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Abstract

A new structured total least squares (STLS) based frequency estimation algorithm for real sinusoids

corrupted by white noise is devised. Numerical results are included to contrast the estimator performance

with an existing STLS frequency estimation method as well as the Cram𝑒r-Rao lower bound in different

signal-to-noise ratio conditions.
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1 Introduction

Frequency estimation of sinusoids in noise is a frequently addressed problem in the signal processing literature

because it has a wide variety of applications such as source localization, speech and audio signal analysis,

biomedical engineering, communications, power delivery as well as instrumentation and measurement [1]–[5].

Well known frequency estimation algorithms include maximum likelihood (ML) estimator [6], subspace-

based techniques [7], Yule-Walker method [8] and linear prediction (LP) [9] approach. The ML method is

statistically efficient in the sense that its estimation performance can attain the Cram𝑒r-Rao lower bound

(CRLB) asymptotically under additive white Gaussian noise (AWGN). However, the huge computation

requirement prohibits its use in some time-critical applications. Although the other mentioned methods

are suboptimal, they are computationally efficient compared with the ML method. In frequency estimation

using the LP method, an over-determined set of linear equations Xa ≈ b, where the matrix X and vector b

are formed by the observed data, while a, which contains the frequency information, is the parameter vector

to be determined, is set up and solved. In order to obtain the vector a and hence the frequency values, the

ordinary least squares (LS) can be used but it will provide inconsistent frequency estimates because both X

and b are contaminated with noise in practice. In view of this problem, total least squares (TLS) [10]–[11]

has been proposed to solve the over-determined system. Although consistent frequency estimation can be

achieved by TLS, its estimates are inefficient because the singular value decomposition involved in TLS will

perturb X and b least such that the over-determined system is satisfied, regardless the special structure of

[b X], which may be Hankel or Toeplitz.

The structured total least squares (STLS) approach [12]–[16], which exploits the special structure in-

volved in the over-determined system can provide efficient parameter estimates. In fact, earlier work of

STLS can be found in [12] and amendments have been made to improve the rate of convergence and reduce

the computational complexity [13]–[15]. For example, Philippe et al. have suggested an iterative method

[16], namely, STLS2, based on Lagrange-Newton method and provided a fast implementation of the algo-

rithm. However, the involvement of the Lagrange multipliers will inevitably increase the computations of

the algorithm and restrict its applications. In this paper, an iterative frequency estimation algorithm that

is computationally more attractive will be developed based on the framework of STLS.

The rest of the paper is organized as follows. In Section 2, the problem of frequency estimation will

be formulated. In Section 3, frequency estimation will be cast into the STLS framework and an algorithm

will then be developed. The convergence of the devised STLS method is studied in Section 4. Numerical

examples are presented in Section 5 to evaluate the performance of the proposed algorithm by comparing

with the STLS2 method and CRLB. Finally, conclusions are drawn in Section 6.

2 Problem Formulation

Frequency estimation of real sinusoids is considered and readers can find it fairly straightforward to apply

the algorithm to the complex counterpart. The signal model for real tone frequency estimation is
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𝑥𝑛 = 𝑠𝑛 + 𝑞𝑛, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (1)

where

𝑠𝑛 =

𝑀∑
𝑚=1

𝒜𝑚 cos(𝜔𝑚𝑛+ 𝜙𝑚) (2)

The 𝒜𝑚 > 0, 𝜔𝑚 ∈ (0, 𝜋) and 𝜙𝑚 ∈ [0, 2𝜋) are unknown constants representing the amplitude, frequency

and phase of the 𝑚-th sinusoidal component, respectively, while 𝑞𝑛 is a zero-mean AWGN. It is assumed

that the number of sinusoids, 𝑀 , is known 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖. From the 𝑁 samples of {𝑥𝑛}, we are interested to find

𝜔𝑚, 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 . Based on the LP property of 𝑠𝑛, we have

