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Abstract : A popular technique for time delay estimation is to use an FIR filter to model
the time difference and the filter weights are interpolated with a sinc function to obtain the
delay estimate. However, the sinc interpolator requires a sufficiently long filter length for
accurate delay estimation. In this paper, we propose to process the filter weights via a least
squares based method in order to acquire optimum delay estimates even with short filter
lengths.

1 Introduction

The problem of estimating the differential delay between two noisy versions of the same sig-
nal received at two spatially separated sensors has attracted much attention in the literature
[1]. Application examples include transmitter linearization [2], synchronization in commu-
nication systems [3], speech enhancement, determination of the centre of earthquakes, and
source localization in sonar and radio systems [4].

Given the discrete-time outputs of the two sensors,

𝑟1(𝑘) = 𝑠(𝑘) + 𝑛1(𝑘) (1a)

and
𝑟2(𝑘) = 𝛼𝑠(𝑘 −𝐷) + 𝑛2(𝑘), 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝑁 − 1 (1b)

where 𝑠(𝑘) is the real stationary random source signal while 𝑛1(𝑘) and 𝑛2(𝑘) are uncorre-
lated white Gaussian noises which are independent of 𝑠(𝑘). The 𝛼 is the attenuation factor
between the sensors and 𝑁 represents the number of samples collected at each sensor.
Without loss of generality, we assume that the sampling period is unity second and 𝑠(𝑘) is
bandlimited between 0 Hz and 0.5 Hz. The aim is to find the time difference of arrival, 𝐷,
from the received signals 𝑟1(𝑘) and 𝑟2(𝑘).

Generalized cross-correlation (GCC) [1] is one of the conventional methods for finding the
time differences but it requires 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 statistics of the received signals in order to obtain
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accurate delay estimates. On the other hand, Chan 𝑒𝑡 𝑎𝑙 introduced a parameter estimation
approach [5] to approximate the time shift as an FIR filter, 𝑊 (𝑧) =

∑𝑃
𝑖=−𝑃 𝑤𝑖𝑧

−𝑖, in one
of the receiver channel. Comparing with the GCC, this technique has the advantages of
avoiding the need for spectral estimation from finite length data and capability of track-
ing nonstationary delays by making the filter adaptive [6]. Once the filter coefficients are
determined, the delay estimate is obtained indirectly from {𝑤𝑖} by sinc interpolation [5]-[6]:

�̂� = arg max
𝑡

{
𝑃∑

𝑖=−𝑃

𝑤𝑖sinc(𝑡− 𝑖)

}
(2)

where sinc(𝑣) = sin(𝜋𝑣)/(𝜋𝑣). However, it has been shown [5] that this interpolator is
biased for finite 𝑃 and the delay bias decreases as the filter length increases. In this paper,
a least squares based technique is proposed to process the filter weights in order to provide
optimum delay estimation performance even if short filter lengths are employed.

2 Proposed Method

In the parameter estimation approach, the output of the filter 𝑊 (𝑧) is subtracted from the
other received signal to generate an error function 𝑒(𝑘). Without loss of generality, 𝑒(𝑘) is
expressed as

𝑒(𝑘) = 𝑟2(𝑘) −
𝑃∑

𝑖=−𝑃

𝑤𝑖𝑟1(𝑘 − 𝑖) (3)

Using the interpolation formula [5], 𝑠(𝑘 −𝐷) can be represented as

𝑠(𝑘 −𝐷) =
∞∑

𝑖=−∞
𝑠(𝑘 − 𝑖)ℎ𝑖 (4)

where ℎ𝑖 = sinc(𝑖−𝐷). With the use of (4), squaring both sides of (3) and taking expectation
yields

𝐸{𝑒2(𝑘)} = 𝐶 + 𝜎2
𝑛

𝑃∑
𝑖=−𝑃

𝑤2
𝑖 +

𝑃∑
𝑖=−𝑃

𝑃∑
𝑗=−𝑃

(𝛼ℎ𝑖 − 𝑤𝑖)(𝛼ℎ𝑗 − 𝑤𝑗)𝑅𝑠𝑠(𝑖− 𝑗) (5)

where 𝐶 is a function independent of {𝑤𝑖}, 𝜎2
𝑛 is the power of 𝑛1(𝑘) and 𝑅𝑠𝑠(𝑣) denotes the

auto-correlation of 𝑠(𝑘) with a time shift of 𝑣. Differentiate 𝐸{𝑒2(𝑘)} with respect to each
𝑤𝑖 and equate the resultant expressions to zero, we obtain

𝜎2
𝑛𝑤

𝑜
𝑖 +

𝑃∑
𝑗=−𝑃

(𝛼ℎ𝑗 − 𝑤𝑜
𝑗 )𝑅𝑠𝑠(𝑖− 𝑗) = 0, 𝑖 = −𝑃,−𝑃 + 1, ⋅ ⋅ ⋅ , 𝑃 (6)

