma 1: Assume that the rectangular coordinate of the 
vertex iA  of the tetrahedron is ),,( iii zyx )4,3,2,1( =i . 
Then its signed volume can be expressed in the form of 
determinant as follows: 
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Lemma 2: The volume of the general tetrahedron is also given 
by the determinant 
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where ijr  is the range between vertexes iA and jA . 

Let    
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Let ),,( 000 zyxP  be the random unknown-position node 

location and ),,( iii ZYX  be the known location of the ith 

ME beacon point. The four ME beacon points 1A , 2A , 3A , 4A  
will be used to calculate the position of target node. The ME 
beacon points 1A , 2A , 3A , 4A  can form a tetrahedron. Then 
using Lemma 1 we can get the volume coordinates of the 
unknown node ),,,( 4i3i2i1i vvvvP . 

As shown in Eqs. (1)-(3) of [23] , only four ME beacon 
points in range can be used for unknown-position sensor nodes 
positioning. In order to use any number of beacon points in 
range, we generalize their scheme as follows. 

Using [23], we obtain 
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where ∗
iA  is the adjugate matrix of the matrix iA . 
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Then (11) can be converted into   
                           ccc ZGh =                                              (12) 
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Using weighted least square (WLS) algorithm [26], we can get 
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between the ith ME beacon point  and target unknown node, 
which can be calculated using (1) .                    

Then the position of target node ),,( 000 zyxP  is expressed as 

)2(0 cZx =  , )3(0 cZy = , and )4(0 cZz =  .   

B. Movement Strategy for Mobile Elements 
Due to the power constraint, ME is only capable of low-

speed and short-distance movement in real deployments. For 
instance, the normal speed of several mobile sensor platforms 
(e.g., Packbot and XYZ) is only 0�5�∼ 2�m�s. A XYZ mobile 
sensor node can only move about 165 meters before 
exhausting its power, which is supported by two AA batteries 
[18]. Therefore, the movement trace of ME must be efficiently 
planned in order to maximize the amount of target positions 
that can be obtained with satisfied localization accuracy within 
a short moving distance. Moreover, scheduling an optimal 
path for ME improves the system reliability and network 
lifetime [21].  
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Fig.1. Movement strategy 

To address the above constraints, we propose an efficient 
moving trace for MEs. We use a ‘S’ type as macro moving 
trace for ME illustrated in Fig.1. The target area can be 
divided into small circulars developed by ME’s different 
positions. The radius of the circular is dependent on radio 
range of ME. In practical environment, the radio pattern is not 
a theoretical circular model because of degree of irregularity 
for radio signal. Here, we use circular model only for simple 
presentation. As shown in Fig.1, for micro-moving pattern, the 
ME starts to move from c0 and intermittenly stops at c1 after 
moving 2/R , where R  is the radio range of ME. When ME 
stops at c1, it will broadcast a beacon message including its 
position to other sensor nodes in its radio range. After a short 
stop, ME continues to move as the same way. Note that 
although we can utilize any number of ME beacon points as 
proposed the previous subsection, we only use four optimal 
beacon points in a cell coverage area to reduce the cost for ME. 
Based on this attractive moving strategy, unnecessary 
movement of ME is avoided, ME can effectively decrease 
total moving distance and number of broadcast to extend its 
lifetime and improve the system reliability.  Another merit for 
this moving strategy, the unknown nodes can receive four 
uniformly distributed beacon messages in one little square 
area, which can increase location accuracy.  
Effective side for the cell coverage area 

We regard those little rectangles as the effective coverage 
areas. In order to make the best use of ME, we need to assure 
all of the unknown-position nodes can receive the beacon 
messages from ME. Thus, we let Rcc =20 . Let the side of little 
rectangles a and b , respectively. In order to maximum the use 
of ME, we need to find a rectangle which has the maximize 
area but the minimum perimeter. We define λ  to be the ratio 
between the area and perimeter for the little rectangle. Thus, 
we get: 

2/1)(4
1

)/1/1(2
1

)(2 −≤
+

=
+

=
ababba

abλ                               (14) 

Consequently, we obtain the maximum value 

of λ ,
8
2

max
R=λ , when 2/Rba == . Thus, the optimal cell 

coverage area for our localization scheme is square. 
Effective beacon messages 

As proved above, we need to utilize those square areas as 
the effective coverage area to take best advantage of MEs. 
Since Rcc =20 , we have 222 Rc = , where c  represents the side 

of little squares. As a result, 2/Rc = . Note that 5432 cccc  can 

be constructed by 3210 cccc  and 7654 cccc . Thus, let l  be the width 
of deployment area, the number of useful little squares in a 
row can be calculated as Rlcl 2/2/ = . In the same way, let 
h  be the height of deployment area, the number of rows is 

Rhch 2/2/ = . For each useful little square, ME will beacon 
four times. Therefore, the total number of beacons is 

22 /2)2/()(4 RhlRhl = . 

