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Abstract. In this paper the problem of the frequency estimation of a sinusoid embedded 
in white noise is considered. The approach used herein is the minimization of the 
sample variance of the output of constrained notch filters fed by the noisy sinusoid. In 
particular, this paper focuses on closed-form expressions of the frequency estimate, 
which can be obtained using notch filters having an all-zeros FIR structure. In this paper 
it is shown that the FIR notch filters obtained from standard 2nd-order IIR filters are 
inadequate, and an alternate 2nd-order IIR notch filter is proposed, which provides an 
unbiased estimate of the frequency. The FIR filter obtained from the new IIR filter 
provides a closed-form unbiased frequency estimate. Copyright © 2003 IFAC 
 
Keywords. Frequency estimation; harmonic analysis; notch filters; unbiased parameter 
identification. 

 
 
 
 

1. INTRODUCTION 
This paper deals with the estimation of the frequency 
of a harmonic signal 0( ) cos( )s t A t ϕ= Ω + , given its 
noisy measurement ( ) ( ) ( )y t s t n t= + , 1, 2,...t N= , 
where ( )n t  is a zero-mean white Gaussian noise 
( 2(0, )n WGN σ∼ ). This problem is frequently 
encountered in real-world applications, especially in 
the fields of adaptive control and signal processing, 
and numerous techniques have been developed for its 
treatment (see e.g. Bittanti and Picci, 1996, Bittanti 
and Savaresi, 2000, Hsu et al., 1999, Kay, 1988, La 
Scala and Bitmead, 1996, Quinn and Fernandes, 
1991, Renders et al., 1984, Savaresi et al., 2001, 
Schoukens et al., 1992, Stoica, 1992). This paper 
focuses on the class of estimation methods based on 
constrained notch filters (see e.g. Händel and 
Nehorai, 1994, and references cited therein). 
The basic idea underlying notch-filters-based 
estimation techniques is the minimization, with 

respect to Ω , of the loss function 
2

1
( ) ( , )

N

t
J tε

=

Ω = Ω∑ ,            (1) 

where 1( , ) ( , ) ( )t G z y tε −Ω = Ω  is the output of a 
notch filter with transfer function 1( , )G z− Ω , fed by 
the measured  signal ( )y t . The notch of 1( , )G z− Ω  is 
centered around the frequency Ω. 
In general, the dependence of ( )J Ω  on Ω is non-
linear and non-convex; hence, iterative quasi-Newton 
minimization methods must be used. If the unknown 
frequency 0Ω  is time-varying, and the minimization 
of (1) is made recursively, the estimation algorithm 
usually is called frequency tracker (see e.g. 
Boashash, 1992). 
Obviously, the most crucial design choice in a notch-
based estimation technique is the selection of the 
structure and of the parameterization of the filter 



1( , )G z− Ω . Usually, 2nd-order IIR filter with a 
strongly constrained parameterization are used. 
Starting from 2nd-order filters, simple FIR filters or 
more sophisticated higher-order IIR filters have been 
developed and proposed  (Händel et al., 1998, 
Savaresi, 1997). 
Two slightly different 2nd-order IIR notch filters are 
typically used in practice. They have the following 
expressions: 
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In (2) and (3) the parameter ρ  ( 0 1ρ≤ < ) is known 
as the de-biasing parameter or the poles-contraction 
factor (note that ρ  only affects the position of the 
poles). The difference of the poles position (when ρ  
varies) of (2) and (3) can be easily appreciated from 
Fig.1.    
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Fig.1. Example of pole placement of filters (2) (left) 

and (3) (right). The white bullets indicate the position 
of the zeros. 

