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Estimation Theory and Applications 
 

Application Areas 
 

1. Radar 

 
Radar system transmits an electromagnetic pulse )(ns . It is reflected by 
an aircraft, causing an echo )(nr  to be received after 0τ  seconds: 

)()(( nwnsnr +τ−) 0α=  
where the range R  of the aircraft is related to the time delay by 
 

cR /20 =τ  
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2. Mobile Communications 

 
The position of the mobile terminal can be estimated using the time-of-
arrival measurements received at the base stations. 
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3. Speech Processing 
 

Recognition of human speech by a machine is a difficult task because 
our voice changes from time to time. 

 

Given a human voice, the estimation problem is to determine the 
speech as close as possible. 

 
4. Image Processing 
 

Estimation of the position and orientation of an object from a camera 
image is useful when using a robot to pick it up, e.g., bomb-disposal 

 
5. Biomedical Engineering 
 

Estimation the heart rate of a fetus and the difficulty is that the 
measurements are corrupted by the mother’s heart beat as well. 

 
6. Seismology 
 

Estimation of the underground distance of an oil deposit based on 
sound reflection due to the different densities of oil and rock layers. 
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Differences from Detection   
 

1. Radar 

 
Radar system transmits an electromagnetic pulse )(ns . After some time, 
it receives a signal )(nr . The detection problem is to decide whether )(nr  
is 
 

echo from an object or it is not an echo 
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2. Communications 
 
In wired or wireless communications, we need to know the information 
sent from the transmitter to the receiver. 
 
e.g., for binary phase shift keying (BPSK) signals, it consists of only two 
symbols, “0” or “1”. The detection problem is to decide whether it is “0” or 
“1”. 
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3. Speech Processing 
 

Given a human speech signal, the detection problem is decide what is the 
spoken word from a set of predefined words, e.g., “0”, “1”,…, “9”  

 
Waveform of “0” 

 

Another example is voice authentication: given a voice and it is indicated 
that the voice is from George Bush, we need to decide it’s Bush or not. 
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4. Image Processing 
 

Fingerprint authentication: given a fingerprint image and his owner says 
he is “A”, we need to verify if it is true or not 
 

 
 
Other biometric examples include face authentication, iris authentication, 
etc. 
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5. Biomedical Engineering 
 

 
17 Jan. 2003, Hong Kong Economics Times 

e.g., given some X-ray slides, the detection problem is to determine if she 
has breast cancer or not 
 

6. Seismology 
 

To detect if there is oil or there is no oil at a region 
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What is Estimation? 
 

Extract or estimate some parameters from the observed signals, e.g., 
 
 Use a voltmeter to measure a DC signal 

 
1,,1,0],[][ −=+= NnnwAnx L  

 
Given , we need to find the DC value, ][nx A 
 
⇒ the parameter is the observed signal 

  
 Estimate the amplitude, frequency and phase of a sinusoid in noise 

 
1,,1,0],[)cos(][ −=+φ+ωα= Nnnwnnx L  

 
Given , we need to find ][nx α, ω and φ 
 
⇒ the parameters are not directly observed in the received signal 
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 Estimate the value of resistance R  from a set of voltage and current 
readings: 

 

1,,1,0],[][][],[][][ 2actual1actual −=+=+= NnnwnInInwnVnV L  
 

Given N  pairs of ( ][],[ nInV ), we need to estimate the resistance R , 
ideally, IVR /=  
 

⇒ the parameter is not directly observed in the received signals 
 
 Estimate the position of the mobile terminal using time-of-arrival 
measurements: 

 

1,,1,0],[
)()(

][
22

−=+
−−−

= Nnnw
c

yyxx
nr nsns L  

 

Given ][nr , we need to find the mobile position ( ss yx , ) where  is the 
signal propagation speed and (

c
nn yx , ) represent the known position of 

the nth base station 
 

⇒ the parameters are not directly observed in the received signals 
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Types of Parameter Estimation 
 
 Linear or non-linear  

 

Linear:   DC value, amplitude of the sine wave 
Non-linear:   Frequency of the sine wave, mobile position 

 
 Single parameter or multiple parameters 

 

Single:   DC value; scalar 
Multiple:   Amplitude, frequency and phase of sinusoid; vector 

 
 Constrained or unconstrained 

 

Constrained: Use other available information & knowledge, e.g., from  
N ][],[ nInVthe  pairs of ( ), we draw a line which best fits 

the data points and the estimate of the resistance is 
given by the slope of the line. We can add a constraint 
that the line should cross the origin (0,0) 

Unconstrained: No further information & knowledge is available 
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 Parameter is unknown deterministic or random 
 