𝑠𝑛 =

2𝑀∑
𝑙=1

𝑎𝑙𝑠𝑛−𝑙, 𝑎𝑙 = 𝑎2𝑀−𝑙, 𝑎2𝑀 = −1

⇒ 𝑠𝑛 + 𝑠𝑛−2𝑀 =

𝑀−1∑
𝑙=1

𝑎𝑙 (𝑠𝑛−𝑙 + 𝑠𝑛−2𝑀+𝑙) + 𝑎𝑀𝑠𝑛−𝑀 (3)

where the symmetric {𝑎𝑙}𝑀𝑙=1 are called the LP coefficients. The frequencies {𝜔𝑚} can be calculated from

[9]:

2𝑀∑
𝑙=1

𝑎𝑙 exp (−𝑗𝜔𝑚𝑙) = 1 (4)

Exploiting the symmetric property again, the order of (4) can be reduced from 2𝑀 to 𝑀 via employing the

Chebyshev polynomial of the first kind [17]:

cos(𝑛𝜔) = 𝑇𝑛 (cos(𝜔)) (5)

where

𝑇𝑛(𝑥) =
𝑛

2

⌊𝑛/2⌋∑
𝑟=0

(−1)𝑟

𝑛− 𝑟 𝐶
𝑛−𝑟
𝑟 (2𝑥)𝑛−2𝑟

and ⌊𝜚⌋ denotes rounding 𝜚 to the nearest integer towards minus infinity.

Based on (3), an over-determined set of linear equations can be formed using {𝑥𝑛}:

Xa ≈ b (6)

where

a =
[
𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑀

]𝑇
b =

[
𝑥𝑁 + 𝑥𝑁−2𝑀 𝑥𝑁−1 + 𝑥𝑁−2𝑀−1 ⋅ ⋅ ⋅ 𝑥2𝑀+1 + 𝑥1

]𝑇

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑥𝑁−1 + 𝑥𝑁−2𝑀+1 𝑥𝑁−2 + 𝑥𝑁−2𝑀+2 ⋅ ⋅ ⋅ 𝑥𝑁−𝑀+1 + 𝑥𝑁−𝑀−1 𝑥𝑁−𝑀

𝑥𝑁−2 + 𝑥𝑁−2𝑀 𝑥𝑁−3 + 𝑥𝑁−2𝑀+1 ⋅ ⋅ ⋅ 𝑥𝑁−𝑀 + 𝑥𝑁−𝑀−2 𝑥𝑁−𝑀−1

...
...

. . .
...

...

𝑥2𝑀 + 𝑥2 𝑥2𝑀−1 + 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑀+2 + 𝑥𝑀 𝑥𝑀+1

⎤
⎥⎥⎥⎥⎥⎥⎦
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It can be seen that [b X] is, except the last column, a sum of a Hankel and Toeplitz matrix and solving

(6) by LS or TLS cannot give optimal frequency estimates since the perturbation by LS and TLS cannot

maintain the Hankel-Toeplitz structure of [b X]. On the other hand, the STLS approach which takes the

matrix structure into account during minimization can provide a more accurate parameter estimate.

3 Algorithm Development

The STLS algorithm tries to perform the optimization:

min ∥Δx∥22 (7)

subject to (X + ΔX) â = b + Δb

where ∥.∥2 stands for 𝑙2 norm, â denotes the estimated value of a and the vector Δx represents the pertur-

bation of x = [𝑥𝑁 ⋅ ⋅ ⋅ 𝑥1]
𝑇

, which contains all the elements of the matrix [b X] with no repetition. The

matrix [Δb ΔX] is formed by elements of Δx in such a way that [b X] is constructed from x and thus it

has the same structure as [b X]. In this section, an iterative algorithm will be developed to solve (6) using

the framework of (7).