 

In the literature, filters of this type are also known as 
constrained notch filter, where the term constrained 
refers to the fact that their structure is strongly under-
parameterized: the 5 parameters of a fully-
parameterized 2nd-order digital IIR filter are reduced 
to one parameter only. As a matter of fact, since ρ  is 
regarded as a design parameter, the only unknown 

parameter of (2) and (3) is the angular frequencyΩ . 
The main difference between (2) and (3) is that (3) 
provides a rigorously unbiased estimation of the 
frequency of a pure tone embedded in white noise, 
whereas (2) provides a biased estimate. It is easy to 
see that such bias is negligible if ρ ≈ 1; the problem 
of the bias becomes severe if 1ρ << . The properties 
of such filters have been discussed and analyzed in a 
large number of works (see e.g. Bittanti et al., 1997, 
and references cited therein). 
The goal of this paper is to develop closed-form 
frequency estimators based on notch filters. The 
starting point of this work can be summarized in the 
following observations: 
- closed-form expressions of the frequency 

estimator cannot be obtained if the notch filter has 
a IIR structure, due to the auto-regressive part of 
the filter; 

- a constrained FIR notch filter can be obtained 
from 1

1( , , )G z ρ− Ω  by setting 0ρ = ; this is not 
possible using 1

2 ( , , )G z ρ− Ω  (note that 
1

2 ( , ,0)G z− Ω  is not a FIR); 
- the closed-form frequency estimate obtained from 

1
1( , ,0)G z− Ω  is severely affected by a bias error. 

Starting from these observations, the main results and 
original contributions of this paper are the following: 
a new 2nd-order IIR unbiasing constrained notch filter 

1
3 ( , , )G z ρ− Ω  is developed and analyzed (section 2); 

it is shown, in Section 3,  that a closed-form 
frequency estimate can be obtained using the FIR 
filters 1

1( , ,0)G z− Ω  and 1
3 ( , ,0)G z− Ω  (the major 

advantage of 1
3 ( , ,0)G z− Ω  over 1

1( , ,0)G z− Ω  is that 
it provides a rigorously unbiased estimate of 0Ω ); it 
is shown that the closed-form frequency estimate 
provided by the FIR notch filter 1

3 ( , ,0)G z− Ω , if the 
number N of data snapshots is large, tends to the 
frequency estimators provided by the “Pisarenko 
Harmonic Decomposition” approach, and by the 
“Youle-Walker” approach (Section 4). 
 

2. A NEW UNBIASING NOTCH FILTER 
As already remarked in the Introduction, one of the 
major drawbacks of the notch filter (2) (the most 
widely used in practice) is that it provides a biased 
estimation of 0Ω . This bias is particularly severe 
when 1ρ << . Starting from the cost function (1), a 
new unbiasing 2nd-order IIR notch filter can be 
obtained as follows. 
Consider the long-run (asymptotic) version of the 
cost function (1), namely: 
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1( ) lim ( , )
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N t
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N
ε

→∞
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Ω = Ω 

 
∑ ,  

where 1( , ) ( , ) ( )t G z y tε −Ω = Ω . 

It is easy to see that ( )J Ω  can be given the following 



expression (see Bittanti et al., 1997): 
2
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where ( )yS ω  is the power spectrum of y(t), which 
can be split into the power spectra of ( )s t  and ( )n t , 
namely: ( ) ( ) ( )y s nS S Sω ω ω= + ;   2( )nS ω σ=   and   

2

0 0
1 1( ) ( ) ( )

2 2 2s
AS ω δ ω δ ω = +Ω + −Ω 

 
. 

Compute the asymptotic cost function 1( )J Ω  
associated with the notch filter 1

1( , , )G z ρ− Ω , by 
plugging in (4) the expression of the notch filter (2) 
and the expressions of ( )sS ω  and  ( )nS ω :  

( ) ( )
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2
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−
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π
 

Ω = Ω 
 

. 

For the computation of ( )
1 ( )nJ Ω  (the contribution to 

1( )J Ω  due to the noise) we have resorted to the 
Rugizka algorithm (see Åström, 1970). The calculus 
of ( )

1 ( )sJ Ω  calls for cumbersome but easier 
computations. The expressions obtained for ( )

1 ( )sJ Ω  
and ( )

1 ( )nJ Ω  are:  
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                                       (5b) 
The bias in the frequency estimate obtained using 

1
1( , , )G z ρ− Ω  is due to the fact that  ( )

1 ( )nJ Ω  is a 
function of Ω. This dependence of ( )

1 ( )nJ Ω  on Ω  has 
the effect of moving the minimum of 1( )J Ω  away 
from 0Ω  (whereas 0Ω  is the minimum of ( )

1 ( )sJ Ω ).  