Unknown deterministic:  constant but unknown (classical) 
        DC value is an unknown constant  
Random : random variable with prior knowledge of 

PDF (Bayesian) 
 If we have prior knowledge that the DC value 

is bounded by 0A−  and 0A  with a particular 
PDF ⇒ better estimate 

 
 Parameter is stationary or changing 

 
Stationary :   Unknown deterministic for whole observation  

period, time-of-arrivals of a static source 
 
Changing :     Unknown deterministic at different time  

instants, time-of-arrivals of a moving source 
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Performance Measures for Classical Parameter Estimation 
 

Accuracy: 
 
 Is the estimator biased or unbiased? 

 
e.g.,     1,,1,0],[][ −=+= NnnwAnx L  
 

where  is a zero-mean random noise with variance  ][nw 2
wσ

 

Proposed estimators: 
]0[ˆ1 xA =  
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Biased :       AAE ≠}ˆ{
Unbiased :      AAE =}ˆ{
Asymptotically unbiased :   only if AAE =}ˆ{ ∞→N  
 
Taking the expected values for ,  and , we have 1Â 2Â 3Â
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Q. State the biasedness of ,  and . 1Â 2Â 3Â
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For , it is difficult to analyze the biasedness. However, for 4Â 0][ =nw : 
 

AAAAANxxx N NNN ==⋅=−⋅ LL ]1[]1[]0[  
 
 What is the value of the mean square error or variance? 

 
They correspond to the fluctuation of the estimate in the second order: 
 

})ˆ{(MSE 2AAE −=           (5.1) 
 

}})ˆ{ˆ{(var 2AEAE −=           (5.2) 
: 

If the estimator is unbiased, then MSE = var 
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In general,  
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An optimum estimator should give estimates which are 
 
 Unbiased 
 Minimum variance (MSE as well) 

  
Q. How do we know the estimator has the minimum variance? 
 
Cramer-Rao Lower Bound (CRLB) 
 
Performance bound in terms of minimum achievable variance provided by 
any unbiased estimators 
 
Use for classical parameter estimation 
 
Require knowledge of the noise PDF and the PDF must have closed form 
 
More easier to determine than other variance bounds 
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Let the parameters to be estimated be T
P ],,,[ 21 θθθ= Lθ , the CRLB for 

θ  in Gaussian noise is stated as follows i
 

[ ] [ ] iiiii ,
1

, )()()CRLB( θIθJ −==θ          (5.4) 
where 
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);( θxp  represents PDF of and it is 
parameterized by the unknown parameter vector  

TNxxx ]]1[,],1[],0[[ −= Lx
θ

 
Note that 
 
  is known as Fisher information matrix )(θI

 
  is the ( ) element of  ii,][J ii, J
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Review of Gaussian (Normal) Distribution 
 
The Gaussian PDF for a scalar random variable  is defined as x
 









µ−

σ
−

πσ
= 2

22
)(

2
1exp

2

1)( xxp          (5.6) 

 
We can write ),(~ σµNx  
 
The Gaussian PDF for a random vector  of size x N  is defined as 
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The covariance matrix  has the form of C
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where 
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If  is a zero-mean white vector and all vector elements have variance  x 2σ
 

N
TE IµxµxC ⋅σ=
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The Gaussian PDF for the random vector  can be simplified as x
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Example 5.1 
 
Determine the PDF of 
 

]0[]0[ wAx +=  
and 

1,,1,0],[][ −=+= NnnwAnx L  
 
where  { } is a white Gaussian process with known variance  and )(nw 2
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Example 5.2 
 
Find the CRLB for estimating A based on single measurement: 
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As a result,  
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We also observe that a simple unbiased estimator 
 

]0[ˆ1 xA =  
 

achieves the CRLB: 
 

22222
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Example 5.3 
 
Find the CRLB for estimating A based on N  measurements: 
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As a result,  
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We also observe that a simple unbiased estimator 
 

]0[ˆ1 xA =  
does not achieve the CRLB 
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⇒  sample mean is the optimum estimator for white Gaussian noise 
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Example 5.4 
 
Find the CRLB for A and  given 2

wσ ]}[{ nx : 
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⇒ the CRLBs for unknown and known noise power are identical 
 
Q. The CRLB is not affected by knowledge of noise power. Why? 
 
Q. Can you suggest a method to estimate  ? 2
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Example 5.5 
 
Find the CRLB for phase of a sinusoid in white Gaussian noise: 
 

1,,1,0],[)cos(][ 0 −=+φ+ω= NnnwnAnx L  
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Example 5.6 
 
Find the CRLB for A, 0ω  and φ for 
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After matrix inversion, we have 
 

N
A w

22
)CRLB(

σ
≈  

2

2

20
2

SNR,
)1(SNR

12)CRLB(
w

A
NN σ

=
−⋅

≈ω  

 