C. Obstacle Detection and Evasion 
The main problem of RSSI algorithm is that of NLOS 

scenarios in real-world WSN localization systems. In these 
conditions communication is maintained via multi-paths. 
However multi-paths will have a different trajectory and path 
length to the line-of-sight (LOS) path, which will cause errors 
in the final location accuracy. These errors will be spatially 
correlated, potentially over large distances, and often biased in 
nature. Based on the real-time physical link measurements and 
the physical layer characteristics of a mobile multi-path fading 
environment and the radio in use, an obstacle detection 
procedure is proposed which can be utilized to evade obstacle 
and enhance location performance. 

Obstacles which are on the direct line between sensor and 
ME are a further cause for signal attenuation. Of course, this 
attenuation effect, also known as shadowing, depends on the 
object’s size, the material it is made of, as well as the radio 
technology and the utilized frequency. 

Normally, the unknown-position node can periodically 
receive beacon message from ME. One way, if the unknown-
position node cannot receive a beacon message abruptly after 
a period of time, the unknown-position node thinks that link 
between ME and sensor has been destroyed by obstacle. Then 
the unknown-position node will send a message to ME to 
require it resend a new beacon message. Another way, when 
the average RSS, which is calculated using a sliding window 
of N samples by the unknown-position sensor node, and link 
quality indicator go below their thresholds, thRSS and thLQI  
after receiving the related beacon message, the unknown-
position node thinks that the current link between ME and 
sensor has been destroyed by obstacle. However, this scheme 
may also make inaccurate decision since the undetermined 
statistical distribution of NLOS error. Thus, we further 
propose to use the following obstacle detection scheme based 
on hypothesis test.  

Here, we would like to use a binary hypothesis test to 
identify the channel state as follows [24]: 

0HH =                          (LOS condition) 

1HH =                          (NLOS condition) 

In Eq. (1), σX is a zero-mean Gaussian random vector  with 
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standard deviation ó. The density function of σX can be 
written as [24] 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

=−
=

−

−

12

2
2/12

02

2
2/12

),
2

exp()2(

),
2

exp()2(

HHx

HHx

f

nlos
nlos

los
los

X

σ
πσ

σ
πσ

        (15) 

Thus, the conditional density functions of )(dPL for 
different scenarios can be described by 
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The probability that the RSS measurement was captured 

with obstacle effect is higher than the LOS probability. Based 
on this decision metric, we can further estimate the channel 
state whether it is affected by the obstacle or not. 

After receiving the request message from the unknown-
position node, the ME will construct a new link between ME 
and sensor node and broadcast a new beacon message after 
moving a short distance from the former beacon point. The 
former RSS contaminated by NLOS effect will be discarded 
by the unknown-position node for position estimation. The 
simulation and in-depth analysis of this obstacle detection and 
evasion mechanism will be presented in the future work. 

IV.  SIMULATION RESULTS AND PERFORMANCE ANALYSIS 
In this section, simulation results are presented and 

analyzed. We deploy 100 sensor nodes randomly in a three-
dimensional space. The radio range of sensor nodes (R) is set 
to 50 meters first. We simulated a single general node with 
four different positions of ME beacons in a cell coverage area, 
and explored single point estimation through sets of 1,000 
independent simulations. Each run generated a given number of 
different positions of ME beacon points randomly. The 
parameters of propagation model adopted for our simulation 
scenario are n =2.3, 6519.56)( 0 −=dPL , ó=3.92 [16]. We 
use a sliding window of 10 samples to compute the mean 
signal strength on a continuous basis, which will be adopted in 
our proposed algorithm. This window size can be varied with 
the density of the nodes. Firstly, we study the performance of 
our algorithm based on Gaussian noise environment. The RSS 
measurement error caused by target node and all network 
devices is assumed to be Gaussian distributed with mean 0 and 
variance 1* i  dB (where 5,,2,1=i ). Secondly, we will 
simulate our algorithm based on AWGN and Rayleigh 
channels respectively. The simulation results are presented in 
the following figures: 
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Fig.2 Position errors of algorithm in LOS environment 
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Fig.3 Cumulative distribution functions of  estimation error  
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As can be seen from the simulation results of Fig.2, our 

proposed algorithm achieves better performance than the 
conventional RSSI algorithm in LOS environment. The root 
mean square error (RMSE) increases as the measurement error 
variance increases. From Fig.2, we can also see that the RMSE 
of our scheme is closer to CRLB than that of the conventional 
RSSI algorithm. Fig. 3 is the cumulative density function of 
position error. Over 81% of the nodes have less than 7m error 
in our proposed algorithm, but it decrease to 72% for the 
conventional RSSI algorithm. For the same variance, position 
error is smaller when our scheme is applied in LOS 
environment than in AWGN or Rayleigh channels as shown in 
Figs.4-5. In AWGN and Rayleigh channels, our proposed 
algorithm also behaves better than the conventional RSSI 
algorithm in this scenario. From Fig.6, we improve the 
location accuracy of our proposed algorithm by using a sliding 
window of 10 samples to compute the mean signal strength on 
LOS environment. The performance of our scheme exceeds 
the conventional RSSI location algorithm from our simulation 
results. 