Now observe that the minimum of ( )
1 ( )sJ Ω  does not 

change if ( )
1 ( )sJ Ω  is multiplied by a strictly positive 

function of Ω and ρ , say ( , )η ρΩ  (obviously for 
[0, )πΩ∈  and [0,1)ρ ∈ ). This is due by the 

presence of the factor 0(cos( ) cos( ))Ω − Ω  in 
( )

1 ( )sJ Ω , which is null if 0Ω = Ω .  Consider then the 
following function ( , )η ρΩ : 

2 2

2 3 2 2 2

(1 )( 2 cos( ) 1)( 2 cos( ) 1)( , )
(1 )( 6 cos ( ) 1 2cos ( ))

ρ ρ ρ ρ ρη ρ
ρ ρ ρ ρ ρ
+ + Ω + − Ω +

Ω =
+ + − Ω + + + Ω

(6) 

Note that such function is the square-root of the 
inverse of ( )

1 ( )nJ Ω  (but for the coefficient 2 /σ π ),  
multiplied by 2(1 )ρ+ ).  

A new unbiasing filter 1
3 ( , , )G z ρ− Ω  can be obtained 

from 1
1( , , )G z ρ− Ω  and (6) as follows: 
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G z G z

z z
z z

ρ η ρ ρ

η ρ
ρ ρ

− −

− −

− −
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= Ω

− Ω +
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Due to the fact that 1
3 ( , , )G z ρ− Ω  is simply obtained 

by multiplying 1
1( , , )G z ρ− Ω  by ( , )η ρΩ , some 

remarks on the shape of  ( , )η ρΩ  are due (see Fig.2 
where ( , )η ρΩ  is plotted in the ranges [0, ]πΩ∈  
and [0,1]ρ ∈ ). 
- ( , )η ρΩ  is not-null in the ranges [0, ]πΩ∈  and 

[0,1]ρ ∈ ; this can be easily seen from (6). This 
guarantees the well-posedness of the optimization 
problem based on the cost function (1). 

- Note that ( ,1) 1η Ω = , whereas ( ,0)η Ω  strongly 
differs from 1; this is expected since ( , )η ρΩ  is a 

sort of  “de-biasing factor” of 1
1( , , )G z ρ− Ω . 

Therefore ( , )η ρΩ  leaves 1
1( , , )G z ρ− Ω  almost 

unchanged if ρ  is close to 1,  whereas ( , )η ρΩ  

provides a strong correction to 1
1( , , )G z ρ− Ω  for 

small values of  ρ . 
- Note that ( / 2, ) 1η π ρ =  [0,1]ρ∀ ∈ , and that 

( , )η ρΩ  is symmetric with respect to / 2πΩ =  
in the range [0, ]πΩ∈  (Bittanti et al., 1997). 
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Fig.2. Shape of the function ( , )η ρΩ  in the ranges 

[0, ]πΩ∈  and [0,1]ρ ∈ . 
 

In order to get a complete understanding of the 
differences between the three 2nd-order constrained 
notch filters 1

1( , , )G z ρ− Ω , 1
2 ( , , )G z ρ− Ω , and 

1
3 ( , , )G z ρ− Ω , it is interesting to compare the 

corresponding asymptotic cost functions 1 ( )J Ω , 

2 ( )J Ω , and 3 ( )J Ω , respectively.  



The closed-form expressions of 1 ( )J Ω  has already 
been computed in (5). Following the same procedure,  

( ) ( )
2 2 2( ) ( ) ( )s nJ J JΩ = Ω + Ω  and ( ) ( )

3 3 3( ) ( ) ( )s nJ J JΩ = Ω + Ω  
can be obtained as: 
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By comparing 1 ( )J Ω , 2 ( )J Ω , and 3 ( )J Ω  it is 

apparent that 2 ( )J Ω  and 3 ( )J Ω  have the minimum 

exactly at 0Ω  (unbiased estimate), since ( )
2 ( )nJ Ω  

and ( )
3 ( )nJ Ω  do not depend on Ω . On the contrary, 

as already observed, 1 ( )J Ω  provides a biased 

estimate since ( )
1 ( )nJ Ω  is Ω -dependent.  