)1(SNR
)12(2)CRLB(
+⋅

−
≈φ

NN
N  

Note that 

NANNNN
N w

22
SNR

1
SNR

4
)1(SNR

)12(2)CRLB( σ
=

⋅
>

⋅
≈

+⋅
−

≈φ  

 
⇒ In general, the CRLB increases as the number of parameters to be 

estimated increases 
⇒ CRLB decreases as the number of samples increases 
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Parameter Transformation in CRLB 
 
Find the CRLB for θ)α (g=  where ()g  is a function 
 
e.g.,     1,,1,0],[][ −=+= NnnwAnx L  
 
What is the CRLB for 2A ? 
 
The CRLB for parameter transformation of )(α θg=  is given by 
 













θ∂

θ∂
−









θ∂
θ∂

=α

2

2

2

));(ln(

)(

)CRLB(
xpE

g

             (5.10) 

 
For nonlinear function, “=” is replaced by “ ” and it is true only for large ≈ N  
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Example 5.7 
 
Find the CRLB for the power of the DC value, i.e., 2A : 
 

1,,1,0],[][ −=+= NnnwAnx L  
 

2
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2

4)(2)(

)(

A
A
AgA

A
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∂
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∂

∂
⇒

==α
 

From Example 5.3, we have 
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N
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ApE
σ
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∂

∂
−

x  

As a result, 

1,
4

4)CRLB(
222

22 >>
σ

=
σ
⋅≈ N

N
A

N
AA ww  
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Example 5.8 
 
Find the CRLB for Acc 21 +=α  from 
 

1,,1,0],[][ −=+= NnnwAnx L  
 
c

2
2

2

2

21

)()(

)(

c
A
Agc

A
Ag

AcAg
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∂
∂

⇒=
∂

∂
⇒
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As a result, 

N
c

N
cAc

w

w

22
2

2
2
2

2
2 )CRLB()CRLB(

σ
=

σ
⋅=⋅=α
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Maximum Likelihood Estimation 
  
Parameter estimation is achieved via maximizing the likelihood function 
 
Optimum realizable approach and can give performance close to CRLB 
 
Use for classical parameter estimation 
 
Require knowledge of the noise PDF and the PDF must have closed form 
 
Generally computationally demanding 
 
Let  be the PDF of the observed vector  parameterized by the 
parameter vector θ. The maximum likelihood (ML) estimate is 

);( θxp x

 
);(maxargˆ θxθ

θ
p=         (5.11) 
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e.g., given  where  is the observed data, as below θ);( 0xx =p 0x
 
 

 
 
 
Q. What is the most possible value of θ? 
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Example 5.9 
 
Given 

1,,1,0],[][ −=+= NnnwAnx L  
 
where A is an unknown constant and  is a white Gaussian noise with 
known variance 2 . Find the ML estimate of 

][nw

wσ A. 
 











−∑

σ
−

πσ
=

−

=

21

022/2 )][(
2

1exp
)2(

1)( Anx;Ap
N

nw
N

w
x  

 
Since ))};({ln(maxarg);(maxarg θxθx

θθ
pp = , taking log for  gives )( ;Ap x

 
21

02
2/2 )][(

2
1))2ln(());(ln( AnxAp

N

nw

N
w −∑

σ
−πσ−=

−

=
x  
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Differentiate with respect to A yields 

2

1

01

02

)][(
1)][(2

2
1));(ln(

w

N

nN

nw

Anx
Anx

A
Ap

σ

−∑
=−⋅−∑⋅⋅

σ
−=

∂
∂

−

=−

=

x  

 
)};({ln(maxargˆ ApA

A
x=  is determined from 

 

][1ˆ0)ˆ][(0
)ˆ][( 1

0

1

02

1

0 nx
N

AAnx
Anx N

n

N

nw

N

n ∑=⇒=−∑⇒=
σ

−∑ −

=

−

=

−

=  

Note that 
 

 ML estimate is identical to the sample mean 
 Attain CRLB 

 

Q. How about if  is unknown? 2
wσ
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Example 5.10 
 
Find the ML estimate for phase of a sinusoid in white Gaussian noise: 
 

1,,1,0],[)cos(][ 0 −=+φ+ω= NnnwnAnx L  
 

where A and  are assumed known 0ω
 
The PDF is 
 

2
0

1

02
2/2

2
0

1

022/2

))cos(][(
2

1))2ln(());(ln(

))cos(][(
2
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nAnxp
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N
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N

nw
N

w

x

x
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It is obvious that the maximum of );( φxp  or ));(ln( φxp  corresponds to the 
minimum of 
 

