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Abstract : Modified covariance, Pisarenko harmonic decomposition and reformed Pisarenko
harmonic decomposition methods are three closed form frequency estimators, which are
derived from the linear prediction property of sinusoidal signals. In this paper, we develop
the recursive least squares type realizations of these estimators for a single real tone, and
their frequency tracking performances are contrasted via computer simulations.

1 Introduction

Frequency estimation and tracking of sinusoidal signals in noise have applications in many
areas [1]-[3] such as carrier and clock synchronization, angle-of-arrival estimation, demodu-
lation of frequency-shift keying (FSK) signals, Doppler estimation of sonar wave return and
speech analysis.

The modified covariance (MC) [4]-[5], Pisarenko harmonic decomposition (PHD) [6]-[7], and
reformed Pisarenko harmonic decomposition (RPHD) [8] methods are three batch mode fre-
quency estimators for a real-valued tone in white noise. Basically, the three methods have
the following common characteristics: (i) Their derivation is based on the linear prediction
(LP) property of sinusoidal signals; (ii) They provide closed form formulae for frequency
estimation; and (iii) They are computationally simple. In this paper, we will focus on devel-
oping adaptive algorithms for frequency tracking of a real sinusoid via modifying the MC,

PHD and RPHD methods.

The rest of the paper is organized as follows. Recursive least squares (RLS) type realizations
of the MC, PHD and RPHD methods are developed in Section 2. Simulation results are
presented in Section 3 to contrast the frequency tracking performances of the three modified
estimators. Finally, conclusions are drawn in Section 4.



2 Recursive Least Squares Algorithms for Frequency Tracking

The signal model for single real tone frequency estimation is
z(n) = s(n)+q(n) (1)
where
s(n) = acos(wn + ¢) (2)

The noise ¢(n) is a zero-mean white process with unknown variance while o, w € (0, 7)
and ¢ € [0, 2m) denote the unknown tone amplitude, frequency and phase, respectively. The
task is to estimate the frequency, which is assumed time-varying, from the received signal

The LP approach makes use of the simple recurrence of the sinusoidal signal:
s(n) = 2cos(w)s(n — 1) — s(n — 2) (3)

In the following, three closed form LP based frequency estimators, namely, the MC, PHD
and RPHD methods, are modified in order to track the changing frequency.

A. Modified Covariance

From (3), we can generate a prediction error function of the form
e(n) = z(n) — 2cos(y)x(n — 1) + z(n — 2) (4)

where v is the parameter to be determined. The idea of the MC method is to minimize the
sum of squares of e(n) and the corresponding frequency estimate, denoted by wyic, is given

by [4]-[5]
k
WMc = arg mvin {262(71)} =cos™! (%) (5)
where

A = w(n—1)w(n) +2(n - 2)] (6)

By = Zk: zi(n—1) (7)
and k denotes the number of available samples. In our study, the MC method is realized
adaptively by computing A; and By on a sample-by-sample basis as follows,

Ap = Ay +x(k— 1) [x(k — 2) + 2(k)] (8)
and
By = ABg_1 + z%(k — 1) (9)

where 0 < A < 1 is the forgetting factor which is responsible for parameter tracking. It is
easy to see that when A = 1, the recursive equations of (8) and (9) will be identical to the
batch formulae of (6) and (7), respectively [5],[8]. In so doing, the RLS type version of the



MC method requires 3 additions, 5 multiplications, 1 division and 1 arccosine function for
each iteration.

B. Pisarenko Harmonic Decomposition

Pisarenko [6] was the first who has exploited the eigenstructure of the covariance matrix
in frequency estimation. The PHD estimate for a single real tone utilizes (3) in the sample
covariance measurements with a unit-norm constraint for providing unbiased frequency

estimates, and it is given by [7]:
Pk /73 e T8, (10)
10
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WPHD = COS ™

where the sample covariances r; j and ry ;. are defined as

k—i

rig = kl_ > w(n)x(n + 1), i=1,2 (11)

i
The derivation of the adaptive version of the PHD method is similar to the MC algorithm.

We first express {r;} in terms of {r; x_1} and then multiply the forgetting factor to the
latter. As a result, wpyp i1s updated iteratively via

-2 z(k — Dx(k
MLk = ATk % (12)
and
-3 z(k — 2)x(k
7”2,!@:/\]{7_27”2,!@—14'7( k—)Q( ) (13)

At each iteration, 7 additions, 16 multiplications, 3 division, 1 root operation and 1 arccosine
function are needed. It is noteworthy that a number of RLS type algorithms, such as [9]-[10],
have been devised for multiple sinusoidal frequency estimation, while our proposed adaptive
scheme 1s simpler but only suitable for single-tone applications.