To conclude this section, it is worth remarking that 
the new filter 1

3 ( , , )G z ρ− Ω  merges the two main 

appealing features of 1
1( , , )G z ρ− Ω  and 

1
2 ( , , )G z ρ− Ω : 

- similarly to 1
1( , , )G z ρ− Ω , a FIR filter can be 

obtained from 1
3 ( , , )G z ρ− Ω   by using 0ρ = ; 

- similarly to 1
2 ( , , )G z ρ− Ω , 1

3 ( , , )G z ρ− Ω  
provides an unbiased estimate of 0Ω  

[0,1)ρ∀ ∈ .  
These features will be fully exploited in the 
following section, in order to obtain closed-form 
frequency estimates based on FIR notch filters. 
 
3. CLOSED-FORM FREQUENCY ESTIMATION  

A closed-form notch-based frequency estimate 
cannot be obtained if the filter has a IIR structure. 
Consider the FIR filters obtained by simply setting 

0ρ =  in (2) and in (7) (it has been already observed 

that setting 0ρ =  in 1
2 ( , , )G z ρ− Ω  does not yield a 

FIR filter), namely: 
1 1 2

1( , ,0) 1 2cos( )G z z z− − −Ω = − Ω + , 

1 1 2
3 2

1( , ,0) (1 2cos( ) )
2cos ( ) 1

G z z z− − −Ω = − Ω +
Ω +

. 

Using such filters, closed-form frequency estimators 
from the data can be obtained as follows. 
Closed form frequency estimator obtained using  
G1(z-1,Ω,0). 
Consider the following cost function, obtained by 
plugging in (1) the FIR notch filter 1

1( , ,0)G z− Ω : 

( )2
1

1

( ) ( ) 2cos( ) ( 1) ( 2)
N

t

J y t y t y t
=

Ω = − Ω − + −∑ , 

and differentiate 1( )J Ω  with respect to Ω : 
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t

y t y t y tdJ
d y t=

 − Ω − + − ⋅Ω
=  

Ω Ω −  
∑ .(10) 

Note that (10) is quadratic with respect to cos( )Ω ; 
hence by solving 1( ) 0dJ dΩ Ω =  with respect to 
cos( )Ω , it is easy to see that the following holds: 
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−

∑
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The closed-form frequency estimator therefore is 
given by:    
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=

=
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∑

∑
.▄        (11) 

As the number N of data grows, 1Ω̂  tends to the 
minimum of the asymptotic cost function (5) (in the 
special case of 0ρ = ). After some cumbersome 
computation, the following asymptotic expression of 
(11) is obtained: 

2

1 02 2
ˆ arccos cos( )

N

A
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π

π σ→∞

 
Ω = → Ω + 

.        (12) 

From (12), it is apparent that the frequency estimate 
is affected by a severe bias; note that the bias is null 
in the (trivial and unrealistic) case of zero noise 
( 2 0σ = ); it grows as the SNR decreases.  
Closed form frequency estimator obtained using 
G3(z-1,Ω,0). 
Consider the following cost function, obtained by 
plugging in (1) the FIR notch filter 1

3 ( , ,0)G z− Ω : 
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and differentiate 3 ( )J Ω  with respect to Ω : 
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Consider now the problem of solving 
3 ( ) 0dJ dΩ Ω =  with respect to Ω . After some 

manipulation the following expression is obtained: 
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∑ .(14) 

Equation (14) admits a trivial solution: sin( ) 0Ω = . 
Assuming  that  0 {0, }πΩ ≠ , the following quadratic 
form (with respect to cos( )Ω ) can be obtained from 
(14): 
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From (15), a closed-form frequency estimator can be 
computed. It has the following expression:    
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∑
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                            (16) 
 
As the number N of data grows, 3Ω̂  tends to the 
minimum of the asymptotic cost function (8) (in the 
special case of 0ρ = ): 

3 0
ˆ

N→∞
Ω → Ω .  