2
0

1

02 ))cos(][(
2

1
φ+ω−∑

σ

−

=
nAnx

N

nw
  or  2

0
1

0
))cos(][( φ+ω−∑

−

=
nAnx

N

n
 

 

Differentiating with respect to φ and then set the result to zero: 
 

0)22sin(
2

)sin(][

)sin())cos(][(2

00
1

0

00
1

0

=



 φ+ω−φ+ω∑=

φ+ω−⋅−⋅φ+ω−∑

−

=

−

=

nAnnxA

nAnAnx

N

n

N

n  

 

⇒   )ˆ22sin(
2

)ˆsin(][ 0
1

0
0

1

0
φ+ω∑=φ+ω∑

−

=

−

=
nAnnx

N

n

N

n
 

 

The ML estimate for φ is determined from the root of the above equation 
 

Q. Any ideas to solve the nonlinear equation? 
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Approximate ML (AML) solution may exist and it depends on the structure 
of the ML expression. For example, there exists an AML solution for φ 
 

1,00
2

)ˆ22sin(1
2

)ˆsin(][1

)ˆ22sin(
2

)ˆsin(][

0
1

0
0

1

0

0
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−

=
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=
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=
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N

n
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n

N
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The AML solution is obtained from 
 

)cos(][)ˆsin()sin(][)ˆcos(

0)ˆsin()cos(][)ˆcos()sin(][

0)ˆsin(][
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ω∑
−=φ −

=

−
=−

)cos(][
)sin(][

tanˆ
0

1
0

0
1
01

nnx
nnx

N
n

N
n  

 
In fact, the AML solution is reasonable: 
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For parameter transformation, if there is a one-to-one relationship 
between )(θ=α g  and θ, the ML estimate for α is simply: 
 

)ˆ(ˆ θ=α g           (5.12) 
 
Example 5.11 
 
Given N  samples of a white Gaussian process , ][nw 1,,1,0 −= Nn L , with 
unknown variance 2. Determine the power of  in dB. σ ]n[w
 
The power in dB is related to 2σ  by 
 

)(log10 2
10 σ=P  

 
which is a one-to-one relationship. To find the ML estimate for P , we first 
find the ML estimate for 2σ  
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Differentiating the log-likelihood function w.r.t. to 2σ : 
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Setting the resultant expression to zero: 
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As a result, 
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Example 5.12 
 
Given 

1,,1,0],[][ −=+= NnnwAnx L  
 
where A is an unknown constant and  is a white Gaussian noise with 
unknown variance 2. Find the ML estimates of 

][nw
σ A and 2σ . 
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Solving the first equation: 
 

xnx
N

A
N

n
=∑=

−

=
][1ˆ 1

0
 

 
Putting xAA == ˆ  in the second equation: 
 

21

0

2 )][(1ˆ xnx
N

N

n
−∑=σ

−

=
 

 
Numerical Computation of ML Solution 
 
When the ML solution is not of closed form, it can be computed by 
 
 Grid search 

 
 Numerical methods: Newton-Raphson, Golden section, bisection, etc  
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Example 5.13 
 
From Example 5.10, the ML solution of φ is determined from 
 

)ˆ22sin(
2

)ˆsin(][ 0
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0
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φ+ω∑=φ+ω∑
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−
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nAnnx
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Suggest methods to find  φ̂
 
Approach 1: Grid search 
 

Let 

)22sin(
2

)sin(][)( 0
1

0
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1
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φ+ω∑−φ+ω∑=φ

−

=

−

=
nAnnxg

N

n

N

n
 

 

It is obvious that 
φ̂ = root of )(φg  
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The idea of grid search is simple:  
 

 Search for all possible values of  or a given range of  to find root 
⇒

φ̂ φ̂
 Values are discrete  tradeoff between resolution & computation 

 

e.g., Range for : any values in φ̂ )2,0[ π  
⇒Discrete points : 1000  resolution is 1000/2π  

 

MATLAB source code: 
 
N=100; 
n=[0:N-1]; 
w = 0.2*pi; 
A = sqrt(2); 
p = 0.3*pi; 
np = 0.1; 
q = sqrt(np).*randn(1,N); 
x = A.*cos(w.*n+p)+q; 
for j=1:1000 
    pe = j/1000*2*pi; 
    s1 =sin(w.*n+pe); 
    s2 =sin(2.*w.*n+2.*pe); 
    g(j) = x*s1'-A/2*sum(s2); 
end 
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pe = [1:1000]/1000; 
plot(pe,g) 
 

 
 
Note: x-axis is  )2/( πφ
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stem(pe,g) 
axis([0.14 0.16 -2 2]) 

 
 