Let r (y) = b + Δb− (X + ΔX) â where y =
[
â𝑇 Δx𝑇

]𝑇
and consider the Taylor series expansion of

r (y𝑛+1) around Py𝑛 where y𝑛+1 =
[
â𝑇𝑛+1 Δx𝑇𝑛+1

]𝑇
,y𝑛 =

[
â𝑇𝑛 Δx𝑇𝑛

]𝑇
and P = diag(1, ⋅ ⋅ ⋅ , 1︸ ︷︷ ︸

𝑀

, 0 ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸
𝑁

),

we have

0(𝑁−2𝑀)×1 = r (y𝑛+1) ≈ r (Py𝑛) + J (Py𝑛) (y𝑛+1 −Py𝑛)

⇒ y𝑛+1 = Py𝑛 − J (Py𝑛)
†
r (Py𝑛) (8)

where 0𝑖×𝑗 represents the 𝑖 × 𝑗 zero matrix, (.)† denotes the pseudo-inverse and J stands for the Jacobian

matrix:

J (y) =
[
− (X + ΔX) Â

]
with Â ∈ R(𝑁−2𝑀)×𝑁 of the form:

Â = Toeplitz

([
1 01×(𝑁−2𝑀−1)

]𝑇
,
[
1 −â𝑇 −�̂�𝑀−1 ⋅ ⋅ ⋅ −�̂�1 1 01×(𝑁−2𝑀)

])

where Toeplitz(u,v𝑇 ) is the Toeplitz matrix with first column u and first row v𝑇 . Based on (8), the recursive

algorithm is summarized as:

(i) Initialize â with any consistent estimator and set Δx to 0𝑁×1.

(ii) While stopping criterion is not satisfied

y𝑛+1 = Py𝑛 − J (Py𝑛)† r (Py𝑛)

end
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The stopping criterion above can be the maximum number of allowable iterations or the difference of norm

between successive â is less than a small positive number. In each iteration, an under-determined system

in Step (ii) is solved and thus the min-norm solution corresponding to Δx = 0𝑁×1 is obtained, which

means that the calculated â is constrained by the minimum norm criterion of (7) and hence the constrained

optimization is performed. It should be noted that the fast implementation technique [16] cannot be used

in our situation since the matrix in [16] is either Hankel or Toeplitz but the matrix X in (6) is neither

one of them. Furthermore, the STLS2 method needs to solve a kernel problem corresponding to Step (ii)

of the proposed algorithm, which is the main computation of both algorithms in each iteration. However,

the matrix J in (8) is a (𝑁 − 2𝑀) × (𝑀 +𝑁) submatrix of the corresponding (2𝑁 −𝑀) × (2𝑁 −𝑀)

matrix of the STLS2 method. Considering the computational complexity of solving a set of linear equations

Ξ𝜷 ≈ 𝜸 where Ξ ∈ R𝑚×𝑛, 𝜷 ∈ R𝑛×1 and 𝜸 ∈ R𝑚×1 with 𝑚 ≤ 𝑛, by QR factorization [18], the whole

LS process requires 2𝑛𝑚2 FLOPS for the QR factorization of Ξ𝑇 = QR, 𝑚2 FLOPS for the backward

substitution of R𝑇𝛼𝛼𝛼 = 𝜸 to solve 𝛼𝛼𝛼 and 2𝑚𝑛 FLOPS for vector construction of 𝜸 = Q𝛼𝛼𝛼. Therefore, the

total numbers of FLOPS of the proposed and STLS2 algorithms are 8𝑀3−6𝑀𝑁−6𝑀𝑁2 +3𝑁2 +2𝑁3 and

3𝑀2 − 2𝑀3 − 12𝑀𝑁 + 12𝑀2𝑁 + 12𝑁2 − 24𝑀𝑁2 + 16𝑁3, respectively. At each iteration, it is clear that

the proposed scheme is more computationally attractive than the STLS2 algorithm, although both methods

have a complexity of 𝒪(𝑁3).