The minimum mean square estimates {𝑤𝑜
𝑖 } can be solved exactly if 𝜎2

𝑛, 𝛼 and the signal
auto-correlation function are all known. To simplify the analysis, we consider the cases when
𝑠(𝑘) is weakly correlated, that is, 𝑅𝑠𝑠(0) >> 𝑅𝑠𝑠(𝑖) for 𝑖 ∕= 0, so that the optimum filter
weights can be approximated as

𝑤𝑜
𝑖 ≈ 𝜆ℎ𝑖, 𝑖 = −𝑃,−𝑃 + 1, ⋅ ⋅ ⋅ , 𝑃 (7)

where 𝜆 = 𝛼𝑅𝑠𝑠(0)/(𝜎2
𝑛 +𝑅𝑠𝑠(0)). It is seen that 𝑤𝑜

𝑗 consists of two components, 𝜆, which is
a scalar depends only on the signal-to-noise ratio (SNR) and 𝛼, and ℎ𝑖, which is a function of
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𝐷. Based on this observation, we propose to estimate 𝐷 by minimizing the sum of squared
differences between 𝑤𝑜

𝑖 and a scaled sinc function as follows,

�̂�𝑜 = arg min
�̂�,�̂�

{
𝐽(�̂�, �̂�)

}
(8)

where

𝐽(�̂�, �̂�) =

𝑃∑
𝑖=−𝑃

(
𝑤𝑜

𝑖 − �̂�sinc(𝑖− �̂�)
)2

(9)

is characterized by the estimates of 𝜆 and 𝐷. Solving for �̂�, the optimum delay estimate is
computed from

�̂�𝑜 = arg min
�̂�

⎧⎨
⎩

𝑃∑
𝑗=−𝑃

(
𝑤𝑜

𝑗 −
∑𝑃

𝑖=−𝑃 𝑤𝑜
𝑖 sinc(𝑖 − �̂�)∑𝑃

𝑖=−𝑃 sinc2(𝑖− �̂�)
sinc(𝑗 − �̂�)

)2
⎫⎬
⎭ (10)

In practical applications, least squares estimates of {𝑤𝑖}, instead of the minimum mean
square estimates, are employed in (10) and they are calculated as⎡
⎢⎢⎢⎣

𝑤𝑜
−𝑃

𝑤𝑜
−𝑃+1

...
𝑤𝑜

𝑃

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

�̂�𝑟1𝑟1(0) �̂�𝑟1𝑟1(−1) ⋅ ⋅ ⋅ �̂�𝑟1𝑟1(−2𝑃 )

�̂�𝑟1𝑟1(1) �̂�𝑟1𝑟1(0) ⋅ ⋅ ⋅ �̂�𝑟1𝑟1(−2𝑃 + 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�̂�𝑟1𝑟1(2𝑃 ) �̂�𝑟1𝑟1(2𝑃 − 1) ⋅ ⋅ ⋅ �̂�𝑟1𝑟1(0)

⎤
⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

�̂�𝑟1𝑟2(0)

�̂�𝑟1𝑟2(1)
...

�̂�𝑟1𝑟2(2𝑃 )

⎤
⎥⎥⎥⎦ (11)

where �̂�𝑟1𝑟1(𝑣) and �̂�𝑟1𝑟2(𝑣) are the estimated auto-correlation function of 𝑟1(𝑘) and cross-
correlation function of 𝑟1(𝑘) and 𝑟2(𝑘), respectively, from the 𝑁 measurements of 𝑟1(𝑘) and
𝑟2(𝑘).

3 Performance Analysis

The variance of 𝐷𝑜 is expressed as [6]

var(�̂�𝑜) =

𝐸

⎧⎨
⎩
(
∂𝐽(�̂�, �̂�)

∂�̂�

)2
⎫⎬
⎭(

𝐸

{
∂2𝐽(�̂�, �̂�)

∂�̂�2

})2

∣∣∣∣∣∣∣∣∣∣∣∣
�̂�=𝜆,�̂�=𝐷

(12)

For ease of analysis, we assume that 𝑠(𝑘) is a white process with variance 𝜎2
𝑠 , 𝛼 = 1 and

the powers of 𝑛1(𝑘) and 𝑛2(𝑘) are identical. The numerator and denominator can be shown
to be

𝐸

⎧⎨
⎩
(
∂𝐽(�̂�, �̂�)

∂�̂�

)2
⎫⎬
⎭
∣∣∣∣∣∣
�̂�=𝜆,�̂�=𝐷

= 4𝜆2
𝑃∑

𝑖=−𝑃

var(𝑤𝑜
𝑖 )𝑓2(𝑖 −𝐷) (13)

and (
𝐸

{
∂2𝐽(�̂�, �̂�)