23240)2152.0( .-g =π⋅ , 21680)2153.0( .g =π⋅  
 

⇒      (π=π⋅=φ 306.02153.0ˆ π± 001.0 ) 
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For a smaller resolution, say 200 discrete points: 
 
 
clear pe; 
clear s1; 
clear s2; 
clear g; 
for j=1:200 
    pe = j/200*2*pi; 
    s1 =sin(w.*n+pe); 
    s2 =sin(2.*w.*n+2.*pe); 
    g(j) = x*s1'-A/2*sum(s2);
end 
pe = [1:200]/200; 
plot(pe,g) 
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stem(pe,g) 
axis([0.14 0.16 -2 2]) 

 
 

13061)2150.0( .-g =π⋅ , 11501)2155.0( .g =π⋅  

 

⇒      (π=π⋅=φ 310.02155.0ˆ π± 005.0 ) 

 

⇒ Accuracy increases as number of grids increases 
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Approach 2: Newton/Raphson iterative procedure 

ˆ
 

With initial guess , the root of 0φ )(φg  can be determined from 
 

)ˆ('
)ˆ(

)(
)ˆ(ˆˆ
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=
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+         (5.13) 
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nAnnx
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n
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with 
0ˆ 0 =φ  
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p1 = 0;     
for k=1:10 
    s1 =sin(w.*n+p1); 
    s2 =sin(2.*w.*n+2.*p1); 
    c1 =cos(w.*n+p1); 
    c2 =cos(2.*w.*n+2.*p1); 
    g = x*s1'-A/2*sum(s2); 
    g1 = x*c1'-A*sum(c2); 
    p1 = p1 - g/g1; 
    p1_vector(k) = p1; 
end 
stem(p1_vector/(2*pi)) 

 
 
Newton/Raphson method converges at ~ 3rd iteration 
 

π=π⋅=φ 305.021525.0ˆ  
 

Q. Can you comment on the grid search & Newton/Raphson method? 
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ML Estimation for General Linear Model 
 
The general linear data model is given by 
 

wHθx +=            (5.14) 
 
where  
 
x is the observed vector of size N  
w  is Gaussian noise vector with known covariance matrix  

p
C

N ×H  is known matrix of size  
θ is parameter vector of size   p
 
Based on (5.7), the PDF of  parameterized by  is x θ
 







 −⋅⋅−−

π
= )()(

2
1exp

)(det)2(
1)( 1

2/12/ HθxCHθx
C

θx; -T
Np      (5.15) 
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Since  is not a function of , the ML solution is equivalent to C θ
 

{ })J(θ θ
θ

minargˆ =   where   )())( 1 HθxCHθ(xθ −⋅⋅−= -TJ

 
Differentiating )(θJ  with respect to  and then set the result to zero: θ
 

θHCHxCH

θHCHxCH-
ˆ

0ˆ22
11

11

⋅⋅⋅=⋅⋅⇒

=⋅⋅+⋅⋅
-T-T

-T-T
 

 
As a result, the ML solution for linear model is 
 

xCHHCHθ 111 )(ˆ -T-T ⋅= −         (5.16) 
For white noise: 
 

xHHHxIHHIHθ TT-
w

T-
w

T ⋅=⋅σ⋅⋅σ= −− 112112 )()())((ˆ      (5.17) 
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Example 5.14 
 
Given N  pair of ( yx, ) where  is error-free but x y  is subject to error: 
 

1,,1,0,][][][ −=++⋅= Nnnwcnxmny L  
 
where  is white Gaussian noise vector with known covariance matrix  w C
 
Find the ML estimates for  and  m c
 

Tcmnwnxnw
c
m

nxny

nwcnxmny

][],[]1][[][]1][[][

][][][

=+⋅=+







⋅=⇒

++⋅=
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+⋅=
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wxy
wxy

θ

θ
θ

LLL
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Writing in matrix form: 
wHθy +=  

where 
 

TNyyy ]]1[,],1[],0[[ −= Ly  
 



















−

=

1]1[

1]1[
1[0]

Nx

x
x

MM
H  

 
Applying (5.16) gives 
 

yCHHCHθ 111 )(
ˆ
ˆˆ −−− ⋅=







= TT
c
m
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Example 5.15 
 
Find the ML estimates of A, 0ω  and φ for  
 
 

1,1,,1,0],[)cos(][ 0 >>−=+φ+ω= NNnnwnAnx L  
 

where  is a white Gaussian noise with variance  ][nw 2
wσ

 
Recall from Example 5.6: 

 

],[θθx φω=
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The ML solution for  can be found by minimizing θ
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This can be achieved by using a 3-D grid search or Netwon/Raphson 
method but it is computationally complex 
 