4 Convergence Analysis

Regarding the local convergence, we cannot follow conventional STLS algorithms such as [14]–[16] to produce

the proof for the proposed method which deals with an under-determined system of equations. Nevertheless,

the local convergence of this kind of numerical algorithms which apply Newton’s method to solve under-

determined systems has been proved in [19]–[20]. We base on [19]–[20] to analyze the convergence of the

proposed method as follows. If the initial value of Δx is set to 0 and only a of y is considered, the iteration

of (8) is the same as

y𝑛+1 = y𝑛 −PJ (y𝑛)
†
r (y𝑛) (9)

except that in the final iteration, (8) will provide a non-zero value of Δx. Before proceeding to the con-

vergence proof of the proposed algorithm, some useful lemmas will be given. We first define the following

quantities:

𝛾 (y) = sup
𝑛>1

∥∥∥∥r(1) (y)
† r(𝑛) (y)

𝑛!

∥∥∥∥
1

𝑛−1

𝛽 (y) =
∥∥∥r(1) (y)

†
r (y)

∥∥∥
𝛼 (y) = 𝛽𝛾

𝜓 (𝑢) = 2𝑢2 − 4𝑢+ 1
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Lemma 1

Let A,B ∈ ℛ𝑚×𝑛where 𝑚 ≤ 𝑛. If ∥∥B† (B−A)
∥∥ ≤ 𝜆 < 1, then∥∥A†B

∥∥ < 1

1 − 𝜆
Proof

∥∥A†B
∥∥ =

∥∥∥A†A
(
I−B† (B−A)

)−1
∥∥∥

≤ ∥∥A†A
∥∥ ∥∥∥(I−B† (B−A)

)−1
∥∥∥

<
1

1 − 𝜆

Lemma 2 If 𝛼 (y𝑛−1) < 1 −
√
2
2 , then

a) r(1) (y𝑛−1)
†
exists

b)
∥∥∥r(1) (y𝑛)

†
r(1) (y𝑛−1)

∥∥∥ ≤ (1−𝛼(y𝑛−1))
2

𝜓(𝛼(y𝑛−1))

c) 𝛾 (y𝑛) ≤ 𝛾(y𝑛−1)
(1−𝛼(y𝑛−1))𝜓(𝛼(y𝑛−1))

Proof

r(1) (y𝑛) = r(1) (y𝑛−1) +

∞∑
𝑘=2

𝑘
r(𝑘) (y𝑛−1)

𝑘!
(y𝑛 − y𝑛−1)

𝑘−1

r(1) (y𝑛−1)
† (

r(1) (y𝑛) − r(1) (y𝑛−1)
)

=

∞∑
𝑘=2

𝑘r(1) (y𝑛−1)
† r(𝑘) (y𝑛−1)

𝑘!
(y𝑛 − y𝑛−1)

𝑘−1

Taking norm of both sides, we get∥∥∥r(1) (y𝑛−1)
†
(
r(1) (y𝑛) − r(1) (y𝑛−1)

)∥∥∥ ≤
∞∑
𝑘=2

𝑘𝛾 (y𝑛−1)
𝑘−1 ∥(y𝑛 − y𝑛−1)∥𝑘−1

=

∞∑
𝑘=2

𝑘𝛼 (y𝑛−1)
𝑘−1

=
1

(1 − 𝛼 (y𝑛−1))
2 − 1

which is less than 1 since 𝛼 (y𝑛−1) < 1−
√
2
2 . By using Lemma 1, we can prove Lemmas 2a and 2b. To prove

Lemma 2c, we consider:∥∥∥∥r(1) (y𝑛)
† r(𝑘) (y𝑛)

𝑘!

∥∥∥∥ ≤
∥∥∥r(1) (y𝑛)

†
r(1) (y𝑛−1)

∥∥∥
∥∥∥∥∥

∞∑
𝑙=0

r(1) (y𝑛−1)
† r(𝑘+𝑙) (y𝑛−1)

𝑘!𝑙!

∥∥∥∥∥ ∥y𝑛 − y𝑛−1∥𝑙

≤ (1 − 𝛼 (y𝑛−1))2

𝜓 (𝛼 (y𝑛−1))

∞∑
𝑙=0

∥∥∥∥ (𝑘 + 𝑙)!