∂�̂�2

})2
∣∣∣∣∣∣
�̂�=𝜆,�̂�=𝐷

= 2𝜆2
𝑃∑

𝑖=−𝑃

𝑓2(𝑖−𝐷) (14)
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where 𝑓(𝑣) = (cos(𝜋𝑣) − sinc(𝑣))/𝑣 and var(𝑤𝑜
𝑖 ) ≈ (1 + 2SNR)/(𝑁(1 + SNR)2) represents

the variance of 𝑤𝑜
𝑖 , 𝑖 = −𝑃,−𝑃 + 1, ⋅ ⋅ ⋅ , 𝑃 , with SNR = 𝜎2

𝑠/𝜎
2
𝑛. Substituting (13) and (14)

into (12) gives

var(�̂�𝑜) ≈ (1 + 2SNR)

𝑁SNR2∑𝑃
𝑗=−𝑃 𝑓2(𝑗 −𝐷)

(15)

Since
∑𝑃

𝑗=−𝑃 𝑓2(𝑗−𝐷) is close to its limiting value lim
𝑃→∞

∑𝑃
𝑗=−𝑃 𝑓2(𝑗−𝐷) = 𝜋2/3 even for

a small 𝑃 , and the Cramér-Rao lower bound (CRLB) for time delay estimation using white
signals is equal to 3(1 + 2SNR)/(𝜋2𝑁SNR2) [1], the delay variance of proposed method will
approach the CRLB for a wide range of filter lengths.

4 Numerical Examples

Simulation tests were carried out to evaluate the performance of the proposed delay es-
timator using least squares filter weights. Comparisons of mean square delay errors were
also made with the sinc interpolator and the CRLB. The searching procedures of (2) and
(10) were performed by the bisection method. The source signal was Gaussian distributed
with unity power and different SNRs were obtained by proper scaling of the random noise
sequences. For simplicity, the additive noises were assigned to have identical power. The
time difference 𝐷 was set to 0.7 s, the data length 𝑁 was 1000 and 𝛼 = 1 was selected. The
mean square delay errors obtained were based on 1000 independent runs.

In the first test, the source signal was a white process. Figure 1 shows the delay variances
of the proposed method and sinc interpolator using 𝑃 = 3 and 𝑃 = 15, as well the CRLB,
for SNR ∈ [−10dB, 20dB]. It can be seen that when SNR ≥ −6 dB, the proposed approach
was superior to the sinc interpolation method using 𝑃 = 3 and 𝑃 = 15, for the whole range
of SNRs and for SNR ≥ 5 dB, respectively. Furthermore, the proposed method with 𝑃 = 3
and 𝑃 = 15 had similar performance and both met the CRLB for −6 dB ≤ SNR ≤ 10 dB,
although the latter slightly outperformed the former at very high SNRs. Since the delay
estimation performance of (10) was almost independent of 𝑃 for a wide range of SNRs, a
short filter length can be used in practice in order to reduce computation. On the other
hand, the sinc interpolator was very sensitive to 𝑃 and sufficiently long filter lengths are
required to acquire accurate delay estimates, particularly for high SNR conditions.

The previous experiment was repeated for an autoregressive (AR) source signal, viz., 𝑠(𝑘) =
𝑎𝑠(𝑘−1)+𝑤(𝑘) where 𝑤(𝑘) was a white Gaussian process and the AR parameter was 𝑎 = 0.5.
The signal auto-correlation function was given by 𝑅𝑠𝑠(𝑖) = 𝑎∣𝑖∣𝑅𝑠𝑠(0), which implies that
𝑠(𝑘) was not weakly correlated, and the corresponding CRLB was computed using [1].
Figure 2 plots the results of this test. Again, all methods had a threshold SNR of −6 dB
and the proposed scheme with 𝑃 = 3 and 𝑃 = 15 attained the CRLB for −6 dB ≤ SNR ≤
10 dB, and surpassed the sinc interpolator, particularly for 𝑃 = 3. For SNR ≥ 10 dB, the
suggested method using 𝑃 = 15 had little improvement over that of 𝑃 = 3 and was close
to the CRLB. This means that the searching procedure of (10) can work well for correlated
source signals as well.

4



5 Conclusions

Conventional parameter estimation approach for time delay estimation employs an FIR
filter to approximate the time difference where it is determined by interpolating the filter
weights with a sinc function. In this paper, a least squares based technique is suggested
to efficiently process the filter coefficients for optimum delay estimation. It is shown that
the proposed method can attain the CRLB and outperform the sinc interpolator for a wide
range of SNRs and different source signals, and even when the filter length is short.
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Figure 1: Mean square delay errors versus SNR for white signal
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Figure 2: Mean square delay errors versus SNR for AR signal
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