Another simpler solution is as follows 
 

2
00

1

0

2
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1

0
0

))sin()sin()cos()cos(][(
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nAnAnx

nAnxAJ
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Since A  and  are not quadratic in φ ),,( 0 φωAJ , the first step is to use 
parameter transformation: 
 

)sin(
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1
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φ=α
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      ⇒
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Let 

T

T

N

N

))]1(sin()sin(0[

))]1(cos()cos(1[

00

00

−ωω=

−ωω=

L

L

s
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We have 
 

[ ]scHαHα-xHα-x
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=







α
α
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α−α−α−α−=ωαα
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)()(),,(

2
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T
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Applying (5.17) gives 
 

xHHHα TT ⋅= −1)(ˆ  
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Substituting back to ),,( 021 ωααJ : 
 

( ) ( )

xHHHHx-xx

xHHHH-Ix

xHHHH-IHHHH-Ix

xHHHH-IxHHHH-I

xHHHH-xxHHHH-x
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TTTT

TTT

TTTTTT

TTTTT

TTTTT

TJ

1

1
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))(())((

)ˆ()ˆ()(

 

 

Minimizing )( 0ωJ  is identical to maximizing 
 

 xHHHHx ⋅⋅⋅ − TTT 1)(  
or 

{ }xHHHHx ⋅⋅⋅=ω −

ω

TTT 1
0 )(maxargˆ

0
 

 

⇒ 3-D search is reduced to a 1-D search 
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After determining ,  can be obtained as well 0ω̂ α̂
 
For sufficiently large N : 

[ ]

[ ]

( ) ( )
2

0
1

0

22

1

1
1

)exp(][2

2

2/0
02/

)(

njnx
N

N

N
N

N

n

TT

T

T
TT

T

T

TT

TT
TTTTT

ω−∑=







 +=









⋅








⋅≈









⋅








⋅=⋅⋅⋅

−

=

−

−
−

xsxc

xs
xcxsxc

xs
xc

sscs
scccxsxcxHHHHx

 
 

⇒
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Least Squares Methods 
 
Parameter estimation is achieved via minimizing a least squares (LS) cost 
function 
 
Generally not optimum but computationally simple 
 
Use for classical parameter estimation 
 
No knowledge of the noise PDF is required 
 
Can be considered as a generalization of LS filtering 
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Variants of LS Methods 
 

1. Standard LS 
 

Consider the general linear data model: 
 

wHθx +=  
where  
 

x is the observed vector of size N  
w  is zero-mean noise vector with unknown covariance matrix 

pN ×H  is known matrix of size  
θ is parameter vector of size   p
 
The LS solution is given by 

{
 

                       ( ) ( )} xHHHHθ-xHθ-xθ
θ

TTT 1)(minargˆ −==       (5.18) 
 

which is equal to (5.17) 
 

 
78



⇒ LS solution is optimum if covariance matrix of  is  and  is  w IC ⋅σ= 2
w w

     Gaussian distributed 
Define 

 
Hθ-xe =  

 
where 

 
TNeee )]1()1()0([ −= Le  

 
(5.18) is equivalent to  








∑=
−

=
)(minargˆ 21

0
ke

N

kθ
θ          (5.19) 

 
which is similar to LS filtering 
 
Q. Any differences between (5.19) and LS filtering? 
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Example 5.16 
 
Given 

1,,1,0],[][ −=+= NnnwAnx L  
 
where A is an unknown constant and  is a zero-mean noise ][nw
 
Find the LS solution of A 
 
Using (5.19), 

( )








−∑=
−

=

21

0
][minargˆ AnxA

N

nA
 

 

Differentiating ( )2
1

0
][ Anx

N

n
−∑

−

=
 with respect to A and set the result to 0: 

 

][1ˆ 1

0
nx

N
A

N

n
∑=
−

=
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On the other hand, writing ]}[{ nx  in matrix form: 

wHx += A  
where 



















=

1

1
1

M
H  

Using (5.18), 
 

][

]1[

]1[
]0[

111

1

1
1

111ˆ 1

0

1

1

nxN

Nx

x
x

A
N

n
∑⋅=



















−

⋅





































⋅=
−

=

−

−

M
L

M
L ][][  

 
Both (5.18) and (5.19) give the same answer and the LS solution is 
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optimum if the noise is white Gaussian 
Example 5.17 
 

Consider the LS filtering problem again. Given 
 

1,,1,0],[][][ −=+⋅= NnnqWnXnd T L  

where 
 

][nd  is desired response 
TLnxnxnxnX ]]1[]1[][[][ +−−= L  is the input signal vector 

T
LwwwW ][ 110 −= L  is the unknown filter weight vector 

][nq  is zero-mean noise 
 

Writing in matrix form: 
 