B. Reformed Pisarenko Harmonic Decomposition

Similar to Pisarenko’s method, the idea of the RPHD method is to minimize the sum of
squares of e(n) subject to another similar constraint, so that unbiased frequency estimation
can be attained. The key distinction between the PHD and RPHD methods is that the
former deals with the sample covariances while the latter works on the data measurements
directly, although the resultant algorithms have differences only in incorporating the signal
samples at the beginning and at the end in the calculation. The RPHD frequency estimate,
denoted by wrpnp, is given by [8]

Ci —I—\/C,f—I—SAz) (14

. -1
WRPHD = €OS
( 4A,

where
Cr = xz(k’) — xz(k’ -1)- x2(2) + xz(l) +2 Z z(n)z(n —2) (15)

and Ay, is already defined in (6). In the adaptive version of the RPHD method, A is updated
according to (8) and Cj is adjusted iteratively in a similar manner as follows [8],

Cr = ACh_y + 2% (k = 3) — 22%(k — 2) + 2% (k — 1) + 22(k — 3)x(k — 1) (16)

The computational requirement of the adaptive realization per iteration is 8 additions, 9
multiplications, 1 division, 1 root operation and 1 arccosine function.



3 Simulation Results

Computer simulations had been conducted to compare the sinusoidal frequency tracking
performances of the adaptive realizations of the MC, PHD and RPHD methods in white
Gaussian noise. The tone amplitude was set to /2 and ¢ was a constant uniformly dis-
tributed between [0, 27) at each trial. High and moderate signal-to-noise ratio (SNR) con-
ditions were investigated and they were obtained by properly scaling the noise variance.
The value of A was assigned as 0.95 in all methods. All results provided were averages of
1000 independent runs.

Figure 1 shows the trajectories for the frequency estimates of the three adaptive algorithms
for a step change in w at a high SNR condition of 10 dB. The actual frequency had a
value of 1.0 during the first 200 iterations and then changed instantaneously to 2.0 after-
wards. It can be seen that the learning curves of the PHD and RPHD methods were almost
identical and their frequency estimates converged to the desired values of 1.0 and 2.0 at
approximately the 20th and 300th iteration, respectively. Furthermore, the MC algorithm
had similar convergence speed but it provided biased frequency estimates of 1.05 and 1.95
upon convergence. The corresponding mean square frequency errors (MSFEs) are plotted
in Figure 2. We observe that the RPHD algorithm had the smallest MSFEs for both fre-
quencies and the improvement over the PHD method was around 2 to 3 dB. On the other
hand, the MC algorithm had much larger MSFEs; which were mainly due to the frequency
bias.

The above test was repeated for a moderate SNR condition of 0 dB and the results are
shown in Figures 3 and 4. We see that the trajectories for the frequency estimates as well as
MSFEs of the PHD and RPHD algorithms were very similar, and they provided unbiased
frequency tracking. On the contrary, the MC method gave biased frequency estimates of 1.3
and 1.8, and yielding the largest MSFEs.

4 Conclusions

In this paper, we have developed recursive least squares type realizations for the modified
covariance (MC), Pisarenko harmonic decomposition (PHD) and reformed Pisarenko har-
monic decomposition (RPHD) methods in tracking single real tone frequency. Tt is shown
that the frequency tracking performance of the adaptive RHPD algorithm generally outper-
forms those of the MC and PHD methods, and its computational requirement is moderate
among the three methods.

References

[1] S.M.Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Englewood Cliffs, NJ:
Prentice-Hall, 1993

[2] P.Stoica and R.Moses, Introduction to Spectral Analysis, Upper Saddle River, NJ: Prentice-Hall, 1997

[3] B.G.Quinn and E.J.Hannan, The estimation and tracking of frequency, Cambridge, New York: Cam-
bridge University Press, 2001

[4] L.B.Fertig and J.H.McClellan, ”Instantaneous frequency estimation using linear prediction with com-
parisons to the DESAs,” IEEE Signal Processing Letters, vol.3, no.2, pp.54-56, Feb. 1996

[5] D.W.Tufts and P.D.Fiore, ”Simple, effective estimation of frequency based on Prony’s method,” Proc.
Int. Conf. Acoust., Speech, Signal Processing, vol.5, pp.2801-2804, May 1996, Atlanta, GA, USA



(6]

V.F.Pisarenko, ” The retrieval of harmonics by linear prediction,” Geophys. J. Roy. Astron. Soc., vol.33,
Pp.347-366, 1973

A.Eriksson and P.Stoica, ”On statistical analysis of Pisarenko tone frequency estimator,” Signal Pro-
cessing, vol.31,, no.3, pp.349-353, 1993

H.C.So0, " A closed from frequency estimator for a noisy sinusoid,” Proceedings of 45th IEEE Midwest
Symposium on Circuits and Systems, vol.2, pp.160-163, August 2002, Tulsa, Oklahoma, USA
V.U.Reddy, B.Egardt and T.Kailath, ”Least squares type algorithm for adaptive implementation of
Pisarenko’s harmonic retrieval method,” IEEFE Trans. Acoust. Speech, Signal Processing, vol.30, no.3,
pp-399-405, June 1982

D.Kim and W.E.Alexander, " The unbiased gradient type LS algorithm for adaptive spectrum estima-
tion,” IEEFE Trans. Circuit, Systems, vol.37, no.3, pp.416-420, Mar. 1990

=)
g
Q
5]
£
3
[}
>
(53
[}
&
$0.8
0.6(
— RPHD
0.4 —_McC
PHD
0.2
0 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400

sample number

Figure 1: Frequency estimates at SNR = 10 dB
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Figure 2: Mean square frequency errors at SNR = 10 dB
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Figure 3: Frequency estimates at SNR, = 0 dB
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Figure 4: Mean square frequency errors at SNR = 0 dB