Thus, the new filter 1
3 ( , ,0)G z− Ω  provides a simple 

closed-form unbiased estimate of 0Ω . Interestingly, 
(16)  is closely related to the method given in So, 
2002 and in So and Ip, 2002, even if the derivation of 
this result is completely different. 
 

4. RELATED METHODS 
In the literature, other closed-form frequency 
estimators for harmonic signals in white noise have 
been proposed and analyzed. Two celebrated 
estimators are the “Youle-Walker” estimator, and the 
“Pisarenko Harmonic Decomposition” (PHD) 
estimator (see e.g. Pisarenko, 1973, Xiao and 
Takodoro, 1994 and 1995). In this section they will 
be briefly recalled and compared with the asymptotic 
version of the notch-based estimator (16). 
Youle-Walker approach. 
Given ( ) ( ) ( )y t s t n t= + , 0( ) cos( )s t A t ϕ= Ω + , 

2(0, )n WGN σ∼ , the autocorrelation coefficients of 

order 1 and 2, say 1r  and 2r  respectively, are given 
by: 
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( ) ( 1) cos( )
2

( ) ( 2) cos(2 )
2

Ar E y t y t

Ar E y t y t


= − = Ω


 = − = Ω

                   (17) 

By eliminating the parameter A in (17), the following 
equation is obtained: 

2
1 0 2 0 12 cos ( ) cos( ) 0r r rΩ − Ω − = . 

Its solution with respect to 0Ω  provides the Youle-
Walker frequency estimator, given by: 

2 2
2 2 1

1

8ˆ arccos
4YW

r r r
r

 + +
 Ω =
 
 

.▄                               (18) 

PHD approach. 
Given a zero-mean stationary signal ( )y t , its 
autocorrelation matrix of order 3 is given by: 

0 1 2

1 0 1

2 1 0

r r r
R r r r

r r r

 
 =  
  

,  

[ ] [ ]2
0 1 2( ) , ( ) ( 1) , ( ) ( 2)r E y t r E y t y t r E y t y t = = − = −  . 

The eigenvector associated with the smallest 
eigenvalue of R has the following form: 

2 2
2 2 1

1

8
1 1

2

T

r r r
r

 + +
 −
  

.                                    (19) 

Pisarenko (Pisarenko, 1973) has proven that, if 
( ) ( ) ( )y t s t n t= + , 0( ) cos( )s t A t ϕ= Ω + , 2(0, )n WGN σ∼ , 

the smallest eigenvalue of R must have the following 
simple expression: 

[ ]01 2cos( ) 1 T
− Ω .                                     (20) 

By comparing (19) and (20), the PHD frequency 
estimator is  obtained: 

2 2
2 2 1

1

8ˆ arccos
4PHD

r r r
r

 + + Ω =
 
 

.▄                      (21) 

Interestingly enough, the Youle-Walker and PHD 
approaches provide exactly the same results. This has 
been recently proven and discussed in Xiao and 
Takodoro, 1994 and 1995. 
Consider now the notch-based closed-form estimator 
(16).  The following result holds. 
Proposition 1. 
Given a signal ( ) ( ) ( )y t s t n t= + , where 

0( ) cos( )s t A t ϕ= Ω + , 2(0, )n WGN σ∼ , the notch-
filter based estimator (16) asymptotically converges 
towards ˆ

YWΩ  and ˆ
PHDΩ , namely: 
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[ ] [ ]1 2( ) ( 1) , ( ) ( 2)r E y t y t r E y t y t= − = − . 
Proof. 
If N is large, the following hold: 
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By plugging in (16) the asymptotic expressions (22), 
it is easy to see that: 
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2 2 1

3
1

8ˆlim arccos
4N

r r r
r→∞

 + +
 Ω =
 
 

,  

[ ] [ ]1 2( ) ( 1) , ( ) ( 2)r E y t y t r E y t y t= − = − .▄ 
From a theoretical point of view the fact that 
(asymptotically) ˆ

YWΩ ,  ˆ
PHDΩ  and 3Ω̂  are exactly the 

same,  is particularly interesting: it shows the 
equivalence of three classical approaches which have 
been independently conceived and developed 
following three completely different paths. 
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