W, =+⋅= WqWHd  
Using (5.18): 

dHHHW TT 1)(ˆ −=  
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where 



















−−−

=





















−

=

][]2[]1[

0]0[]1[
00]0[

)1(

)1(
)0(

LNxNxNx

xx
x

NX

X
X

T

T

T

L

MMMM

L

L

M
H  

 
with 0]2[]1[ ==−=− Lxx  
 
Note that 

dH

HH
T

dx

T
xx

R

R

=

=
 

 
where xxR  is not the original version but not modified version of (3.6) 
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Example 5.18 
 
Find the LS estimate of A for  
 
 

1,1,,1,0],[)cos(][ 0 >>−=+φ+ω= NNnnwnAnx L  
 

where 0ω  and   are known constants while  is zero-mean noise φ ][nw
 
Using (5.19), 

( )








φ+ω−∑=
−

=

2
0

1

0
)cos(][minargˆ nAnxA

N

nA
 

 

Differentiate  ( )20
1

0
)cos(][ φ+ω−∑

−

=
nAnx

N

n
 with respect to A & set result to 0: 

( )

)(cos)cos(][

0)cos()cos(][2

0
21

0
0

1

0

00
1

0

φ+ω∑=φ+ω∑⇒

=φ+ω−⋅φ+ω−∑

−

=

−

=

−

=

nAnnx

nnAnx

N

n

N

n

N

n  
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The LS solution is then 

)(cos

)cos(][
ˆ

0
21

0

0
1

0

φ+ω∑

φ+ω∑
= −

=

−

=

n

nnx
A N

n

N

n  

 
2. Weighted LS 
 
Use a general form of LS via a symmetric weighting matrix  W
 
               ( ) ( ){ } WxHWHHHθ-xWHθ-xθ

θ
TTT 1)(minargˆ −==            (5.20) 

such that 
TWW =  

 
Due to the presence of , it is generally difficult to write the cost function 
( )

W
( )Hθ-xWHθ-x T  in scalar form as in (5.19) 
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Rationale of using  : put larger weights on data with smaller errors W
  
 put smaller weights on data with larger errors 
 
When =  where  is covariance matrix of the noise vector: W 1-C C
 
                                           xCHHCHθ 111 )(ˆ -T-T −=                   (5.21) 
 
which is equal to the ML solution and is optimum for Gaussian noise 
 
Example 5.19 
 
Given two noisy measurements of A: 
 

11 wAx +=     and        22 wAx +=  
 

where  and  are zero-mean uncorrelated noises with known 
variances 2 and . Determine the optimum weighted LS solution 

1w 2w
2
2σ1σ
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Use 










σ
σ=









σ
σ==

−

2
2

2
1

1

2
2

2
11

/10
0/1

0
0-CW  

 
Grouping  and  into matrix form: 1x 2x
 









+⋅








=









2

1

2

1
1
1

w
w

A
x
x

 

or 
wHx +⋅= A  

 
Using (5.21) 
 

[ ] [ ] 
















σ
σ




























σ
σ==

−
−

2

1
2
2

2
1

1

2
2

2
1111

/10
0/111

1
1

/10
0/111)(ˆ

x
x

A -T-T xCHHCH  
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As a result, 

22
2

2
1

2
1

12
2

2
1

2
2

2
2

2
2
1

1
1

2
2

2
1

11ˆ xxxxA ⋅
σ+σ

σ
+⋅

σ+σ

σ
=











σ
+

σ










σ
+

σ
=

−

 

 
Note that 
 
 If , a larger weight is placed on  and vice versa 2

1
2
2 σ>σ 1x

 If , the solution is equal to the standard sample mean 
w w

2
1

2
2 σ=σ

 The solution will be more complicated if  and  are correlated 
2 2

1 2
 Exact values for  and  are not necessary, only ratio is needed 1σ 2σ

 
   Define , we have 2

2
2
1 /σσ=λ

 

21 11
1ˆ xxA ⋅

λ+
λ

+⋅
λ+

=  
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3. Nonlinear LS 
 

The LS cost function cannot be represented as a linear model as in 
 

wHθx +=  
 
In general, it is more complex to solve, e.g., 
 
The LS estimates for 0,ωA  and φ can be found by minimizing 
 

2
0

1

0
))cos(][( φ+ω−∑

−

=
nAnx

N

n
 

 
whose solution is not straightforward as seen in Example 5.15 
 
Grid search and numerical methods are used to find the minimum 
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4. Constrained LS 
 

The linear LS cost function is minimized subject to constraints: 

{ }
 

                       ( ) ( )Hθ-xHθ-xθ
θ

Tminargˆ =     subject to            (5.22) S
 
where  is a set of equalities/inequalities in terms of  S θ
 
Generally it can be solved by linear/nonlinear programming, but simpler 
solution exists for linear and quadratic constraint equations, e.g., 
 