V. TESTBED EXPERIMENTATION 
We have implemented our novel localization scheme to 

verify its computational efficiency and estimation accuracy in 
a real environment. We now describe this implementation and 
report on preliminary experimental results. 

A. GANIS Sensor Node Platform 
 
 

 
 
 
 

 
 
 

Fig.7 GAINS Sensor Node 
GAINS sensor node, shown in Fig.7, is our testbed and run 

the GOS event-driven operating system. The GAINS sensors 
deployed in our experiment use the CC1000 radio from 
ChipCon, which provides an analog RSSI measurement that 
can be connected to an analog to digital converter (ADC) to 
produce digital signals. These RSSI measurements can be used 
for localization. A laptop computer attached with sensor node 
is acted as a ME in our experiment. 

B.  Experimental Results for Wireless Channel Model 
In the first experiment, we estimate the path loss in WSNs 

using measured signal strengths of received frames and their 
known transmission power levels. 

Table I contains the numerical values of the model 
parameters for the three anchor nodes considered separately 
and when taken together. We do this experiment in a large 
meeting room with a size of 10 m x 10 m. We vary the 
distance between an anchor node and target node while the 
position of anchor node is fixed. After obtaining a number of 
RSSI measurements with different distances, we calculate the 
statistical feature for these measurements and the parameters 
of wireless channel model. 

We note that the values for the path loss exponent ( n ) and 
the reference signal strength ( )( 0dPL  ) for all three anchor 
nodes are similar despite their different physical locations and 
surroundings. This result is encouraging since it indicates that 
the parameter values are not tied to the specific location of the 
anchor nodes. The values of )( 0dPL  are higher than those 

published by the manufacturer (for 0d  = 1 meter) because our 
real experimental environment does not account for multi-path 
propagation but only in LOS scenario. The values of the path 
loss exponent are also smaller than those reported in previous 
work on radio propagation modeling. However, they are 
consistent with our expectations since we do not consider 
multi-path (which can boost the signal strength at a given 
location). These data reinforce the observation that log-normal 
shadowing path loss model fits the measured data well. 

Fig.6 Analysis localization errors in LOS environment 

Fig.5 Position errors of algorithm in Rayleigh 
Channels 
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TABLE I. PARAMETER ESTIMATES IN REAL EXPERIMENTAL ENVIRONMENT 

 ANCHOR NODE1 ANCHOR NODE2 ANCHOR NODE3

PL(d0) -58.0095 -62.2229 -54.6847 

n 2.3728 2.3776 2.5946 

ó 3.5804 2.8637 3.3632 

Voltage 3.91 3.88 3.83 
TABLE II. RSSI RANGE 

  
 
 
 

In the second experiment we identify the validity range of 
the data acquisition in terms of minimum and maximum 
receiving power. Results are given in Table II where our 
experiments well match with the constructor claims. We do 
this experiment in a large LOS outdoor square.  

VI. CONCLUSIONS AND FUTURE WORK 
In the paper, we have proposed a scheme for node 

localization which uses the generalized weighted geometrical 
location algorithm to achieve more accurate estimation in 
mobility-assisted wireless sensor networks. Our positioning 
scheme does not require sensor nodes to make radio 
transmission constantly but listen to ME beacon signals 
passively. This efficiently reduces sensor energy cost and also 
improves the usage ratio of RF channels. An effective moving 
trace for ME is devised to make best use of ME while 
achieving the localization requirement. To reduce the effect of 
obstacle on node localization, a method for obstacle detection 
and evasion has also been studied. As shown in the simulation 
results, it is found that the proposed approach is effective and 
has good location accuracy than the conventional RSSI 
algorithm. Now that we have validated our ideas through 
simulation, implementation and experiment, it can be stated 
that the approach is effective and has good application 
foreground in some special mobility-assisted sensor networks 
areas. 
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READER MAX (DBM) MIN(DBM) VOLTAGE (V)
Anchor Node1 -54.1878 -106.4651 3.91 
Anchor Node2 -56.3386 -108.0481 3.88 
Anchor Node3 -53.0931 -104.8931 3.82 
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