𝑘!𝑙!
𝛾 (y𝑛−1)

𝑘+𝑙−1

∥∥∥∥ ∥y𝑛 − y𝑛−1∥𝑙

=
(1 − 𝛼 (y𝑛−1))

2

𝜓 (𝛼 (y𝑛−1))
× 𝛾 (y𝑛−1)

𝑘−1

(1 − 𝛼 (y𝑛−1))
𝑘+1
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The last equality is obtained by the fact of (1 − 𝑥)
−𝑘

=
∑∞

𝑙=0
(𝑘+𝑙−1)𝑥𝑙

(𝑘−1)!𝑙! . Hence, the result follows by noting

that 0 < 𝜓 (𝑢) < 1 for 0 < 𝑢 < 1 −
√
2
2 :

∥∥∥∥r(1) (y𝑛)
† r(𝑘) (y𝑛)

𝑘!

∥∥∥∥
1

𝑘−1

≤ 𝛾 (y𝑛−1)

(1 − 𝛼 (y𝑛−1))𝜓 (𝛼 (y𝑛−1))
𝑘−1

≤ 𝛾 (y𝑛−1)

(1 − 𝛼 (y𝑛−1))𝜓 (𝛼 (y𝑛−1))

⇒ 𝛾 (y𝑛) ≤ 𝛾 (y𝑛−1)

(1 − 𝛼 (y𝑛−1))𝜓 (𝛼 (y𝑛−1))

Lemma 3 Let 𝛼 (y𝑛−1) < 1, then∥∥∥r(1) (y𝑛−1)
†
r (y𝑛)

∥∥∥ ≤ 𝛼 (y𝑛−1)𝛽 (y𝑛−1)

1 − 𝛼 (y𝑛−1)

Proof ∥∥∥r(1) (y𝑛−1)
†
r (y𝑛)

∥∥∥ ≤
∞∑
𝑘=2

(∥∥∥∥r(1) (y𝑛−1)
† r(𝑘) (y𝑛−1)

𝑘!

∥∥∥∥ ∥y𝑛 − y𝑛−1∥𝑘
)

≤ 𝛽 (y𝑛−1)

∞∑
𝑘=2

(𝛾 (y𝑛−1)𝛽 (y𝑛−1))
𝑘−1

=
𝛼 (y𝑛−1)𝛽 (y𝑛−1)

1 − 𝛼 (y𝑛−1)

Lemma 4 If 𝛼 (y𝑛−1) < 1 −
√
2
2 , then

𝛽 (y𝑛) ≤ 𝛽 (y𝑛−1)

(
𝛼 (y𝑛−1) (1 − 𝛼 (y𝑛−1))

𝜓 (𝛼 (y𝑛−1))

)
Proof

𝛽 (y𝑛) =
∥∥∥r(1) (y𝑛)

†
r (y𝑛)

∥∥∥
≤

∥∥∥r(1) (y𝑛)
†
r(1) (y𝑛−1)

∥∥∥ ∥∥∥r(1) (y𝑛−1)
†
r (y𝑛)

∥∥∥
≤ 𝛽 (y𝑛−1)

(
𝛼 (y𝑛−1) (1 − 𝛼 (y𝑛−1))

𝜓 (𝛼 (y𝑛−1))

)

Lemma 5 If 𝛼 (y𝑛−1) < 1 −
√
2
2 , then

𝛼 (y𝑛) ≤
(

𝛼 (y𝑛−1)

𝜓 (𝛼 (y𝑛−1))

)2

Proof

𝛼 (y𝑛) = 𝛽 (y𝑛) 𝛾 (y𝑛)

≤ 𝛽 (y𝑛−1)

(
𝛼 (y𝑛−1) (1 − 𝛼 (y𝑛−1))

𝜓 (𝛼 (y𝑛−1))

)(
𝛾 (y𝑛−1)

(1 − 𝛼 (y𝑛−1))𝜓 (𝛼 (y𝑛−1))

)

=

(
𝛼 (y𝑛−1)

𝜓 (𝛼 (y𝑛−1))