Linear constraint equation:  10321 =θ+θ+θ  
 
Quadratic constraint equation:   1002

3
2
2

2
1 =θ+θ+θ

 
Other types of constraints:  10321 >θ>θ>θ  

    1003
3

2
21 ≥θ+θ+θ

 

 
90



Consider the constraints  is S
 

bAθ =  
 
which contains r  linear equations. The constrained LS problem for linear 
model is 
 

                      ( ) ( ){ }Hθ-xHθ-xθ
θ

Tminargˆ =     subject to bAθ =             (5.23) 

 
The technique of Lagrangian multipliers can solve (5.23) as follows 
 
Define the Lagrangian 
 

                               ( ) ( ) )( b-AθλHθ-xHθ-x TT
cJ +=        (5.24) 

 
where λ  is a r -length vector of Lagrangian multipliers 
 
The procedure is first solve λ  then  θ
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Expanding (5.24): 
 

bλ-AθλHθHθxH2θ-xx TTTTTTT
cJ ++=  

 
Differentiate cJ  with respect to : θ
 

λAHθHx-2H
θ

TTTcJ ++=
∂
∂ 2  

  
Set the result to zero: 

 

λAHH-θλAHH-xHHHθ

0λAθHHx2H-

TTTTTT
c

T
c

TT

111 )(
2
1ˆ)(

2
1)(ˆ

ˆ2

−−− ==⇒

=++
 

where  is the LS solution. Put  into : θ̂ cθ̂ bAθ =
 

)ˆ())((
2

)(
2
1ˆˆ 111 b-θAAHHAλbλAHHA-θAθA −−− =⇒== TTTT

c  
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Put λ  back to : cθ̂
 

)ˆ())(()(ˆˆ 111 b-θAAHHAAHH-θθ −−−= TTTT
c  

 

Idea of constrained LS can be illustrated by finding minimum value of y : 

2 23 +−= xxy       subject to 1=− yx  
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5. Total LS 
 

Motivation: Noises at both  and : x Hθ
 
                                               21 wHθwx +=+          (5.25) 
 
where  and  are zero-mean noise vectors 1w 2w
 
A typical example is LS filtering in the presence of both input noise and 
output noise. The noisy input is 
 

1,,1,0),()()( −=+= Nnknkskx i L  
 
and the noisy output is 
 

1,,1,0),()()()( −=+⊗= Nnknkhkskr o L  
 
The parameters to be estimated are )}({ kh  given )(kx  and )(ky  
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Another example is in frequency estimation using linear prediction: 
 
For a single sinusoid )cos()( φ+ω= kAks , it is true that 
 

)2()1()cos(2)( −−−ω= ksksks  
 
s )(k  is perfectly predicted by )1( −ks  and )1( −ks : 
 

)2()1()( 10 −+−= ksaksaks  
 
It is desirable to obtain )cos(20 ω=a  and 11 −=a  in estimation process 
 
In the presence of noise, the observed signal is 
 

1,,1,0),()()( −=+= Nnkwkskx L  
 
The linear prediction model is now 
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1,,1,0),2()1()( 10 −=−+−= Nnkxakxakx L  
0

)3()2()1(

)1()2()3(
)0()1()2(

10

10

10

−+−=−

+=
+=

NxaNxaNx

xaxax
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LLL
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6. Mixed LS 
 

A combination of LS, weighted LS, nonlinear LS, constrained LS and/or 
total LS 
 
Examples: weighted LS with constraints, total LS with constraints, etc. 
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Questions for Discussion 
 

1. Suppose you have N  pairs of ),( ii yx , Ni ,,2,1 L=  and you need to fit 
them into the model of axy = . Assuming that only }{ iy  contain zero-
mean noise, determine the least squares estimate for .  a

 
(Hint: ithe relationship between  and ix iy  is 
 

Ninaxy iii ,,2,1, L=+=  
 
 where { } are the noise in in }{ iy .) 
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2. Use least squares to estimate the line axy =  in Q.1 but now only }{ ix  

contain zero-mean noise. 
 
3. In a radar system, the received signal is  
 

)()()( 0 nwnsnr +τ−α=  
where the range R  of an object is related to the time delay by 
 

cR /20 =τ  
 
Suppose we get an unbiased estimate of , say, 0τ 0τ̂ , and its variance is 

. Determine the corresponding range variance ˆ , where )ˆvar( 0τ )var(R R̂  is 
the estimate of R .  
 
If  and 2

0 )1.0()ˆvar( sµ=τ 18103 −×= msc , what is the value of ? )ˆvar(R
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