)2

Theorem 1

∥y𝑛 − y𝑛−1∥ ≤ 𝜇2𝑛−1−1 ∥y1 − y0∥ ∀𝑛 where 𝜇 =
𝛼 (y0)

𝜓 (𝛼 (y0))
2 < 1
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Proof The case of 𝑛 = 1 is trivial. For 𝑛 > 1, we have:

∥y𝑛 − y𝑛−1∥ ≤ ∥y𝑛−1 − y𝑛−2∥ 𝛼 (y𝑛−2) (1 − 𝛼 (y𝑛−2))

𝜓 (𝛼 (y𝑛−2))

≤ ∥y1 − y0∥
𝑛−2∏
𝑖=0

𝛼 (y𝑖) (1 − 𝛼 (y𝑖))

𝜓 (𝛼 (y𝑖))

≤ ∥y1 − y0∥
𝑛−2∏
𝑖=0

𝛼 (y𝑖)

𝜓 (𝛼 (y0))

≤ ∥y1 − y0∥
𝑛−2∏
𝑖=0

(
𝛼 (y0)

𝜓 (𝛼 (y0))
2

)2𝑛−1
𝛼 (y0)

𝜓 (𝛼 (y0))

≤ ∥y1 − y0∥
𝑛−2∏
𝑖=0

(
𝛼 (y0)

𝜓 (𝛼 (y0))2

)2𝑛

𝜓 (𝛼 (y0))

≤ ∥y1 − y0∥
(

𝛼 (y0)

𝜓 (𝛼 (y0))2

)2𝑛−1−1

= 𝜇2
𝑛−1−1 ∥y1 − y0∥

5 Numerical Examples

Simulation tests have been conducted to evaluate the performance of the proposed algorithm by comparing

with the STLS2 method of [16] as well as CRLB in a closely-spaced sinusoids scenario. The signal 𝑠𝑛 is

composed of two sinusoids with amplitudes 𝛼1 = 𝛼2 =
√

2, frequencies 𝜔1 = 0.3𝜋 and 𝜔2 = 0.38𝜋 and phases

𝜙1 = 1 and 𝜙2 = 2 at 𝑁 = 20. All results provided are averages of 1000 independent runs using a computer

with Pentium Dual Core 2 GHz processors and 1GB RAM. Both the STLS2 and proposed algorithms

terminate when the difference of norm of successive â is less than 10−6 or the number of iterations has

reached the maximum allowable value, which is set to 10. The initial value of x̂ is obtained by a simple

consistent method [22] and that of Δx̂ is set to 0𝑁×1 for both algorithms.

In Figure 1, the mean square frequency errors of �̂�1 are plotted against the signal-to-noise ratio (SNR).

It is observed that the performance of the proposed method attains CRLB when SNR ≥ 12 dB while the

STLS2 algorithm is optimum only when SNR ≥ 18 dB, which indicates the former has a better threshold

performance. Figure 2, which corresponds to 𝜔2, shows that the threshold SNR of both STLS2 and proposed

methods is 16 dB. Figure 3 shows the average iteration numbers of both algorithms for parameter conver-

gence. It is observed that the average number of the proposed method is less than that of the STLS2 method

when SNR ≤ 22 dB, which demonstrates the superiority of the proposed method over the STLS2 in terms

of rate of convergence. Furthermore, the computational times of the proposed and STLS2 algorithms for

one iteration are measured as 1.56× 10−4 s and 4.25× 10−4 s, respectively, which agree with the complexity

analysis in Section 3.
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6 Conclusion

An iterative algorithm has been developed for frequency estimation based on the framework of STLS. Based

on computer simulations, the efficient statistical performance of the proposed method is demonstrated by

comparing with the STLS2 algorithm and CRLB. Furthermore, the proposed method is more computation-

ally attractive than the STLS2 scheme.
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Figure 1: Mean square frequency error for 𝜔1 versus SNR
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Figure 2: Mean square frequency error for 𝜔2 versus SNR
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Figure 3: Average number of iterations versus SNR
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